
CGI2016 manuscript No.
(will be inserted by the editor)

Intermediate Shadow Maps for Interactive Many-Lights
Rendering

Lili Wang · Wenhao Zhang · Nian Li · Boning Zhang · Voicu Popescu

Abstract We present an efficient method for comput-

ing shadows for many light sources (e.g. 1,024). Our

work is based on the observation that conventional shadow

mapping becomes redundant as the number of lights in-

creases. First, we sample the scene with a constant num-

ber of depth images (e.g. 10), which we call intermedi-

ate shadow maps. Then the shadow map for each light

is approximated by rendering triangles reconstructed

from the intermediate shadow maps. The cost of ren-

dering these triangles is much smaller than rendering

the original geometry of a complex scene. The algo-

rithm supports fully dynamic scenes. Our results show

that our method can produce soft shadows compara-

ble to those obtained by conventional shadow mapping

for each light source or by ray tracing, but at a higher

frame rate.

Keywords Many lights, visibility, shadow mapping

1 Introduction

Rendering complex scenes with complex lighting at in-

teractive rates remains an open research problem. The

core challenge is to determine visibility between the

scene geometry and the light sources. When the scene

consists of millions triangles and when lighting is mod-

eled with hundreds or even thousands of point light

sources, determining visibility can be very time-consuming,

precluding rendering at interactive rates. The conven-

tional approach for rendering shadows in interactive

Lili Wang · Wenhao Zhang Nian Li · Boning Zhang
State Key Laboratory of Virtual Reality Technology and Sys-
tems, School of Computer Science and Engineering,Beihang
University

Voicu Popescu
Purdue Univerisity

graphics applications is shadow mapping, which does

not scale with scene complexity and with the number

of lights as it requires rendering the scene once for each

light.

In this paper we present an efficient method for

computing shadows for many point light sources (e.g.

1, 024). Our method is based on the observation that

conventional shadow mapping becomes redundant as

the number of lights increases. Given a shadow map

SMi rendered for a light source Li, SMi contains a

significant part of the visibility information needed to

compute shadows for a different light Lj . Given a set of

k intermediate shadow maps, the set contains almost all

of the visibility information needed to compute shadows

for any number of additional lights. Rendering shadow

maps for the additional lights is redundant. Instead, our

method approximates the shadow map of a light from

the set of intermediate shadow maps.

Our method has two steps. First, we sample the

scene with a constant number of depth images (e.g.

10), which we call intermediate shadow maps (INSMs).

Then the shadow map for each light L is approximated

by rendering the triangles of all the intermediate shadow

maps from the viewpoint L. Since the number of inter-

mediate shadow maps is constant, the cost of rendering

the triangles reconstructed from them is also constant,

and, for complex scenes, this cost is much smaller than

rendering the entire scene. We tested our approach on

several complex scenes where we obtained high quality

shadows and good performance (Fig. 1). We also refer

the reader to the accompanying video.

2 Lili Wang et al.

Fig. 1 Scenes with 1,024 lights rendered with our method (row 1), and with ray tracing (row 2). Compared to ray tracing,
the average per pixel intensity errors for our method are 0.1%, 0.7% and 1.1%, and the speedups are 12×, 25× and 17×.
Compared to conventional shadow mapping, our method brings speedups of 5×, 18× and 10×.

2 Previous Work

The classical methods for shadow computation are shadow

mapping and ray tracing. However, these methods are

slow for a large number of lights. In order to accelerate

visibility computation in the context of shadow render-

ing, researchers pursued two kinds of approximations:

scene geometry approximation, which implies replacing

the original scene geometry with a lower cost represen-

tation, and lighting approximation, which implies re-

ducing the number of lights by clustering. In addition

to our overview of prior work below, we also refer the

reader to a recent survey of many-lights techniques [5].

