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Figure 1 Disocclusion example. The bunny is occluded by the vertical block (left). The graph camera (disjoint variant middle and 
overlapping variant right) eliminates the occlusion. 

           

Figure 2 Visualizations of the graph camera used in Figure 1. Green 
and blue lines show the frustum and four sample rays, respectively. 

Figure 3 Corridor linearization example. The graph camera view 
frustum wraps around (left), to reveal the entire corridor (right). 

 

Abstract 
Camera models are essential infrastructure in computer graphics, 
visualization, and vision. The most frequently used model is the 
planar pinhole camera, because it approximates the human eye 
well, producing familiar images, and because it is simple, 
enabling efficient software and hardware implementations. 
However, the requirement that all rays pass through a common 
point is restrictive and relatively little has been done to remove 
this pinhole constraint. We believe that the apprehension 
regarding non-pinhole camera models is based largely on 
misconceptions, such as the belief that these cameras do not 
produce useful images or that they are inherently inefficient. 
In this paper we introduce a novel paradigm for interactive 
computer graphics based on devising efficient and effective non-
pinhole camera models. Instead of using one of the few "off the 
shelf" cameras, the camera model is designed to meet the 
application's needs and is dynamically optimized for the data set 
at hand. We show that powerful NPHC models can be designed 
with fast projection, which enables efficient feed-forward 
rendering. To exemplify the proposed paradigm we introduce the 
graph camera, a malleable but efficient non-pinhole that creates 
comprehensive images of heavily occluded environments. 
CR Categories: I.3.m. [Computer Graphics]: Picture/Image 
Generation– Viewing algorithms. 
Keywords: camera model, interactive 3D computer graphics. 

1  Introduction 
Camera models define the correspondence between image pixels 
and captured rays, and are essential infrastructure for many 
applications in computer graphics, visualization, and computer 
vision. By far the most frequently used model is the planar 
pinhole camera (PPHC). One reason is that the PPHC closely 
approximates the human eye, producing images familiar to us. 
Another reason is that the PPHC model is simple. Physical 
implementations exist for over one hundred years. Current 
cameras are compact, inexpensive, and have resolutions in the 
millions of pixels. The simplicity of the PPHC model also enables 
efficient virtual implementations. Inexpensive graphics hardware 
computes at interactive rates PPHC images of scenes modeled 
with millions of triangles. 
However, the PPHC model is restrictive. While the field of view 
limitation has been addressed by innovations such as fisheye 
lenses, panning cameras, and omnidirectional catadioptric 
cameras, relatively little has been done to remove the requirement 
that all rays pass through a common point. We believe that the 
reluctance to remove the pinhole constraint is based on 
misconceptions. 
One such misconception is that non-pinhole cameras (NPHCs) 
have no much use in graphics beyond automatically producing 
images that deviate from the rules of perspective in the interest of 
more poignant artistic expression. We believe that NPHC images 
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are likely to benefit the users of many applications as long as the 
camera model exhibits some amount of coherence, which we 
loosely define as the property of projecting nearby 3D points to 
nearby image plane locations. Another important use of NPHC 
images is in the context of image-based rendering (IBR), where 
they can provide powerful intermediate scene representations 
from which the desired image is produced faster and at higher 
quality than when the scene is processed at its full complexity. 
When the scene geometry is known, any image can be enhanced 
with depth, and therefore any image can be warped to the desired 
view by reprojecting its depth and color samples. 
Another misconception is that rendering with an NPHC is 
inherently inefficient and therefore impractical in the context of 
interactive computer graphics applications. The feed-forward 
graphics pipeline has proven to be the best approach when 
efficiency is at a premium. The projection stage efficiently maps 
primitives to relevant pixels, which avoids considering pixel-
primitive pairs that do not yield an intersection. It is true that most 
NPHC models developed so far do not offer efficient projection, 
therefore rendering requires ray tracing or a large number of feed-
forward rendering passes. However, powerful NPHC models can 
be devised such that they offer fast projection, which enables 
efficient rendering with the feed-forward approach. 
The goal of this paper is to introduce a novel paradigm for 
interactive computer graphics based on designing flexible yet 
efficient non-pinhole camera models. The remainder of the paper 
is organized as follows. Section 2 describes general principles for 
camera model design. Section 3 reviews prior non-pinhole camera 
models. We illustrate the paradigm of camera model design with 
three examples: the occlusion camera (Section 4), the sample-
based camera (Section 5), and the graph camera (Section 6). We 
have previously presented the occlusion camera [Mei 2005, 
Popescu 2006a] and the sample-based camera [Popescu 2006b] in 
detail. They are briefly reviewed here from the stand point of 
camera model design. Section 7 discusses results and sketches 
directions for future work. 

