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Fast Ray-Scene Intersection
for Interactive Shadow Rendering with

Thousands of Dynamic Lights
Lili Wang, Xinglun Liang, Chunlei Meng, and Voicu Popescu

Abstract—We present a method for the fast computation of the intersection between a ray and the geometry of a scene. The scene
geometry is simplified with a 2D array of voxelizations computed from different directions, sampling the space of all possible directions.
The 2D array of voxelizations is compressed using a vector quantization approach. The ray-scene intersection is approximated using
the voxelization whose rows are most closely aligned with the ray. The voxelization row that contains the ray is looked up, the row is
truncated to the extent of the ray using bit operations, and a truncated row with non-zero bits indicates that the ray intersects the scene.
We support dynamic scenes with rigidly moving objects by building a separate 2D array of voxelizations for each type of object, and by
using the same 2D array of voxelizations for all instances of an object type. We support complex dynamic scenes and scenes with
deforming geometry by computing and rotating a single voxelization on the fly. We demonstrate the benefits of our method in the
context of interactive rendering of scenes with thousands of moving lights, where we compare our method to ray tracing, to
conventional shadow mapping, and to imperfect shadow maps.

Index Terms—Real time rendering, Many lights, Visibility determination, Photorealism
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1 INTRODUCTION

Many scenes of interest to computer graphics applications
contain a large number of dynamic light sources. Whereas
the interactive computer graphics pipeline and its hardware
implementation can now handle scenes with complex ge-
ometry modeled with millions of triangles, the number of
lights supported in interactive rendering has not increased
at a similar pace. Lighting is computationally expensive
because it implies solving a visibility problem for every
point light source. Providing support for a large number of
light sources is an important way of improving the quality
of imagery rendered at interactive rates.

In this paper we propose a method for interactive render-
ing with thousands of dynamic lights. Our method is based
on an acceleration scheme that enables the fast computation
of the intersection between a light ray and the scene ge-
ometry. The scene geometry is voxelized from all possible
directions, which results in a 2D array of voxelizations.
Given a ray, the scene intersection is approximated using
the voxelization whose rows are most closely parallel to
the ray. The row traversed by the ray is looked up and the
intersection is computed with bit-shift operations. To save
memory, the 2D array of voxelizations is compressed using
a vector quantization approach that detects and leverages
the similarity between voxelization rows.

The fast ray-scene intersection enables rendering with
thousands of dynamic lights at interactive rates (Figure 1).
Our method brings a substantial speedup over ray tracing
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at the cost of a small quality trade-off. A 2D array of
voxelizations contains 90x90 voxelizations (for a two de-
gree direction discretization), and each voxelization has a
128x128x128 resolution. This requires 333MB of storage after
vector quantization compression, a substantial but practical
amount of memory.

Our approximation is independent of the light sources,
which can change from frame to frame at no additional
cost. We support dynamic scenes in one of two ways. For
scenes with rigid dynamic objects, an array of voxeliza-
tions precomputed for a moving object can be reused by
transforming the light ray to the local coordinate system
of each instance of the moving object. The example shown
in Figure 2 left uses two arrays of voxelizations, one for
the city and one for the airplane, and three lookups per
ray, one for the city, and one for each of the two instances
of the airplane. For scenes with deforming geometry (e.g.
the running bear shown in Figure 2 middle), or for com-
plex dynamic scenes (e.g. the amusement park shown in
Figure 2 right), the array of voxelizations is approximated
for every frame by computing one voxelization and rotating
it with two degrees of freedom, which is substantially less
expensive than computing every rotated voxelization from
the original scene geometry.

2 PRIOR WORK

The need to estimate visibility to a large number of light
sources arises both in the case of the direct illumination
of scenes with complex lighting, and in the case of global
illumination where scene geometry samples turn into sec-
ondary light sources. The classical methods for computing
visibility to a light source are shadow mapping and ray
tracing. However, these methods are too slow for scenes
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Fig. 1. Scenes with 1,024 point light sources rendered with our method (top), and with ray tracing (bottom). The resolution of voxelization are
128 × 128 × 128 for Trees, Garden, and 256 × 256 × 256 for Cathedral. Our average pixel shadow value errors are 1.8%, 2.7%, and 3.0%,
respectively. Our frame rates are 26fps, 23fps, and 13fps, which corresponds to speedups of 43×, 15×, and 16× versus ray tracing (i.e. NVIDIA’s
Optix with BVH acceleration).

Fig. 2. Dynamic geometry scenes with 1,024, 1,024, and 7,088 lights, rendered with our method (top), and with ray tracing (bottom). Our average
pixel shadow value errors are 1.7%, 2.1%, and 7.5%. Our frame rates are 15fps, 3fps, and 2fps, which corresponds to speedups of 12×, 6×, and
35× versus ray tracing.
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with a large of number of lights. Acceleration was pursued
along two main directions: scene geometry approximation,
to reduce the cost of estimating visibility to a light source,
and light clustering, to reduce the number of lights. In
addition to the overview of prior work given below, we
also refer the reader to a recent survey of techniques for
rendering with a large number of lights [1].

2.1 Shadow map methods
Shadow mapping is the approach of choice when rendering
with a small number of lights. A shadow map is a view-
dependent approximation of scene geometry that can be
easily computed on the GPU. However, rendering a shadow
map for each one of a large number of lights is too slow.

Coherent Shadow Maps [2] are compressed, ortho-
graphic depth maps precomputed for n viewing directions,
with nmuch smaller than the number of lights. For each ray,
visibility is approximated using the shadow map with the
view direction closest to the direction of the ray. Since the
method relies on single layer shadow maps, the method has
to distinguish between ”infinitely” far away light sources,
medium distance (”semi-local”) light sources, and nearby
(”local”) light sources, in order to handle visibility queries
within the scene. A local light source is handled with its own
cube map. The method was extended to Coherent Surface
Shadow Maps (CSSMs) [3] to support light sources on scene
geometry as needed for indirect lighting. A virtual area light
[4] is a group of virtual point light sources, and the visibility
to a virtual area light is computed using CSSMs extended
with parabolic projection, which avoids having to compute
visibility to each individual virtual point light source.