2.1 Ray tracing based methods

Approximating the scene geometry has been pursued

in the context of ray tracing. One method is micro-

rendering [18], which uses a point tree hierarchy to ap-

proximate the geometry of objects in the scenes. The

exact visibility of the leaf nodes is determined by ray

casting after the cut of tree is computed. Another method

is based on incremental voxel-space visibility computa-

tions [13], which uses a screen-space voxelization to

discretize the scene geometry, and introduces an effi-

cient incremental query to determine the visibility from

output samples to light sources.

Several ray tracing based methods focus on simpli-

fying the lights, which brings more time performance

advantage for both illumination and visibility, but at

the cost of a quality decrease. One method groups lights

using an octree [17], and resorts to volumetric visibility

approximation. Another method partitions The geom-

etry of the scene into zones and clusters the lights into

sets of similar lights per zone, which results in an un-

structured light cloud [12]. Lightcut [22] is a popular

scalable solution to the many lights problem. A binary

light tree is built by clustering the original lights, and

cuts through the tree are selected for output samples.

The method uses the trivial upper bound of one for the

visibility term (i.e. all lights are potentially visible).

Many researchers improved visibility computation ac-

curacy based of the original lightcut method (e.g. [23],

[3], [4]).

Intermediate Shadow Maps for Interactive Many-Lights Rendering 3

There are some ray tracing based method that ap-

proximate both lights and scene geometry. Such as Vis-

ibilityClusters in [25]. The method constructs Visibili-

tyClusters with high visibility coherence, and estimate

average visibility by exploiting the sparse structure of

the matrix and shooting only few shadow rays between

clusters.

2.2 Shadow mapping based methods

Compared to ray tracing, shadow mapping based meth-

ods are faster, but still not fast enough for interactive

performance in the context of a large number of lights

and of a complex scene. Shadow mapping acceleration

was pursued by scene geometry approximation.

One straight forward method available to practi-

tioners is to simplify the scene geometry with off-the

shelf LOD tools such as Simplygon [2] or 3Ds Max [1].

Compared to geometry simplification, our method is ro-

bust and it works for any scene, whereas geometry sim-

plification is complex and it requires tuning scene spe-

cific parameter values. Our method does not preprocess

geometry, so it is suitable to geometry that becomes

available in real time, such as geometry acquired with

real-time depth cameras. Moreover, simplified geometry

will cast acceptable shadows for area light sources that

generate soft shadows, but any hard shadow will reveal

the coarseness of the underlying geometric model.

If geometry simplification is to take into account the

current positions of the lights in order to avoid oversim-

plifying blockers that cast hard shadows, it can only do

so by running for every frame, as the lights are dynamic

and the hardness of a shadow cast by one light changes

from frame to frame. Furthermore, geometry simplifi-

cation typically takes into account a single viewpoint,

i.e. the eye of the camera that renders the output im-

age. It is difficult to meet the constraints of thousands

of viewpoints, each creating a silhouette. For example,

the ManyLoDs method [10] uses a bounding volume

hierarchy to approximate the scene geometry. For dy-

namic scenes, the hierarchical structure has to be up-

dated for each frame based on scene graph cuts defined

by thousands of lights. In order to complete these steps

in real-time, the method has to find some high level

cuts, which correspond to a coarse approximation of

scene geometry, which might acceptable for faint shad-

ows but not for shadows with higher definition.

Ritschel et al. propose Coherent Shadow Maps (CSM)

[20]. The precomputed and compressed depth maps al-

low visibility tests between moving objects and a high

number of lights outside their convex hulls using sim-

ple shadow mapping, but the method is unsuitable for

virtual point light sources placed on an objects surface,

as needed for indirect lighting in global illumination. In

order to solve this problem, Coherent Surface Shadow

Maps (CSSMs) were proposed, which is a more accurate

technique that approximates visibility at scene points

using local cube maps [21]. The Virtual Area Lights

(VALs) method [7] computes directly the soft shadows

cast by the smaller number of VALs using CCSMs with

parabolic projection, which has a smaller overall cost

than computing hard shadows for all the point light

sources. Our method render the intermediate shadow

maps in real-time, without preprocessing.