2  Camera model design 
We propose to solve challenging interactive computer graphics 
problems by camera model design. Instead of using one of the few 
“off the shelf” cameras, the camera model should be designed to 
best fit the needs of the application, and it should be dynamically 
optimized according the scene or data set of interest. Camera 
model design proceeds in two major steps. 
Step 1: define rays of interest. For some applications the rays of 
interest are obvious and can be computed automatically from data 
such as scene model and desired view. For other applications 
defining the relevant rays require the insight of expert developers 
or users of that particular application. To facilitate the task of 
defining the rays of interest we generalize the definition of a 
camera ray to allow for rays that are not a straight line. We define 
a camera ray as the locus of 3D points that project at a given 
image plane location.  
Step 2: develop efficient projection. The output of the first step is 
already the equivalent of a camera model. The list of rays of 
interest defines a camera, which could be used to render the scene 
by ray tracing. Following the possibly curved rays out into the 
scene is not fundamentally more challenging than following 
conventional straight rays. However, such an approach is 
inefficient. The goal of the second step is to develop a fast 
projection method given the rays of interest, which enables 
efficient feed-forward rendering. Just like in the case of regular 

rays, projection in the context of general rays is defined as finding 
the image plane location(s) where a given 3D point is imaged, 
which implies finding the ray(s) that pass through the point. 
Depending on the complexity of the set of rays of interest, it could 
be impossible to develop an exact projection method that is also 
efficient. In such cases, an approximate projection method is 
developed. The approximation quality metric and the required 
quality depend on the application. 

3  Prior work 
Several NPHC models have been developed in the context of IBR 
for the purpose of scene modeling and rendering. The light field 
[Levoy 1996, Gortler 1996] is a 2D array of PPHC images. Light 
fields have the advantages of capturing a 3D scene while 
bypassing depth acquisition and of supporting complex rendering 
effects such as reflection and refraction at no extra cost. The light 
field camera model is powerful since it captures a dense set of 
rays, and it can be used in other graphics applications. An 
important limitation is the lengthy rendering time: the scene has to 
be rendered for each of the many PPHCs. Surface [Wood 2000] 
and unstructured [Buhler 2001] light fields reduce the number of 
rays using surface geometry, but construction remains an offline 
process. Light fields have to be used as a set of pre-computed 
color samples rather than as a set of rays, which precludes 
dynamic scenes. 
Layered depth images (LDIs) [Shade 1998] generalize the PPHC 
image by allowing for more than one sample along a ray. The LDI 
camera can be thought of as a PPHC whose rays are broken into 
several segments. The application of LDIs is 3D image warping 
without the problem of disocclusion errors, which are artifacts due 
to surfaces visible in the desired view that are not sampled by the 
reference image. The number of samples stored at each LDI pixel 
varies widely; therefore it is impractical to render the LDI by 
successive rendering passes and by peeling off the nearest layer. 
Adequate LDIs are built by combining a large number of PPHC 
images rendered from views around the LDI reference view. Like 
in the case of light fields, LDIs are built offline and the LDI 
camera is too inefficient to accommodate dynamic scenes. 
Multiple center of projection (MCOP) images [Rademacher 1998] 
collect samples with a vertical slit camera that slides along a user 
defined path. Possible goals in path selection are good scene 
coverage or artistic value of resulting image. The great flexibility 
in defining the rays of the MCOP camera makes it attractive in the 
context of our paradigm of model camera design. However, 
MCOP cameras are inefficient: images have to be rendered by ray 
tracing or by feed-forward rendering the scene for each center of 
projection along the camera path. 
Another application of NPHC models is in the context of artistic 
rendering where they are employed to render multiperspective 
images. In one system individual PPHCs are attached to scene 
objects, and the resulting sprites are composited in a multi-
projection image [Agrawala 2000]. For a small number of objects, 
the multi-projection image can be updated interactively. The 
approach of attaching a pinhole to each object has the 
disadvantages of not scaling with the scene complexity, of 
difficult—sometimes impossible—visibility ordering, and of not 
supporting multiple perspectives per object.  
Another multiperspective rendering system [Yu 2004b] partitions 
an image plane into general linear camera (GLC) triangular 
images. A GLC is constructed from three given rays [Yu 2004b] 
so it offers the flexibility necessary for modeling a user specified 
set of rays. Another GLC advantage is fast projection  
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Figure 4 Single-pole (top) and depth-discontinuity (bottom) 
occlusion camera images. 