Imperfect Shadow Maps (ISM) [5] is a technique that
renders one shadow map for each point light source.
To achieve interactive performance the resolution of the
shadow maps is low, and the shadow maps are rendered
from a coarse point-based approximation of scene geometry
by splatting followed by pull-push reconstruction. ISM is a
frequently used method for interactive rendering with many
lights, so we compare our method to in detail in the Results
Section. Hierarchical scene geometry approximations have
been used to accelerate shadow map computation. For ex-
ample, Implicit Visibility [6] uses a disk-based quadtree sur-
face approximation, and ManyLoDs [7] uses a cut through
a bounding volume hierarchy of the scene geometry. Virtual
shadow maps [8] partition shadow casting scene geometry
into clusters for which cube maps of appropriate resolution
are rendered, achieving interactive performance for complex
scenes with hundreds of lights.

Matrix Row-Column Sampling (MRCS) [9] uses the
matrix of all possible output sample/light point pairs to
determine output sample and light clusters for which to
compute a set of representative shadow maps. The visibility
of individual sample/light pairs is interpolated from a few
relevant representative shadow maps. A light clustering
method reduces the number of representative shadow maps
[10]. The MRCS algorithm is mapped to an out-of-core
GPU implementation [11], and its efficiency is improved
by reducing the number of visibility estimates between
representative light clusters and output image samples [12].

The use of a large number of shadow maps to approx-
imate visibility to a large set of lights has the limitation

of redundancy between shadow maps constructed from
nearby viewpoints or with similar orthographic view di-
rections. The higher the complexity of the scene and the
higher the number of lights, the higher the redundancy.
Our method uses a 3D approximation of the scene (i.e. a
voxelization) which captures multiple layers of occlusion
without redundancy. Our method introduces redundancy
by computing a 2D array of voxelizations, which is needed
to achieve the fast ray-scene intersection. However, for our
method, redundancy is bounded by the discretization of all
possible ray directions, and it does not increase with the
number of lights or with the complexity of occlusions in
the scene. Our method does not cluster lights, but rather
computes visibility to each one of the scene light sources,
which provides good shadow quality.

2.2 Ray tracing methods

Several techniques accelerate ray tracing visibility computa-
tion using scene geometry approximation. Micro-rendering
[13] approximates geometry with a point hierarchy which
accelerates ray traversal and geometry updates for dynamic
scenes. Ray tracing was also accelerated using by geome-
try voxelization [14]. Voxel octree approaches (e.g. [15])
accelerate ray tracing by building a resolution hierarchy of
sparse voxel octrees, and by using the coarser level of the
hierarchy as the ray cone diverges. Our method also relies
on geometry voxelization, and we reduce the cost of ray-
scene intersection to a couple of texure lookups using a 2D
array of voxelizations.

Many ray tracing methods focus on simplifying the set
of lights. An octree light hierarchy was used to cluster lights
based on their positions and their spheres of influence [16].
Lights were grouped in an unstructured light cloud and
the light vectors at each vertex are compressed using PCA,
which achieves high quality and high frame rates for low-
frequency lighting environments [17]. Lightcut [18] is a
popular method for shading with many lights based on
clustering scene lights in a binary tree. A cut through the
tree is selected for each output sample, under the assump-
tion that all lights are visible. The method is extended to
include visibility computation, i.e. to account for shadows,
in Precomputed Visibility Cuts [19] and in Nonlinear Cut
Approximation [20], which are suitable for static scenes,
and then in Bidirectional Lightcuts [21], which can also han-
dle dynamic scenes. Instead of clustering lights, a different
approach clusters individual rays based on direction, with
a cluster containing rays from multiple lights, and solving
visibility for each cluster with its own shadow map ( [22],
[23]), with the advantage of a smaller number of clusters,
and the disadvantage of having to define and partition the
entire set of rays before shadows can actually be computed.

Another approach for reducing the number of light
sources that have to be considered for each output image
pixel is to tile the scene into regions affected only by a
subset of the scene lights [24]. The artifacts that can result
from these sharply defined light regions of influence can
be reduced by randomizing the cut-off distance [25]. This
approach is simply a method for reducing the number of
light rays to be considered, and they are complementary to
methods for actually computing shadows, such as ours. In
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all our examples, we work in the challenging case of lights
with infinite range, such that any light source can affect any
output image pixel.

Some ray tracing based methods approximate both the
lights and the scene geometry. VisibilityClusters [26] group
geometry and lights using a sparse matrix whose non-zero
submatrices correspond to visibility interactions between
geometry clusters and light clusters. Such methods trade off
approximation construction complexity for approximation
efficiency, which pays of for scenes with non-uniform light
and geometry complexity.

Our method is essentially a ray tracing acceleration
method. Unlike the light clustering ray tracing acceleration
schemes discussed above, our method does not reduce the
number of rays by reducing the number of lights. This
brings a quality advantage since we estimate visibility for
each light individually. Moreover, this also ensures good
temporal coherence in the case of dynamic lights, where
each light can move independently without abrupt lighting
changes caused by sudden light cluster changes. Compared
to approaches that rely on a hierarchical subdivision of
geometry, our method has the advantage of a small and
bounded ray-scene intersection cost.

2.3 Fast voxelization methods

Our method relies on voxelizing scene geometry efficiently.
Geometry voxelization is an infrastructure problem that has
received considerable attention.

The insight behind fast voxelization with the help of
graphics hardware is that in conventional rendering triangle
fragments are assigned to voxels as the frame is rendered,
but this information is discarded by z-buffering, since con-
ventional graphics applications typically only care about
the first surface encountered at each pixel. Fast voxelization
methods modify the conventional graphics pipeline to store,
and not discard, the fragment to voxel assignment. One
approach achieves real-time voxelization by rendering the
scene geometry over a virtual framebuffer that concatenates
the 2D slabs of the 3D voxelization [27]. Another method
uses deep pixels, with a pixel corresponding to an entire
row of the voxelization, with one bit per voxel [28]. The
method was subsequently extended to handle solid models
by producing a voxelization with ”1” or ”occupied” bits
inside the object [29].

Several fast voxelization techniques depart from the con-
ventional graphics pipeline and define novel voxelization
pipelines using general GPU programming APIs, such as
CUDA. For example, VoxelPipe [30] computes the 3D
voxelization directly with a fast, sort-middle, approach, or a
conservative, sort-last approach. A recent pipeline achieves
a significant performance improvement by optimizing the
triangle-voxel intersection test [31].