Imperfect Shadow Maps (ISM) [19], is a more gen-

eral method for many light visibility determination in

fully dynamic scenes. A low resolution shadow map is

rendered for each light from a coarse point-based ap-

proximation of scene geometry by splatting followed by

pull-push reconstruction. ISM is a popular method for

interactive rendering with many lights, so we compare

our method to ISM in detail in the Results Section. The

Virtual Shadow Maps technique [16] [15] creates a list

of lights influencing each cluster of scene geometry.

In Matrix Row-Column Sampling [9] the columns

of a matrix represent all output pixel samples lit by

an individual light, and the rows represent an indi-

vidual sample lit by all lights. A set of representative

rows and columns of the matrix are computed first us-

ing conventional shadow mapping. A row is computed

by rendering the scene from the viewpoint of the sam-

ple of the row, and a column is computed by render-

ing the scene from the light of the column. Then the

other matrix elements are approximated by interpo-

lation. The Visibility Clustering method [6] clusters

lights, renders a representative shadow map to approx-

imate the visibility in each cluster, and combines the

approximate visibility with accurate per light shading.

Visibility Clustering requires rendering fewer shadow

maps than standard matrix row-column sampling. Ma-

trix row-column sampling was extended to rendering

massive scenes with out-of-core geometry and complex

lighting [24]. Another extension uses a new matrix

sampling-and-recovery scheme to gather illuminations

efficiently by only sampling visibility for a small num-

ber of representative lights and surface points [11].

Our method falls into the category of shadow map-

ping based methods. Like in Visibility Clustering our

method computes a set of intermediate shadow maps,

but then the intermediate shadow maps are reprojected

to the viewpoint of each light source, which results in a

higher quality approximation of visibility than simply

using the representative shadow map for all the lights

in the cluster.

4 Lili Wang et al.

3 Intermediate Shadow Maps

Our method avoids the redundancy of rendering hun-

dreds of shadow maps. A small number of intermediate

shadow maps are used to approximate the shadow map

of each of the many lights. Using the visibility informa-

tion contained in an intermediate shadow map INSMj

for a light Li can be done in many ways.

One approach is to leverage epipolar geometry. Given

an output image sample Suv, the intersection between

the light ray Li Suv and INSMj can be computed by

projecting Li Suv onto INSMj and tracing the pro-

jection in search of an intersection. This approach was

introduced in inverse 3D image warping [26], and then

later used in relief texture mapping [14] and in specular

reflection rendering [8]. The advantage is reducing the

cost of intersecting a depth image with a ray from 2D

to 1D.

However, unlike in the case of inverse 3D image

warping, relief texture mapping, and specular reflec-

tions where there is a single ray per output image pixel,

in our context there are n rays per pixel, where n is the

number of lights, which could be in the hundreds or

even the thousands. Fortunately, the large set of rays

that arises in the context of many-lights rendering is

coherent, as the light rays can be grouped in concur-

rent bundles, with one bundle per light. This enables a

second, more efficient approach for using the visibility

information of the intermediate shadow map INSMj

for approximating the shadow map of Li. The second

approach, which we adopt, is to transform INSMj into

a triangle mesh and to render the triangle mesh from

Li. This approach leverages the GPU strength of ren-

dering triangles by projection followed by rasterization.

3.1 Algorithm overview

Algorithm 1 outlines the main steps of our approach.

In steps 1-3 the intermediate shadow maps are ren-

dered conventionally from the reference viewpoints Vj

that are designed to sample the scene S uniformly and

comprehensively. We place the intermediate shadow map

reference viewpoints at the midpoints of the eight edges

and the centers of the left and right planes in the axis

aligned bounding box of S (Fig. 2).

Then each intermediate shadow map INSMj is con-

verted to a triangle mesh TMj by defining two trian-

gles for each neighborhood of 2 × 2 INSMj samples.

No triangles are generated across depth discontinuities.

Depth discontinuities are generated by thresholding the

second order difference in the depth map. The second

order difference is surface orientation independent, i.e.