[Popescu 2006c]. However, combining GLCs such that these 
advantages are preserved is non-trivial. The solution adopted by 
Yu et al. is to blend the rays of neighboring GLCs to provide a 
continuous ray space which generates an image with smoothly 
varying perspective. The resulting compound NPHC model does 
not provide fast projection and rendering is performed offline by 
ray tracing.  
NPHCs have also been employed to facilitate the creation of 
panoramas for cel animation [Wood 1997]. The rays of interest 
are defined by the desired scene shots. The NPHC renders a 
multiperspective panorama which simulates camera motion in a 
3D scene when it is viewed through a rectangular frame moving 
on a predetermined path. Similarly to the case of MCOPs, the 
panorama is rendered by finely discretizing the 3D camera path 
and by rendering an image for each position along the path. As it 
is the case for the other NPHC models discussed so far, using the 
multiperspective approach in the context of interactive computer 
graphics is hindered by the long rendering times. 
In computer vision, designing NPHC models is complicated by 
several factors such as the mechanical and optical constraints of 
physical implementation and the unavailability of scene geometry. 
Multiperspective images are constructed by resampling a video 
cube—a stack of images gathered by moving a video camera 
along a continuous path [Seitz 2003]. The video cube has also 
been used to support impressionism, cubism, and abstract 
aesthetic video effects [Klein 2002]. Several simple NPHC 
models have been studied formally, such as the pushbroom 
camera [Gupta 1997], and the two-slit camera [Pajdla 2002], 
which are both part of the class of general linear cameras. 
Grossberg et al. describe a general camera model that defines rays 
explicitly [Grossberg 2001]. The model does not offer fast 

projection and using it in the context of computer graphics poses 
the problem of inefficient rendering, which has to be done by 
tracing individual rays.  
Fast projection is also important in computer vision. Finding the 
image plane location of a given 3D point is a fundamental 
operation in common computer vision tasks such as camera 
calibration or correspondence search. Consider for example the 
application of depth from stereo using two NPHCs. Given a pixel 
in the left image, the locus of its possible correspondences in the 
right image can be found by projecting the left camera ray onto 
the right image. Fast projection would make epipolar-like 
constraints practical for NPHCs, and, in general, would help port 
the computational apparatus developed for pinholes to non-
pinhole cameras. 