Several techniques have been developed to compute
and compress light visibility information over the entire
scene. Compact precomputed voxelized shadows [32] is a
technique that partitions the scene with an octree and stores
binary shadow information at each voxel leaf. The octree is
compressed in a graph by leveraging the common subtrees.
Construction and compression are too laborious for online
computation, as required by dynamic lights or dynamic

geometry. Furthermore the binary voxel light visibility in-
formation supports only one light. Another approach for
compressing shadow map data is to find planes in the
shadow map and to organize them into sparse shadow trees
[33], which is an approach that works well for large scenes
with a small number of lights.

This paper does not contribute a novel voxelization
technique. We use the deep pixels approach [28] because it
is fast and because it can be easily integrated in the shader
framework used by our application to render shadows. Our
acceleration data structure contains thousands of voxeliza-
tions, but only the first one is computed directly from the
scene geometry, whereas the subsequent voxelizations are
computed efficiently by rotating this initial voxelization.
Rotating a voxelization remains orders of magnitude faster
than the fastest method for computing a voxelization from
scratch, i.e. from scene geometry.

2.4 Low-level visibility query acceleration schemes

Our method accelerates visibility queries by computing a
data structure where the visibility queries can be answered
trivially. This general approach is similar in spirit to the
epipolar space voxel grid used in voxelized shadow vol-
umes [34] to compute light source visibility simultaneously
for all points along an output image ray, as needed in
the case of rendering in participating media (e.g. ”God
rays”). Specular reflection rendering was also accelerated by
approximating an object close to a reflector with a depth im-
age, and by looking up the intersection between a reflected
ray and a depth image in a simplified rotated depth map
that where the ray projects along a row [35].

Another attempt to accelerate ray-scene intersections
precomputes depth maps from viewpoints on an object’s
bounding sphere, and combines the 2D array of depth
maps into a volume texture [36]. The method provides the
distance to the object surface with a lookup, but the ray has
to originate outside the object, so the method is not suitable
for inside-looking-out scenes.

VoxLink is proposed to accelerate ray-casting for vol-
umetric data rendering [37]. The method extends per-
pixel linked lists to occupied voxel lists, and subdivides
the bounding volume of the scene into multiple bricks to
support empty-space skipping. VoxLink can be used to
render the scenes with transparent objects and shadows
interactively. OSPRay implements a fast ray tracing frame-
work for rendering volumes [38]. While both VoxLink and
OSPRay cannot render scenes with thousands light sources
in real time because the intersection computations are still
not fast enough.

Our method does not store distance but rather a dis-
cretization of scene geometry with voxel occupancy bits,
which does not provide a direct read of the distance to
the intersection, but which does allow the ray segment
to originate anywhere. The idea of sampling visibility by
discretizing scene geometry is also used in global visibility
methods. In adaptive global visibility sampling [39], the
visibility information captured by a visibility sample is
propagated to all the empty cells in between scene geometry.
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3 FAST RAY-SCENE INTERSECTION

The ray-scene intersection is accelerated by approximating
the scene geometry with a 2D array of voxelizations. Sub-
section 3.1 describes the construction of the 2D array of vox-
elizations, Subsection 3.2 describes the vector quantization
compression of the 2D array of voxelizations, and Subsec-
tion 3.3 describes using the 2D array of voxelizations to
approximate the intersection of a ray with scene geometry.

3.1 Construction of 2D array of voxelizations

Algorithm 1 Computation of 2D array of voxelizations.
Input: Scene S modeled with triangles
Output: 2D array V of scene voxelizations
1: for θ from 0 to 180 with k degree increment do
2: for φ from 0 to 90 with k degree increment do
3: i = θ/k; j = φ/k; j′ = (φ+ 90)/k;
4: (Vij , Vij′) = SPVoxelization(θ, φ)
5: end for
6: end for
7: return V

The voxelizations are computed as shown in Algo-
rithm 1. The scene S is voxelized for a dense discretization
of the 2D space of all directions. The nested for loops
(lines 1-2) iterate over all pairs of angles (θ, φ) with a k
degree increment. Given a pair (θ, φ), the voxelization Vij ,
and the 90 degree rotated voxelization Vij′ , are computed
using a prior art approach for single-pass voxelization [28]
(line 4). Single-pass voxelization renders the scene with an
orthographic view that matches the voxelization and sets
the occupancy bit for the voxel that contains each fragment.
We compute two voxelizations at the time, leveraging the
fact that the voxelization for (θ, φ + 90) is aligned with the
voxelization for (θ, φ), and it can simply be computed by
transposing the indices of the voxel where the occupancy
bit is written. Both original and transposed voxelizations
have to be stored since we store rows, and since a row
cannot be recreated from columns quickly. For each (θ, φ)
pair, voxelization is performed three times (not shown in
Algorithm 1 for simplicity), once for each of the x, y, and
z directions. This makes sampling more robust to surface
orientation. For example, voxelization only along the z
direction would miss surfaces that are parallel to z.

3.2 Compression of the 2D array of voxelizations

A 2D array of voxelizations requires significant storage. A
typical angular resolution value (i.e. k in Algorithm 1) is 2
degrees, which results in a 90 × 90 2D array of voxeliza-
tions. A typical voxelization resolution is 128 × 128 × 128.
Consequently, a typical storage requirement for a 2D array
of voxelizations is just below 2GB. However, many of the
voxelization rows are quite similar and we have developed a
vector quantization compression method that leverages row
similarity to reduce the storage requirement. The vectors are
the rows of all the voxelizations. For the typical parameter
values given above, there are 90× 90× 128× 128, or about
126M rows. The compression method proceeds in two steps,
as shown in Algorithm 2.