Algorithm 1 Many-Lights Rendering with Intermedi-

ate Shadow Maps
Input: scene S with N triangles and n light sources Li, k
reference viewpoints Vj and output view V .
Output: Image I that shows S rendered from V with shad-
ows cast by Li.

1: for j = 1 to k do
2: Render shadow map INSMj from ref. viewpoint Vj .
3: Reconstruct triangle mesh TMj from INSMj

4: Render S from V without shadows to image I
5: for i = 1 to n do
6: Initialize cube shadow map SMi to empty
7: for j = 1 to k do
8: Render TMj to each face of SMi from Li

9: Add to I the shadows from Li computed using SMi

10: return I

it is exactly 0 for any plane, no matter its orientation.

Step 3 is described in detail in Section 3.2.

Step 4 renders the scene without shadows to image

I, which defines the samples for which shadows have to

be computed. Steps 5-9 add to I the shadows cast by

each light Li. For each light Li, an approximate cube

shadow map SMi is constructed first by rendering all

intermediate shadow map triangle meshes TMJ from Li

(steps 6-8). Then SMi is used to compute the shadows

from Li, which are added to I.

Fig. 2 Reference viewpoint placement for the intermediate
shadow maps. The 10 spheres indicate the reference view-
points with respect to the bounding box of the scene.

3.2 Intermediate Shadow Map Triangulation

We triangulate the intermediate shadow maps on the

GPU, by processing neighborhoods of 2× 2 intermedi-

ate shadow maps samples in parallel, as described in

algorithm 2.

Intermediate Shadow Maps for Interactive Many-Lights Rendering 5

Fig. 3 Triangle mesh reconstruction from intermediate
shadow maps. Four neighboring samples in the intermediate
map are connected with two triangles. The green triangles are
added to the mesh. The red triangles are discarded since they
span a depth discontinuity or involve an invalid background
sample.

Algorithm 2 Intermediate Shadow Map Triangulation
Input: INSMj

Output: triangle mesh TMj obtained from INSMj

1: for each INSMj sample (u, v) do
2: if IsConnected((u, v), (u, v + 1), (u + 1, v + 1)) then
3: TMj += [(u, v), (u, v + 1), (u + 1, v + 1)]

4: if IsConnected((u + 1, v + 1), (u + 1, v), (u, v)) then
5: TMj += [(u + 1, v + 1), (u + 1, v), (u, v)]

6: return TMj

Sample (u, v) is the top left sample of the 2×2 neigh-

borhood. The four samples are connected with two tri-

angles. A triangle is kept if its vertices pass the connec-

tivity test. The triangle connectivity test IsConnected(a, b, c)

checks connectivity for each of the three triangle edges

(a, b), (b, c), and (c, a). For example, edge ((u, v), (u, v+

1)) passes the connectivity test if both of the two con-

ditions below are met, where z(u, v) is the depth value

of sample (u, v), and ε is a threshold that depends on

the scene.

|z(u, v − 1) + z(u, v + 1)− 2z(u, v)|< ε

|z(u, v) + z(u, v + 2)− 2z(u, v + 1)|< ε

Fig. 3 shows triangles that are kept and triangles

that are discarded, including invalid triangles that in-

volve null (i.e. background) samples.

4 RESULTS AND DISCUSSION

In this section, we discuss the quality of the shadows

rendered by our method, we report frame rate measure-

ments, and we discuss limitations.

We tested our algorithm with several scenes: Dragon(871ktris),

Church(1,868ktris), Carousel(1,336ktris), City(1,117ktris),

Planes(1,000ktris), Grass(1,198ktris), and Sponza(1,063ktris).

All performance measurements reported in this paper

were recorded on a 3.8 GHz Intel(R) Core(TM) i7-

2600K CPU PC with 12 GB of RAM and an NVIDIA

GeForce GTX 660 graphics card. We use NVIDIA’s Op-

tix ray tracer.

4.1 Quality

We compare the shadows rendered with our method to

shadows rendered using Imperfect Shadow maps(ISM)

and to ground truth shadows rendered with ray tracing.