4  The occlusion camera 
The first example of camera model designed according to the 
proposed paradigm is the occlusion camera (OCC) [Mei 2005, 
Popescu 2006a]. The application of OCCs is to produce single-
layer disocclusion-error-resistant reference images in the context 
of IBR. A reference depth image is asked to provide sufficient 
samples in order to reconstruct desired images from nearby views. 
The samples visible in the reference view do not suffice. The 
additional samples needed to prevent disocclusion errors are the 
samples that project close to the edge of occluders in the reference 
view, and are therefore “barely hidden”. 
Step 1. What is needed is a camera whose rays reach around 
occluders to gather some of the hidden samples—an occlusion 
camera. Such a camera is obtained by starting out with a reference 
PPHC and then by distorting its rays in 3D at the edges of 
occluders. The rays are bent in, towards the occluder. 
Two approaches for specifying the distortion were implemented. 
The single-pole OCC is obtained by 3D distorting the rays 
radially around a pole. The pole is defined as the image plane 
projection of the centroid of the occluder (Figure 4, top). The 
single-pole OCC is suitable for simple scenes with one or a few 
major occluders. The depth-discontinuity OCC handles arbitrarily 
complex scenes by specifying the distortion independently for 
each ray using a distortion map (Figure 4, right). The distortion 
map is calculated from the depth discontinuity map: the distortion 
direction is perpendicular to the depth discontinuity direction and 
towards the occluder. 
Step 2. At this step the details of the OCC model are determined 
such that the resulting camera offers fast projection. At step 1 the 
needed distortion has been described through its action on camera 
rays. The distortion has a similar effect on scene 3D points, except 
that the direction is reversed: bending the rays in, towards the 
occluder, is equivalent to pulling points out, away from the 
occluder. The point distortion magnitude should increase with z 
such that farther samples are distorted more. The goal is for 
hidden samples to clear the edge of the occluder and remain 
visible in the OCC image. A point is projected with an OCC by 
first projecting it with the corresponding  undistorted PPHC and 
then by distorting it according to its depth. 
Point projection is sufficient to render an image if a point-based 
reconstruction approach is taken. Higher-quality reconstructions 
require projecting triangles. PPHC rendering takes advantage of 
the fact that scene lines project to image plane lines. For an OCC 
straight lines project to curves and this complicates triangle 
rasterization. The simple distortion of the single-pole OCC allows 
computing a mapping from the OCC image plane to the triangle 
plane, which enables rasterization in the distorted domain. The  
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Figure 5 Visualization of a few simple cameras, together with 
the reflected rays they replace. 

fine-grain controlled distortion of depth discontinuity OCC does 
not provide such a mapping, and the true curved edges of the 
projected triangle have to be approximated with lines. The 
approximation error is controlled by subdividing the scene 
triangles. 
The resulting OCC produces a reference image that has sufficient 
samples for desired images from nearby views. The OCC image 
has a single layer and thus it shares advantages of regular (PPHC) 
depth images such as bounded number of samples, implicit 
connectivity, and efficient incremental processing. These 
fundamental advantages make the OCC a substantially better 
solution than LDIs, the previously best solution for disocclusion 
errors. The OCC was developed under the camera design 
paradigm. The camera model is tailored to the application and it is 
defined based on the scene. 

5  The sample-based camera 
The second example of camera model design is the sample-based 
camera (SBC) [Popescu 2006b]. The application of SBCs is 
rendering reflections. The approach of choice in interactive 
computer graphics is feed-forward rendering, with its two main 
stages of projection and rasterization. Unfortunately, reflections 
cannot be readily handled with this approach since one cannot 
easily find the projection of a reflected vertex. Reflected vertices 
can be easily projected if the reflector is planar, but for general 
reflectors there is no closed form solution to the projection 
equation. The SBC is a general camera that allows projecting 
vertices that are reflected in curved reflectors. The SBC model 
was designed as follows. 
 Step 1. The rays of interest in the case of reflections are obvious: 
they are the reflected rays generated by the desired view and the 
reflectors in the scene. However, the set of reflected ray can be 
large: the number of rays could be equal to the number of pixels if 
the entire screen is covered by reflectors. Although the rays 
leaving the eye are perturbed by the reflector, a considerable  

 

Figure 6 Visualization of sample-based camera comprising 728 
simple cameras. 

amount of coherence remains. The goal is to take advantage of 
this coherence in order to reduce the original set of reflected rays 
to a representative subset. The selected rays should model the 
original set well, possibly within an application specified 
approximation error tolerance. Moreover, ray selection should be 
fast since reflected rays depend on the desired view and ray 
selection has to run once per frame. 