Algorithm 2 Compression of 2D array of voxelizations.
Input: uncompressed 2D array of scene voxelizations V ,

number of rows in dictionary n, number of compression
steps s

Output: dictionary D and mapping V ′ of V to D
1: H = Histogram of all rows in V
2: D = n most frequent rows in H
3: for compression step c = 0 to s− 1 do
4: for each row i in D do
5: D′[i] = Simplify(D[i], 2c)
6: end for
7: for each unmapped row i do
8: r′ = Simplify(V [i], 2c)
9: if (j = Find(r′, D′)) then V ′[i] = j

10: end if
11: end for
12: end for
13: for each remaining unmapped row i do
14: V ′[i] = Random(0, n-1)
15: end for
16: return (D, V ′)

In a first step, a dictionary of n most popular rows
is computed (lines 1-2). A histogram H of the rows is
computed by sorting the rows and counting the number
of occurrences for each row. Then the unique rows are
sorted based on the number of occurrences and the n
most frequently encountered rows are selected to define
the dictionary D. In a second step, the rows in the initial,
uncompressed 2D array of voxelizations V are mapped to
rows in D (lines 3-15). The algorithm uses a sequence of s
compression steps, from less to more aggressive.

The rows of the dictionary (lines 4-5) and the yet to be
mapped rows (line 8) are simplified to force a match. At
step c, a row is simplified by down-sampling the row with
a factor of 2c. The downsampling of 2c bits to a single bit
sets the output bit to 1 iff any of the input bits has a value
of 1, which preserves the blocker sample, albeit at a less
accurate location. The simplified row r′ is searched in the
simplified dictionary D′ and mapped to a matching row
j, if such a row is found (line 9). We typically use four
compression steps (i.e. s = 4). The first step (c = 0) does not
down-sample to map the voxelization rows that were used
to build the dictionary. In the last step (c = 3), the rows
are down-sampled by a factor of 8. The rows that remain
unmapped after the last compression step are mapped to
a random dictionary row (lines 13-14), which achieves the
same shadow error as down-sampling with higher factors,
but at a lesser computational cost.

The compressed 2D array of voxelizations is defined by
the dictionaryD and the mapping V ′. If the original number
of rows is N , and if a row has b bits, the compression
factor is (Nb) / (nb + Nlog2n) ≈ b / log2n. For larger
dictionaries the compression is less lossy, but that comes
at the cost of a smaller compression factor. As described
in the results section, we use 1M row dictionaries which
corresponds to a compression factor of about 128/20. This
reduces the storage requirement from 2GB to 333MB, and
the compression losses translate to minimal shadow errors.
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Fig. 3. Voxelization selection for ray intersection. The scene (left) is
rotated with θ = 30o (middle), and then φ = 42o (right) to find the
voxelization whose rows are aligned with the ray (blue segment).

Fig. 4. Intersection of ray with the aligned voxelization row that contains
it (see right image in Figure 3).

3.3 Intersection of a ray with a 2D array of voxelizations

The intersection between the ray r and the compressed 2D
array of voxelizations V ′ is computed as shown in Algo-
rithm 3. r is intersected with the voxelization whose row
direction most closely approximates the direction of r. The
(θ, φ) angles that define the direction of r are computed with
the same k angle increment that was used when computing
the 2D array of voxelizations (line 1). In Figure 3, the ray
direction is most closely approximated by θ = 30 and φ = 42,
therefore the ray-scene intersection is approximated using
the voxelization V [30/2][42/2].

Algorithm 3 Intersect((V ′, D), k, r)

Input: compressed 2D array of scene voxelizations (V ′, D),
direction discretization increment k, ray r

Output: boolean that approximates whether r intersects
the scene or not

1: (θ, φ) = DiscretizeDirection(r.direction, k, k)
2: i = θ/k; j = φ/k;
3: row = D[V ′

ij .LookupRow(r.midpoint)]
4: (s, e) = V ′

ij .ComputeExtent(r.endpoints)
5: clippedRow = row � s
6: clippedRow = clippedRow � (s+ rowLength− e)
7: return (clippedRow 6= 0)

The intersection is computed in the row of V ′
ij that

contains the midpoint of the ray segment (line 3), where V ′
ij

is the voxelization with rows most aligned to ray r (lines 1-
2). Since the 2D array of voxelizations V ′ is compressed, the
row of V ′ does not contain actual geometry information, but
rather the index in the dictionary D from where to retrieve
the actual row.The midpoint is used to find the best row in
case the ray traverses more than one row. Due to rotation
angle discretization, rays are not perfectly aligned with the
voxelization row, and it can happen that the ray traverses
several rows. A more conservative solution would partition
the ray based on the rows it traverses and would handle
each subray in its own row. Our experiments reveal that
the quality improvement brought by this approach does not
warrant the additional cost (i.e. a 4% quality improvement
for a 45% performance penalty).

The row variable contains one bit for every row voxel.
The voxel bit is 1 if the voxel contains geometry and 0

otherwise. The ray endpoints are projected onto the row to
define the subset of row voxels (s, e) that is traversed by the
ray (line 4). The row voxel data is then clipped to the extent
of the ray with left and right bit shift operations (lines 5-6).
The ray intersects the scene iff the clipped row data contains
a non-zero bit (line 7). In Figure 4 the voxelization row has
32 bits. The bits of the row containing the ray (blue segment)
are 0000 0010 0000 0000 1000 0001 0000 0000, corresponding
to two geometry spans of 1 and 8 voxels for the ear and the
body of the bunny. The ray extends from s = 4 to e = 27,
so the clipped row data is 0010 0000 0000 1000 0001 0000,
which is not zero, and therefore the ray intersects the scene
(i.e. at the ear and body of the bunny).

4 INTERACTIVE RENDERING WITH THOUSANDS OF
DYNAMIC LIGHTS

The fast scene-ray intersection enables rendering scenes
with thousands of dynamic lights at interactive rates, ac-
cording to Algorithm 4.

Algorithm 4 Lighting using 2D array of scene voxelizations.
Input: scene S, set of n light points L, output image camera

C, compressed 2D array of scene voxelizations (V ′, D),
discretization increment k.

Output: S rendered from C lighted with L.
1: I = Render S from C without lighting
2: for every pixel p in I do
3: P = Unproject(p, C)
4: shadow = 0
5: for every light Li in L do
6: ray = (P,Li)
7: shadow += Intersect((V ′, D), k, ray)
8: end for
9: p.outputColor = Shade(shadow, n)

10: end for

The algorithm first renders the output image I without
any lighting (line 1). Then each pixel p is lit by estimating the
visibility of each light Li from the surface point P acquired
at p (line 2-10). The 3D point P is computed by unprojection
(line 3). The number of lights hidden from P is initialized to
0 (line 4) and then incremented for every light Li for which
the ray (P,Li) intersects the scene (lines 5-8).