The error metric used is the average shadow intensity

error per valid image pixel. Although it is a relaxed er-

ror measurement for visibility computation, since posi-

tive and negative errors from different lights may cancel

out at a given pixel, the average intensity error is di-

rectly related to the quality of the output image.

Our method renders high quality shadows, compa-

rable to shadows rendered by ray tracing, for complex

scenes with 1,024 lights (see Figs. 1 and 4, as well as

the accompanying video). In all our experiments, the

default resolution of the intermediate shadow maps is

128 × 128, the default resolution of the shadow maps

computed for each light is 512 × 512, the default num-

ber of intermediate shadow maps is 10, and the default

number of light sources is 1,024. Fig. 5 visualizes the

error for the six images shown in Figs. 1 and 4.

Our method typically underestimates blockers, by

only considering what was captured in the intermedi-

ate shadow maps, and by eroding surface edges a half-

pixel during reconstruction, which results in light leak-

ing. Consequently, the small approximation errors in

our images are typically due to pixels that are brighter

than they should be. The occasional “too dark” approx-

imation errors are due to incorrect depth discontinuity

detection which generates superfluous blocker surfaces.

The Planes and Grass scenes are the most challenging

scenes for our method due to the high depth complexity,

which is challenging for the small number of intermedi-

ate shadow maps we use, and the minute detail, which

is challenging for the reconstruction of the blocker sur-

faces from the sample base representation brought by

the intermediate shadow maps. Even for these challeng-

ing scenes, the approximation errors introduced by our

method are small.

6 Lili Wang et al.

ISM uses points sampling to approximate the ge-

ometry of the scene, which is rendered by splatting

and pull-push operations to generate a low resolution

shadow map for every light source. In our experiments,

we use about 12,000 point samples to render each of the

1,024 128 × 128 ISMs, which yields a frame rate com-

parable to that of our method. Table 1 shows that our

method has a smaller average shadow intensity error

for our scenes.

Table 1 Average pixel shadow value errors for our method
and for the prior art Imperfect Shadow Maps method.

Scene Dragon Church Carousel City Plane Grass
Ours 0.1% 0.7% 1.1% 0.8% 3.4% 3.9%
ISM 3.9% 5.8% 4.7% 4.6% 10.0% 9.0%

Tables 2, 3, and 4 show the dependency of the ap-

proximation error on the resolution of the intermedi-

ate shadow maps, on the resolution of the approximate

shadow maps computed for each light, and on the num-

ber of intermediate shadow maps, for the Dragon scene.

As expected, the error decreases as the three parame-

ters increase. For this scene, the values of the three

parameters after which returns diminish are 128× 128,

512× 512, and 10.

Table 2 Approximation error as a function of intermediate
shadow map resolution.

Resolution
of INSM

64×64 128×128 256×256 512×512

Avg. pixel error 0.56% 0.12% 0.09% 0.08%

Table 3 Approximation error as a function of individual
light shadow map resolution.

Resolution
of ILSM

256×256 512×512 1024×1024 2048×2048

Avg. pixel error 0.18% 0.12% 0.10% 0.09%

Table 4 Approximation error as a function of the number of
intermediate shadow maps.

Number
of INSMs

6 8 10 12

Avg.
pixel error

0.30% 0.16% 0.12% 0.11%

We have also tested our method with an inside look-

ing out scene Sponza. We set 14 reference cameras for

this scene. Fig. 6 gives a top view illustration of the ref-

erence camera placement. Fig.7 shows our results com-

pared to ground truth, as well as shadow error images.

The errors are 5.5% and 4.7%, and our method is 3

times faster than ray tracing.

4.2 Performance

We have compared the performance of our algorithm to

that of NVIDIAs Optix ray tracer, and to conventional

shadow mapping that renders a shadow map for each

light from the original scene geometry. Table 5 provides

the frame rendering times for all three methods. Our

method is between 11.8× and 24.9× faster than ray

tracing, and between 5.0× and 17.5× faster than con-

ventional shadow mapping. The speedup comes from

replacing the original scene geometry with the trian-

gle meshes reconstructed from the intermediate shadow

maps, when computing the individual light shadow maps.