Ray selection begins by computing a reflected ray map that stores 
a reflected ray at each pixel covered by a reflector. The first-order 
ray map is computed in hardware by rasterizing the reflector 
triangle and by computing per-pixel reflected rays from vertex 
normals. The ray map is then subdivided in quadtree fashion until 
a rectangular region in the ray map can be approximated well by 
the four corner rays. The quality of the approximation is judged 
by fitting a simple camera to the four corner rays. The 
approximation error is given by the projection error of the simple 
camera, which is estimated at the center of the rectangular region. 
If the projection error is smaller than an application chosen limit, 
the recursive subdivision stops and the reflected rays are replaced 
with the simple camera (Figure 5). The simple cameras are 
modeled as PPHCs or as more powerful continuous 3-ray 
cameras, which are simple non-pinholes with closed form 
projection [Popescu 2006c]. 
Step 2. The algorithm described above quickly finds the rays of 
interest and uses them to build a set of simple cameras (Figure 6). 
However, depending on the desired projection accuracy, on the 
curvature of the reflector, and on the distance from the reflector to 
the desired viewpoint, the number of simple cameras can be large 
(Figure 7). For this it is inefficient to project every scene vertex in 
every simple camera. Projection is accelerated by arranging the 
simple cameras at the leafs of a binary space partitioning (BSP) 
tree. Given a vertex, the BSP tree is used to efficiently find the 
simple cameras with which the vertex needs to be projected.  
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In conclusion, the SBC is a compound camera designed for 
efficiently projecting reflected vertices. The SBC casts the 
problem of rendering reflections on curved objects in terms 
tractable by the feed-forward graphics pipeline. The SBC depends 
not only on the desired view, but also on the reflective geometry it 
encompasses. 

6  The graph camera 
A third example of camera model design is the graph camera, a 
novel camera that enables convenient visualization of heavily 
occluded environments. When a user explores a complex virtual 
3D scene, navigation is challenging. Avoiding obstacles, 
inspecting hidden parts of the scene, and simply covering great 
distances in large-scale scenes reduce the efficiency with which 
the user assimilates information about the scene. Moreover, the 
interface through which the user has to specify the desired view is 
often non-intuitive. 
For applications where the experience of actual locomotion in the 
virtual scene is unnecessary, user navigation can be reduced or 
even avoided by visualizing the scene with a comprehensive 
NPHC image that shows more of the scene than a regular PPHC 
image. The approach is supported by the high resolution of 
today’s displays, which can show in detail such complex NPHC 
images. LCD’s with over 9 million pixels are available for over 
four years now [IBM T221]. 
When compared to a set of PPHC images, each covering a 
different part of the scene, a comprehensive NPHC image has the 
advantage of visualization continuity. Although the rules of single 
perspective are distorted, an NPHC image allows the user to 
develop a better intuition for the overall scene than a set of 
disjoint PPHC images. Using overlapping PPHC images alleviates 
the problem somewhat but introduces costly redundancy. 
Consider the example of a video surveillance application in the 
context of a building monitored with security cameras. The 
current approach is to display the images captured by the cameras 
on an array of monitors. First, there are typically fewer monitors  
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Figure 8 Ray distortion to enable “seeing” around the corner. 

than cameras, which implies that several cameras share the same 
monitor. The time sharing follows a pre-determined algorithm or 
is orchestrated by the user (security guard), but either way, 
important security events can be missed. Second, inspecting the 
monitors reliably is challenging. The user has to scan the monitors 
sequentially. The effective time allotted to a monitor is further 
reduced by the need to adapt visually and cognitively to the image 
of each monitor. The application would benefit from a 
comprehensive view of the building obtained by integrating the 
multiple video feeds into a single NPHC image. 
Another application example is in the visualization of large scale 
computer simulations. The raw performance of computing 
hardware and the sophistication of numerical codes have reached 
a stage that enables simulating with high temporal and spatial 
resolution the interaction of complex entities under extreme 
conditions. Visualization is an essential tool for designing, 
validating, and disseminating the results of such a simulation. 
Visualizing the dynamic scene with an NPHC image has the 
advantage of allowing the user to examine simultaneously several 
locations of interest in synchronized and visually coherent 
manner. For example, in our simulation of the September 11 
Attack on the Pentagon, the interaction between the jet fuel—
which concentrated most of the kinetic energy of the aircraft—and 
the numerous columns—the most relevant structural element of 
the building—was of highest interest to the civil engineering 
researchers [Popescu 2003, 2005]. An NPHC image could have 
shown simultaneously and in detail many of the columns affected. 