5 2D VOXELIZATION FOR DYNAMIC SCENES

For scenes where geometry is static, a precomputed 2D
array of voxelizations supports a large number of dynamic
lights. However, when geometry changes, recomputing each
voxelization of the 2D array using Algorithm 1 is too slow
for interactive rendering. We support dynamic scenes in one
of two ways.

5.1 Scenes with dynamic rigid objects
Consider a scene with several types of objects, with each
type replicated to several instances, and with each instance
moving rigidly through the scene. We support such dynamic
scenes as shown in Algorithm 5.

The ray is first intersected with 2D array of voxelizations
of the static part of the scene (lines 1-3). If no intersection
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Algorithm 5 Intersection of a ray with a scene with dynamic
rigid objects.
Input: compressed 2D array of voxelizations (V ′

s , Ds) of
the static part of the scene, compressed 2D arrays of
voxelizations (V ′

i , Di) for each type of rigid dynamic
object DOTi, current coordinate system CSj of each
dynamic object instance DOj , ray r.

Output: boolean that is true iff the ray intersects the scene.
1: if Intersect((V ′

s , Ds), k, rj) then
2: return true
3: end if
4: for all dynamic object instances DOj do
5: rj = Transform(r, CSj)
6: i = DOj .objectType
7: if Intersect((V ′

i , Di), ki, rj) then
8: return true
9: end if

10: end for
11: return false

is found, for each instance of a dynamic object, the ray is
transformed to the local coordinate system of the instance,
and the transformed ray is intersected with the 2D array of
voxelizations of that object type (lines 4-10). For example,
for the Planes scene in Figure 2 left, we precompute two
2D array of voxelizations: one for the buildings without the
planes Vs, and one for the plane V0; then the intersection
between a ray r and the scene is computed by intersecting
r once with Vs and twice with V0, in the local coordinate
systems of each of the two planes.

5.2 Scenes with deforming objects

For scenes with many moving objects or with objects that
deform, we use one 2D array of voxelizations for the entire
scene, which is recomputed for every frame. As mentioned
above, Algorithm 1 is too slow for real time performance.
Instead of using single pass voxelization for every (θ, φ) di-
rection, we extend single pass voxelization to voxelize along
all directions with a single pass over the scene geometry. The
scene triangles are rendered with the orthographic view of
the first voxelization V [0][0] (i.e. (θ, φ) = (0, 0)). Each triangle
fragment is processed with Algorithm 6.

The 3D point p corresponding to fragment f is com-
puted by unprojection (line 1). Then p is rotated to each
voxelization local coordinate system (line 4). No trigono-
metric function is evaluated since the rotation matrices are
precomputed for all (θ, φ) pairs and stored in a lookup table.
The voxel v containing the rotated point p′ is set to occupied
(line 6). Like in Algorithm 1, as we compute voxelization
V [θ/k][φ/k] we also compute the transposed voxelization
V [θ/k][(φ + 90)/k], for efficiency (line 7). Computing the
rotated voxelizations by rotating the fragments rasterized
for the initial voxelization is significantly faster than com-
puting each voxelization by single pass voxelization from
the original scene geometry. This significant performance
gain only implies a small quality reduction cost, as shown
in the Results Section. The compression of the 2D array of
voxelizations is too slow to run for every frame, so the 2D

Algorithm 6 Fragment shader algorithm for recomputing
the scene’s 2D array of voxelizations for every frame
Input: fragment f of scene triangle rendered with ortho-

graphic view of V [0][0], direction discretization incre-
ment k

Output: 2D array of scene voxelizations V for the current
frame

1: p = Unproject(f )
2: for θ from 0 to 180 with k degree increment do
3: for φ from 0 to 90 with k degree increment do
4: p′ = Rotate(p, θ, φ)
5: v = Voxelize(p′)
6: V [θ/k][φ/k][v] = 1
7: V [θ/k][(φ+ 90)/k][Transpose(v)] = 1
8: end for
9: end for

array of voxelizations for scenes with deforming objects has
to be stored without compression.

6 RESULTS AND DISCUSSION

We have tested our approach on several scenes: Trees
(626ktris, Figure 1 left), Garden (416ktris, middle), Cathe-
dral (456ktris, right), Planes (982ktris, Figure 2 left), Bear
(1,486ktris, middle), and Park (499ktris, right). All scenes
have 1,024 lights, except for Park which has 7,088 lights. For
Trees, Garden, and Cathedral, the geometry is static, and for
Planes, Bear, and Park the geometry is dynamic. We also refer
the reader to the video accompanying our paper. All the
performance figures reported in this paper were measured
on a workstation with a 3.5GHz Intel(R) Core(TM) i7-4770
CPU, with 8GB of RAM, and with an NVIDIA GeForce
GTX 1080 graphics card. We discuss the shadow quality
(section 6.1), the frame rate (section 6.2), the memory re-
quirements (section 6.3), the extensions (section 6.4) and the
limitations (section 6.5) of our method.

6.1 Quality

We measure the quality produced by our rendering tech-
nique using two error metrics. The first one, εv , is defined as
the percentage of light rays at a pixel for which visibility is
evaluated incorrectly. For example, if there are 1,000 lights,
and if at a pixel p 10 lights were incorrectly labeled as visible
from p, and 5 lights were incorrectly labeled as invisible
from p, εv = (10 + 5)/1, 000 = 1.5%. The second one, εs, is
defined as the percentage shadow value error at a pixel.
For the example used above, εs = (10− 5)/1, 000 = 0.5%.
εv is a stricter error measure since for εs errors can cancel
each other out. εs is a better indication of the pixel intensity
errors observed in the final image. The correct visibility and
shadow values at each pixel are computed by ray tracing
(we use NVIDIA’s Optix ray tracer [40]). We also compare
our technique to conventional shadow mapping, and to
Imperfect Shadow Maps (ISM) [5], a state of the art method
for interactive rendering with a large number of lights.