The numbers of triangles in these meshes is 119k, 43k,

135k, 69k, 112k, and 94k for the Dragon, Planes, City,

Grass, Carousel and Church scenes, which is consid-

erably less than the number of triangles in the scene

models. For a scene with N triangles, for k intermedi-

ate shadow maps of resolution w ×w, and for n lights,

the number of triangles rendered by our method is at

most kN + 2nkw2, where we counted 2 reconstructed

triangles per intermediate shadow map sample. Con-

ventional shadow mapping renders nN triangles, so our

method scales much better with scene geometric and

lighting complexity.

In our experiments, we tried to perform an equal

quality comparison to ISM by increasing the number of

scene point samples used in ISM. No matter how much

we increased the number of point samples, ISM quality

remained inferior to the quality of our method. Once

the number of point samples increases above what can

be handled by the GPU in a single pass, the additional

rendering pass made performance slower than that of

ray tracing.

Table 5 Frame rendering times in milliseconds for our
method (INSM), for conventional shadow mapping (SM), and
for ray tracing (RT).

Scene INSM SM
SM/
INSM

RT
RT/
INSM

Dragon 844 4,200 5.0× 10,000 11.8×
Church 744 13,000 17.5× 18,500 24.9×
Carousel 835 8300 9.9× 14300 17.1×

City 960 7300 7.6× 12,500 15.2×
Planes 493 4,100 8.3× 10,500 21.3×
Grass 680 9,400 13.8× 16,000 23.5×

Intermediate Shadow Maps for Interactive Many-Lights Rendering 7

Fig. 4 Comparison between our method (left), ray tracing (middle), and imperfect shadow maps (right). The approximation
introduced by ISM translates into noticeable shadow errors.

The graphs in Figs. 8, 9, and 10 confirm the quadratic

dependence of performance on the linear resolution w

of the intermediate shadow maps, and the linear depen-

dence on the number of intermediate shadow maps and

on the number of lights.

The graph in Fig. 11 confirms that the resolution of

the shadow maps computed for individual lights does

not affect performance much, which indicates that ren-

dering the individual light shadow maps is geometry

and not fill-rate bound.

4.3 Limitations

As discussed, our method approximates blocker geom-

etry with intermediate shadow maps, which can result

8 Lili Wang et al.

Fig. 5 Visualization of approximation errors of our method (top) and ISM (bottom)for the images shown in Fig. 4. The error
is scaled by a factor of 5 for illustration purposes. Red/green highlights pixels that are too bright/dark.

Fig. 6 Reference viewpoint placement for the intermediate
shadow maps for the Sponza scene. The cameras shown by
the blue dots are placed mid-height with a horizontal view di-
rection, and the cameras shown by the green dots are ground-
level and look at the center of the scene.

in light leaks when the blocker geometry is not sam-

pled well enough. Insufficient sampling can be caused

by high depth complexity, i.e. many occluding layers,

or by high surface complexity, i.e. minute details. Our

method provides a straightforward approach for miti-

gating these challenges: increasing the number of inter-

mediate shadow maps, and increasing the resolution of

intermediate shadow maps. Adequate values for these

two essential parameters should be determined based

on the scene and based on the application.

Another limitation of our approach is that, in or-

der to surpass the performance of conventional shadow

mapping, the scene has to be sufficiently complex such

that the triangle meshes reconstructed from the inter-

mediate shadow maps be less expensive than the orig-

inal scene model, and the number of lights should be

sufficiently large such that these per light gains accu-

mulate to overtake the initial startup cost of rendering

and triangulating k intermediate shadow maps.

Fig. 7 Sponza inside-looking-out scene with 1,024 lights ren-
dered with our method (top), and with ray tracing (middle).
The approximation errors of our method are 5.5% (left) and
4.7% (right). We visualize the approximation errors scaled up
by a factor of 5, with red/green highlighting pixels where the
images are too bright/too dark.