6. 1   Design of graph camera model 
Step 1. The rays of interest are defined by considering the parts of 
the scene that the user desires to visualize simultaneously. There 
have to be rays that sample each of these parts, and the image has 
to be as coherent as possible. A convenient way of specifying the 
rays of interest is to start with a PPHC and then to bend its rays 
making sure that they reach all the parts of the scene to be 
visualized. For example in Figure 8, the rays (see dotted lines) of 
a PPHC with center of projection C are bent to reach around the 
grey corner. The resulting NPHC model has one C0-continuous 
ray per pixel. In addition to the literal malleability of the camera  
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Figure 7 Visualization of reflector surface subdivision induced 
by simple cameras. The number of simple cameras N decreases 
with the increase of the projection error threshold ε, with the 
increase of the curvature radius R, and with the increase of the 
distance from the viewpoint to the reflector surface D. 
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Figure 9 Seeing around the corner using two connected 
pinhole cameras C0 and C1.  

model, this also brings the advantage of unambiguous visibility. A 
ray describes a rigorous order of the points that project at the 
respective pixel, which avoids visibility problems specific to other 
NPHC models [Agrawala 2000]. 

Step 2. One could simply define each individual ray as a set of 
adjoining curve segments and render by tracing each of the rays 
into the scene. In the interest of efficiency we model a general C0 
continuous ray as a chain of straight line segments, and we group 
the ray segments in a set of pinhole cameras. The piecewise linear 
approximation does not reduce the flexibility of the NPHC camera 
model significantly, and the set of pinholes allow rendering the 
NPHC image efficiently in hardware in feed-forward fashion. In 
Figure 9, the same effect as in Figure 8 is obtained using two 
pinhole cameras with centers of projection C0 and C1. The curved 
rays replaced by the two PPHCs are shown with dotted lines. The 
two pinhole cameras are connected at a plane. 
Like in the case of sample-based cameras, the NPHC is 
decomposed in a set of simple cameras. The NPHC image is 
rendered by rendering the scene with each pinhole camera and 
compositing the individual images using a painter’s style 
algorithm. Depth testing is unnecessary since the images are 
sorted in visibility order by construction. For the simple example 
in Figure 9, the image of C1 should only overwrite the background 
pixels of the image gathered by C0. 
In order to implement the graph camera, several issues have to be 
addressed. First, the pinhole cameras used to model segments of 
the rays are not planar pinhole cameras. Even though a plane is 
used to describe the virtual imaging surface, the ray-image plane 
intersections do not define a regular 2D grid. We describe an 
efficient general pinhole camera (GPHC) model in Section 6. 2  . 
Second, the graph camera model has to be flexible, and we 
describe constructing GPHCs by folding the rays of a given 
GPHC in Section 6. 3  , by splitting a given GPHC in Section 6. 4  
, and by splicing two adjacent GPHCs in Section 6. 5  . 