Table 1 shows the average pixel visibility error εv and
the average pixel shadow value error εs for our scenes,
for both our method (with compression) and for ISM. ISM
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TABLE 1
Average pixel visibility and pixel shadow value errors for our method

and for the prior art Imperfect Shadow Maps method.

Scene Trees Garden Cathedral Planes Bear Park

εv [%]
Ours 4.8 7.8 6.4 3.4 3.3 21.0
ISM 8.5 13.1 20.1 6.5 6.1 27.0

εs[%]
Ours 1.8 2.7 3.2 1.7 2.1 7.5
ISM 6.7 5.8 9.8 3.4 4.9 12.1

relies on a point-based representation of the scene, which
is then rendered by splatting and pull-push hole-filling to
create a low resolution shadow map for each light. In this
comparison we used approximately 11,000 point samples
to render each 128×128 ISM, which yields a frame rate
comparable to that of our method. In other words, Table 1
provides an equal-performance quality comparison between
our method and ISM. An equal-performance comparison
between our method and conventional shadow mapping
is not possible. Rendering a shadow map for each light is
significantly slower than our method even for low shadow
map resolutions that generate unacceptably large errors. We
do provide an equal-quality comparison of our method to
conventional shadow mapping in Section 6.2.

As can be seen in Table 1, the approximation errors
produced by our method are consistently small, and they are
consistently smaller than those produced by ISM. Figure 5
shows the six images from Figure 1 and Figure 2 rendered
with our method, with ray tracing, and with ISM. The
approximation errors produced by ISM are salient: the tree
canopies are too bright (row 1), the flower bed and column
shadows are missing (row 2), the shadows of the pillars are
missing (row 3), the shadow of the low plane is missing
(row 4), the bear shadow is poorly defined and it does not
convey the contact with the ground (row 5), and the train
shadow is poorly defined (row 6). Figure 6 visualizes the
approximation errors from Table 1, highlighting the smaller
errors of our method compared to ISM.

TABLE 2
Errors as a function of the number of lights.

Lights 512 1,024 2,048 4,096 10,000

Trees εv [%] 4.6 4.8 4.7 4.6 4.7
εs[%] 1.8 1.8 1.7 1.7 1.7

Garden εv [%] 7.8 7.8 7.9 7.7 7.8
εs[%] 2.8 2.7 2.9 2.7 2.7

Table 2 shows the approximation errors of our method
as a function of the number of lights. The errors vary little
with the number of lights, which is expected since the
errors are relative measures, normalized by the number of
lights. For all the experiments described so far, we used
a 128 × 128 × 128 voxelization to approximate ray-scene
intersections, resolution that is sufficient for small errors.
Table 3 shows the approximation errors of our method for
lower voxelization resolutions. The errors are significantly
larger for the lower resolutions, but the 64 × 64 × 64 could
be used in applications where memory is at a premium.

For all the experiments described so far, we used a 90×90
2D array of voxelizations, which corresponds to 2 degree
rotation angle increments. Table 4 shows the approximation
errors of our method for smaller voxelization arrays, i.e. for

TABLE 3
Errors as a function of voxelization resolution.

Voxelization resolution 323 643 1283 2563

Trees εv [%] 10.5 6.0 4.8 4.0
εs[%] 7.1 3.1 1.8 1.6

Garden εv [%] 12.3 8.8 7.8 5.6
εs[%] 6.4 3.5 2.7 2.1

Cathedral εv [%] 14.4 10 6.4 5.5
εs[%] 6.7 4.5 3.2 3.0

larger rotation angle increments. Compared to voxelization
resolution, shadow quality is less dependent on voxeliza-
tion rotation resolution. Using 60 × 60 voxelizations, i.e. a
rotation angle increment of 3 degrees, produces a quality
similar to using 90× 90 voxelizations, while memory usage
is reduced by a factor of 2.

TABLE 4
Errors as a function of the voxelization rotation resolution.

Voxelization rotation resolution 30× 30 60× 60 90× 90

Trees εv [%] 6.4 5.3 4.8
εs[%] 2.6 2.1 1.8

Garden εv [%] 10.6 8.3 7.8
εs[%] 4.1 2.8 2.7

6.2 Speed
We have implemented our method using shaders. We com-
pute our 2D array of voxelizations by extending a prior-art
single-pass voxelization method [28] as shown in Algorithm
6. The 2D array of voxelizations is stored as a 1D array of
3D textures. Then, for each frame, the fragment shader looks
up the 2D array of voxelizations for each light to estimate
visibility from the output image sample to the light.

Table 5 shows the frame rendering times for our method
and the speedup versus ray tracing and versus conven-
tional shadow mapping. For ray tracing we used NVIDIA’s
Optix (version number 3.9.1) with BVH (bounding volume
hierarchy) scene partitioning for acceleration, which yields
the fastest Optix rendering times. The Optix times do not
include BVH construction for the static scenes, i.e. Trees,
Garden, and Cathedral, and they do include it for the dynamic
scenes, i.e. Planes, Bear, and Park.

TABLE 5
Rendering times of our method and speedup versus ray tracing (RT)

and versus conventional shadow mapping (SM).

Scene Trees Garden Cathedral Planes Bear Park
Ours[ms] 38 43 59 66 312 441

Speedup vs. RT 43× 15× 21× 12× 6× 35×
Speedup vs. SM 52× 16× 89× 24× 10× 41×

Res. of SM 384 128 36 96 128 64

Our method is substantially faster than ray tracing. The
Planes scene is rendered using Algorithm 5, which implies
two voxelization sets, one for the buildings and one for
the airplane, and three intersection lookups per ray, one
for the buildings and one for each of the two moving
instances of the airplane. In the case of a few rigidly moving
objects our method has the advantage of not having to
recompute its acceleration data structure. The serial off-line
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Fig. 5. Comparison between our method (left), ray tracing (middle), and imperfect shadow maps (right).
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Fig. 6. Visualization of approximation errors εs for our method (top) and ISM (bottom), for the same frame rate, as reported in Table 1. The images
correspond to Figures 1 and 2. Darker and brighter regions are highlighted with blue and red. The error is scaled by a factor of 10 for illustration
purposes. .