5 Conclusions and Future Work

We have presented a general and efficient method for

rendering shadows for many light sources. The method

Intermediate Shadow Maps for Interactive Many-Lights Rendering 9

Fig. 8 Frame rendering time as a function of the linear res-
olution of the intermediate shadow maps.

Fig. 9 Frame rendering time as a function of the number of
intermediate shadow maps.

Fig. 10 Frame rendering time as a function of the number
of lights in the scene.

handles robustly fully dynamic scenes with millions of

triangles and a thousand light sources, and renders high

quality soft shadows. Our method decreases the redun-

dancy of conventional shadow mapping a large number

of lights by only rendering the scene geometry a small

number of times to generate intermediate shadow maps,

which are then used to approximate visibility from the

individual light sources. The intermediate shadow maps

contain much of the visibility information needed for

the many light sources. We extract this information

carefully by reprojecting the intermediate shadow maps

to the viewpoints of the individual lights. We do not ap-

Fig. 11 Frame rendering time as a function of the resolution
of the individual light shadow maps.

proximate visibility by interpolation, since visibility is

notoriously non-linear. We do not cluster lights, and

we truly estimate visibility for each one of the many

individual lights. Our lights are free to change from a

uniform distribution to a clustered distribution or even

to converge to a single point, and our method produces

quality shadows, gradually changing from soft to harder

and then to hard shadows, without temporal artifacts.

We compared our results to ground-truth obtained

by ray tracing and to conventional shadow mapping

over a variety of scenes, and we showed that our method

brings a substantial performance gain at the cost of only

small approximation errors.

Our method makes progress in the direction of sub-

stantially increasing the number of lights that are avail-

able to interactive graphics applications. An important

direction of future work is to provide algorithmic sup-

port for lighting design by automatically placing and

calibrating the individual light sources. Another direc-

tion of future work is to investigate the extension of

our method to global illumination where surface sam-

ples become virtual point light sources from where sec-

ondary light rays originate.

6 Acknowledgments

References

1. 3ds max. http://www.autodesk.com/products/

3ds-max/overview, 2016.
2. Simplygon. https://www.simplygon.com/, 2016.
3. Oskar Akerlund, Mattias Unger, and Rui Wang. Pre-

computed visibility cuts for interactive relighting with
dynamic brdfs. In Conference on Computer Graphics &
Applications, pages 161–170, 2007.

4. Ewen Cheslack-Postava, Rui Wang, Oskar Akerlund, and
Fabio Pellacini. Fast, realistic lighting and material de-
sign using nonlinear cut approximation. Acm Transac-
tions on Graphics, 27(5):32–39, 2008.

10 Lili Wang et al.

5. Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan,
Adam Arbree, Bruce Walter, and Jan Novák. Scalable
realistic rendering with many-light methods. In Com-
puter Graphics Forum, volume 33, pages 88–104. Wiley
Online Library, 2014.

6. Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan,
Philipp Slusallek, and Kavita Bala. Combining global
and local virtual lights for detailed glossy illumination.
In ACM Transactions on Graphics (TOG), volume 29,
page 143. ACM, 2010.

7. Zhao Dong, Thorsten Grosch, Tobias Ritschel, Jan
Kautz, and Hans-Peter Seidel. Real-time indirect illumi-
nation with clustered visibility. In VMV, pages 187–196,
2009.

8. Rogerio Feris, Ramesh Raskar, Kar-Han Tan, and
Matthew Turk. Specular reflection reduction with multi-
flash imaging. In Proceedings of the Computer Graphics
and Image Processing, XVII Brazilian Symposium, SIB-
GRAPI ’04, pages 316–321, Washington, DC, USA, 2004.
IEEE Computer Society.

9. Miloš Hašan, Fabio Pellacini, and Kavita Bala. Ma-
trix row-column sampling for the many-light problem.
In ACM Transactions on Graphics (TOG), volume 26,
page 26. ACM, 2007.