Fig. 7. Pixel shadow value errors for ISM as a function of the number of
samples used, and for our method, for comparison. The ISM errors stop
decreasing as the number of samples increases, and they do not reach
the error values of our method.

precomputation and compression of the voxelizations takes
492s, 470s, 527s, and 726s for the Trees, Garden, Cathedral, and
Planes scenes by computing each voxelization from scratch
as shown in Algorithm 1. The smallest speedup of 6 is
obtained for the Bear scene where the non-rigidly deforming
bear model requires computing the voxelizations on the
fly using Algorithm 6. Computing the voxelizations using
Algorithm 6 takes 277ms and 210ms for the Bear and the
Park scene (without compression), or 89% and 48% of the
total frame rendering time.

Compared to conventional shadow mapping, our
method achieves a substantial speedup (e.g. 89× for Cathe-
dral). The conventional shadow maps were rendered at the
resolutions given in the last row of Table 5, which achieve a
similar pixel visibility error εv to our method.

We have attempted to perform an equal quality com-
parison to ISM. However, when substantially increasing the
number of geometry sample points used by ISM, the quality
plateaus, and it does not reach the quality generated by our
method, as shown in the graph in Figure 7. Furthermore,
once the number of samples increases above what can be
handled in a single rendering pass, the additional rendering

pass makes ISM slower than ray tracing. ISM defines sam-
ples relative to scene triangles, therefore the samples do not
have to be recomputed for dynamic scenes, as the updated
vertices of a deforming model implicitly define the updated
sample location. This gives ISM a performance advantage
for scenes with deforming geometry like the Bear, where
ISM is five times faster than our method, which comes
however at the cost of a shadow error εs that is twice as
large (i.e. 4.9 for ISM vs. 2.1 for our method). In conclusion,
compared to ISM, our method has the advantage of better
quality for equal performance, as shown in Table 1, and
also of providing quality levels that cannot be matched by
ISM, whereas ISM has a speed advantage for non-rigidly
deforming scenes.

Table 6 shows the frame rendering times for our method
as a function of the number of lights. As expected, for static
scenes (i.e. Trees, Garden, and Cathedral) and for the scene
with rigidly moving objects (i.e. Planes), the frame times
double as the number of lights doubles, since almost all
of the frame time goes to looking up light ray-voxelization
intersections. For the Bear the voxelization computation time
dominates, so supporting a larger number of lights comes at
a relatively smaller additional cost.

TABLE 6
Rendering times [ms] as a function of the number of lights.

Lights 512 1,024 2,048 4,096 10,000
Trees 20 38 77 159 378

Garden 21 43 89 183 459
Cathedral 29 59 124 273 683

Planes 35 66 135 266 647
Bear 297 312 345 417 630

Our method achieves performance by avoiding march-
ing diagonally through the voxelization when computing
the ray intersection. We have compared our performance
to marching diagonally one voxel at the time, and the
speedup brought by our method is substantial, see Table 7.
We have also implemented a method that partitions the ray
into subsegments based on the rows of the voxelization it
traverses, and that steps one ray subsegment at the time.
Stepping one subsegment at the time is made possible by

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2018.2828422

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 8, AUGUST 2016 11

storing in each voxel the distance to the next occupied
voxel on the same row. Even compared to this fast diagonal
marching approach, our speedups are 22× and 31× for the
Trees and Garden scenes.

TABLE 7
Rendering time of our method and speedup versus Diagonal tracing.

Scene Trees Garden Cathedral Planes Bear Park
Ours [ms] 38 43 59 66 312 441
Diagonal

tracing [ms] 2858 3401 2673 2825 3806 22482

Speedup 75× 79× 45× 43× 12× 51×

6.3 Compression
Compressing the array of voxelizations reduces memory
footprint at the cost of a small shadow quality loss, of pre-
processing computation, and of a small frame rate decrease.

6.3.1 Memory reduction

TABLE 8
Memory reduction by compression.

Voxelization resolution 323 643 1283 2563

Uncompressed[MB] 32 254 2025 16200
compressed[MB] 36 95 333 1298

Table 8 shows the memory reduction by compres-
sion.The overhead of compression is prohibitive for the
32 × 32 × 32 resolution, but compression reduces memory
consumption by a factor of 6× to a manageable 333MB for
the 128× 128× 128 resolution.

6.3.2 Quality loss
Table 9 shows the shadow approximation errors intro-
duced by our lossy voxelization compression scheme for
the frames shown in Fig 5. Whereas the visibility errors
go up, the quality loss in terms of shadow intensity is
small, which indicates that the visibility errors introduced
by compression are random and that they cancel out.

TABLE 9
Quality loss due to voxelization compression.

Scenes. Trees Garden Cathedral Planes

Without compression εv [%] 4.5 7.6 6.4 3.3
εs[%] 1.7 2.7 3.2 1.6

With compression εv [%] 4.8 7.8 6.4 3.4
εs[%] 1.8 2.7 3.2 1.7

6.3.3 Performance
For static scenes, the array of voxelizations is pre-computed
off-line. For dynamic scenes with deforming objects, the
voxelizations are recomputed for every frame. Row 1 in
Table 10 gives the times for computing the arrays of vox-
elizations on GPU (using Algorithm 1). Except for dynamic
scenes with deforming objects, when the voxelizations are
used as is, the voxelizations are compressed using Algo-
rithm 2. Row 2 in Table 10 gives the times for compressing
the arrays of voxelizations on a single CPU.

TABLE 10
Pre-computation time.

Scenes. Trees Garden Cathedral
Voxelization [s] 0.2 0.19 0.19
Compression [s] 492 470 527

Using a compressed array of voxelizations to compute
shadows adds a decoding step to the intersection lookup.
Table 11 shows that the performance loss due to this addi-
tional step is small.

TABLE 11
Frame rate loss due to compression.

Scenes. Trees Garden Cathedral
Without compression 28fps 25fps 20fps

With compression 26fps 23fps 17fps

6.4 Extensions

We have extended our approach to handle colored light
sources. In Figure 8 the TV is modeled with 1,024 col-
ored point light sources. The voxelization resolution is
128×128×128. The compressed memory footprint is 333MB.
The scene is rendered at 16Hz. We have also extended our
method to support indirect illumination, where virtual point
light sources are placed on scene surfaces to compute second
order light rays. Figure 9 shows a Cornell box rendered with
our approach with 1,024 real and virtual point light sources
at 20fps (128 × 128 × 128 voxelization resolution, 333MB
memory footprint).

6.5 Limitations

Our method reduces the complexity of the per-ray com-
putation at the cost of storage, resorting on several ap-
proximations. First, the scene geometry is approximated by
voxelization. Second, the light ray direction is discretized
based on angle increments. Third, the array of voxelizations
are compressed using a lossy vector quantization scheme.
These approximation errors are easily controlled and our
method will be able to leverage any advances in GPU
storage and computing capability.

Like with any ray tracing acceleration scheme, our
method handles dynamic scenes with the additional cost
of updating the acceleration data structure for every frame.
Unlike hierarchical data structures that do not map well to
the GPU, our voxelization is computed with GPU-friendly
depth peeling. For scenes where the number of dynamic ob-
jects is small, and the dynamic objects are rigid, it is feasible
to pre-compute a 2D array of voxelizations for each object
and to transform the ray to the local coordinate system of
the moving object. The spatial resolution of the per-object
voxelizations can be smaller than for those used for the
entire scene, e.g. we have used 32x32x32 voxelizations for
the airplanes.

We have demonstrated our technique with voxelization
resolution of up to 256x256x256. This resolution might not
be sufficient for large scenes with complex geometry, where
discretization ”banding” like artifacts might remain. Future
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Fig. 8. Scene with TV modeled with 1,024 light sources, rendered with
our method at 16fps.

work will investigate extending cascaded shadow map ap-
proaches [41] to our method, by computing a 2D array of
voxelizations for the part of the scene located in the near
light frustum.

Shadow intensity errors are small because occasional
visibility errors cancel out. Like for many methods for
rendering soft shadows, the approximation error of our
method increases with the hardness of the shadows. This
limitation could be addressed in future work by detecting
the occurrence of hard shadows and by building conven-
tional shadow maps for the lights that cast them.

Our method requires substantial amount of storage to

Fig. 9. Cornell box with lighting modeled with with 1,024 real and virtual
point light sources, rendered with our method at 20fps.

anticipate all possible rays that have to be intersected with
the scene. Good shadows are obtained for a 90x90 discretiza-
tion of ray directions and a 128x128x128 scene geometry
discretization, which, with vector quantization compres-
sion totals a practical 333MB. Today’s GPUs also support
256x256x256 voxelizations, and the accuracy of the ray-
scene intersection approximation will go up as the storage
capacity of GPUs continues to improve.

We did not investigate parallelizing the compression of
the array of voxelizations since compression is performed
off-line. From Algorithm 2, one can see that the running time
of compression is dominated by the search for the simplified
row r′ in the simplified dictionary D′ (line 8). This yields an
asymptotic running time of Nlog2n, where N is the total
number of rows, and n is the number of dictionary entries.
If pre-processing time is important, future work could ex-
amine parallelizing compression by compressing each row
in parallel. Rows are independent and processing them in
parallel does not result in concurrent writes, which promises
good speedup scalability with the number of processors.

7 CONCLUSIONS AND FUTURE WORK

We have presented a method for interactive rendering with
thousands of dynamic lights based on an approximation
of the intersection between a ray and the scene geometry.
Our method has a significant frame rate advantage over
ray tracing, while quality remains acceptable. Compared to
imperfect shadow maps, our method produces more accu-
rate results for the same frame rate. Our method computes
visibility for each one of the many lights, and it does not
cluster the lights. As the lights move from one clustered
distribution to another, our method produces smoothly
changing shadows, avoiding the temporal artifacts caused
by sudden changes in light cluster topology. Visibility is
not computed by interpolation, as visibility is notoriously
discontinuous, but rather by intersecting individual light
rays with the scene.

Our method handles scenes of medium complexity very
quickly and it could be extended to high complexity scenes
when used in conjunction with prior art methods. For
example, our method is compatible with prior work that
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relies on hierarchical scene subdivisions. For example, one
could use an octree where a leaf is modeled with one of
our 2D array of voxelizations. Such a hybrid approach will
not guarantee a fixed, small number of texture look-ups per
ray-scene intersections, but the powerful leafs will reduce
the depth of the hierarchical subdivision, and will aid with
balancing it.

Ray-geometry intersection is a primitive operation in
computer graphics and our acceleration scheme could bene-
fit a number of rendering techniques, including ambient oc-
clusion, soft shadows, and specular and diffuse reflections.
We make the distinction between the question of whether a
ray intersects a scene’s geometry, and the question of where
the ray-scene intersection occurs. Some applications, includ-
ing the lighting context explored by this paper, only need to
answer the first question, whereas other applications, such
as for example specular reflections, also need to answer
the second question. The first question is answered by
simply testing whether the voxelization row truncated to the
extent of the ray is non-zero. The second question requires
locating the first non-zero bit in the truncated row, which
can be done with a binary search in logw steps, where w is
the voxelization row resolution (e.g. 7 steps for our 128bit
voxelization rows). Once the location of the intersection is
found, the location can be mapped to a main, unrotated
voxelization that stores all ingredients for shading, i.e. color
for first order reflections, or normal for the spawning of the
second order reflected ray.

Our method relies on a scene geometry approximation
that not only reduces the complexity of the scene geometry,
but that also anticipates all possible directions of the rays
with which the scene has to be intersected. The scene
geometry approximation scheme is simple and uniform, so
its construction, storage, and use map well to the GPU. The
scheme reduces the cost of intersecting a ray with a scene
to the smallest possible value. With a four channel, 32bit
per channel lookup, the intersection with a 128× 128× 128
voxelization is essentially obtained with two lookups, one
to lookup the row index in the dictionary, and one to
lookup the ray. The ray-scene intersection is accelerated by
“throwing memory at the problem”. Our method is already
practical in the context of today’s GPUs, and it has the
potential to become the standard approach for estimating
scene-ray intersections in interactive graphics applications,
much the same way trivial z-buffering has supplanted com-
plex polygon sorting visibility algorithms.

Our method moves towards making complex dynamic
lighting practical in the context of interactive graphics
applications. As the number of supported dynamic lights
increases, so does the challenge of lighting design and ani-
mation. An important direction of future work will have to
devise algorithmic approaches for assisting digital content
creators with the complex task of defining, calibrating, and
animating tens of thousands of lights.
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