10. Matthias Hollander, Tobias Ritschel, Elmar Eisemann,
and Tamy Boubekeur. Manylods: Parallel many-view
level-of-detail selection for real-time global illumination.
In Computer Graphics Forum, page 1233C1240, 2011.

11. Yuchi Huo, Rui Wang, Shihao Jin, Xinguo Liu, and Hu-
jun Bao. A matrix sampling-and-recovery approach for
many-lights rendering. ACM Transactions on Graphics
(TOG), 34(6):210, 2015.

12. Anders Wang Kristensen, Tomas Akenine-M?ller, and
Henrik Wann Jensen. Precomputed local radiance trans-
fer for real-time lighting design. Acm Transactions on
Graphics, 24(3):1208–1215, 2005.

13. Greg Nichols, Rajeev Penmatsa, and Chris Wyman. In-
teractive, multiresolution image-space rendering for dy-
namic area lighting. In Computer Graphics Forum, vol-
ume 29, pages 1279–1288. Wiley Online Library, 2010.

14. Manuel M. Oliveira, Gary Bishop, and David McAllister.
Relief texture mapping. In Proceedings of the 27th An-
nual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’00, pages 359–368, New York,
NY, USA, 2000. ACM Press/Addison-Wesley Publishing
Co.

15. Ola Olsson, Markus Billeter, Erik Sintorn, Viktor
Kampe, and Ulf Assarsson. More efficient virtual shadow
maps for many lights. 2015.

16. Ola Olsson, Erik Sintorn, Viktor Kämpe, Markus Bil-
leter, and Ulf Assarsson. Efficient virtual shadow maps
for many lights. In Proceedings of the 18th meeting of the
ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games, pages 87–96. ACM, 2014.

17. Eric Paquette, Pierre Poulin, and George Drettakis. A
light hierarchy for fast rendering of scenes with many
lights. In Computer Graphics Forum, volume 17, pages
63–74. Wiley Online Library, 1998.

18. T. Ritschel, T. Engelhardt, T. Grosch, H. P. Seidel,
J. Kautz, and C. Dachsbacher. Micro-rendering for
scalable, parallel final gathering. Acm Transactions on
Graphics, 28(5):89–97, 2009.

19. T. Ritschel, T. Grosch, M. H. Kim, H. P. Seidel, C. Dachs-
bacher, and J. Kautz. Imperfect shadow maps for efficient
computation of indirect illumination. Acm Transactions
on Graphics, 27(5):32–39, 2008.

20. Tobias Ritschel, Thorsten Grosch, Jan Kautz, and Ste-
fan Eller. Interactive illumination with coherent shadow
maps. In Proc. EGSR (2007, pages 61–72, 2007.

21. Tobias Ritschel, Thorsten Grosch, Jan Kautz, and
Hans Peter Seidel. Interactive global illumination based
on coherent surface shadow maps. In Proceedings of
Graphics Interface 2008, 2008.

22. Bruce Walter, Sebastian Fernandez, Adam Arbree,
Kavita Bala, Michael Donikian, and Donald P. Green-
berg. Lightcuts: A scalable approach to illumination.
Acm Transactions on Graphics, 24(3):pgs. 1098–1107,
2005.

23. Bruce Walter, Pramook Khungurn, and Kavita Bala.
Bidirectional lightcuts. Acm Transactions on Graphics,
31(4):13–15, 2012.

24. Rui Wang, Yuchi Huo, Yazhen Yuan, Kun Zhou, Wei
Hua, and Hujun Bao. Gpu-based out-of-core many-
lights rendering. ACM Transactions on Graphics (TOG),
32(6):210, 2013.

25. Yu-Ting Wu and Yung-Yu Chuang. Visibilitycluster: Av-
erage directional visibility for many-light rendering. Vi-
sualization and Computer Graphics, IEEE Transactions
on, 19(9):1566–1578, 2013.

26. Tang Yang, Wu Hui-zhong, Xiao Fu, and Xiao Liang. In-
verse image warping without searching. In International
Conference on Control, Automation, Robotics and Vi-
sion, pages 386–390, 2004.