6. 2   General pinhole camera 
A simple GPHC model is obtained by enhancing a PPHC model 
with two scalars per pixel which indicate the actual image plane  
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Figure 10 General pinhole camera. Ray ri is defined by image 
plane coordinates (ai, bi). 

point where the pixel ray intersects the image plane. In Figure 10, 
C marks the center of projection, and the vector d translates C to 
the origin of the image plane coordinate system with axes defined 
by vectors a and b. Each GPHC ray is explicitly defined by its 
intersection with the image plane. Like in the case of a PPHC, 
field of view limitations can be overcome by using a cube map 
centered at the center of projection. 
Given a 3D point P one can trivially compute its projection by 
intersecting CP with the image plane. However, finding the 
closest pixel requires a search. Rendering a triangle with such a 
GPHC is even more expensive. While it is easy to compute the 
projected triangle by projecting each of the three vertices, it is 
difficult to find the pixels covered by the triangle. 
For the GPHCs of interest to the application at hand, the rays 
sample the image plane fairly uniformly. This enables an efficient 
implementation of the GPHC based on defining an auxiliary 
PPHC whose resolution is fine enough such that there is at most 
one GPHC ray per PPHC pixel. The GPHC and the auxiliary 
PPHC have the same center of projection and the same image 
plane. The PPHC pixels are equal image plane parallelograms. If 
for a given PPHC pixel there is a GPHC ray that intersects the 
image plane within the pixel’s parallelogram, then the intersection 
is encoded with a pair of floats that give the offsets from the top 
left corner of the parallelogram. 
In Figure 11 the GPHC has 10 rays and it is modeled with an 
auxiliary PPHC with a 4x3 image plane. The two grey shaded 
PPHC pixels do not store a GPHC ray. We call such a pixel 
inactive. GPHC ray ri is stored by PPHC pixel (u, v). The 
intersection between ri and the image plane is recorded with two 
offsets xuv and yuv and can be reconstructed with the expression 
C+d+au+bv+axuv+byuv. The offset mechanism is similar to the  
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Figure 11 General pinhole camera implemented with an 
auxiliary planar pinhole camera. 
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Figure 12 Visualization of the inactive auxiliary PPHC pixels, 
shown in blue. 

one used in image-based rendering by warping to accurately 
locate the projection of a forward mapped depth and color sample 
[Popescu 2000]. 
When determining the resolution of the auxiliary PPHC, one has 
to make sure that there is no more than one GPHC ray per PPHC 
pixel. A possible solution is to find the smallest distance m 
between any two GPHC ray-image plane intersections and to use 
a PPHC with square pixels with a diagonal of m. In practice, this 
approach is too conservative: it generates a large number of 
inactive PPHC pixels. For the graph camera, the rays of the 
GPHCs are organized in a 2D mesh. Using Figure 9 again, the 
second pinhole is a GPHC that continues the rays of the first 
pinhole, which is a PPHC. The rays (u+1, v), (u, v+1), and (u+1, 
v+1) which are neighbors of ray (u, v) for the first camera will 
also remain the neighbors of ray (u, v) for the second camera. We 
determine the resolution of the auxiliary PPHC for the second 
camera by computing the minimum distance between the image 
plane intersections of neighboring rays. Figure 12 shows the 
inactive pixels for the auxiliary PPHC of a typical GPHC. In this 
particular case there are 512x512 GPHC rays and the auxiliary 
PPHC image has a resolution of 627x627. 
The auxiliary PPHC allows rendering triangles by projection 
followed by rasterization. Rasterization proceeds on the uniform 
pixel grid, which allows evaluating the bounding box of the 
projected triangle and the edge expressions at the current pixel. 
The inner most rasterization loop simply continues to the next 
iteration if the current pixel is inactive. For an active pixel, the 
rasterization parameters are computed at the actual GPHC ray by 
modulating the rasterization parameter values for the PPHC pixel 
using the pair of offsets. Let r be a rasterization parameter whose 
linear model space variation is expressed by the equations 

r(u, v) = (Aru+Brv+Cr)/w(u, v) 
w(u, v) = Azu+Bzv+Cz 

Examples of rasterization parameters include color channels (R, 
G, B, A), depth (z), normal components (nx, ny, nz), texture 
coordinates (s, t), and any parameter desired by a custom shader. 
The value at the GPHC ray is given by r(u+x(u, v), v+y(u, v)), 
where x(u, v) and y(u, v) are the offsets at the current pixel. 

  

  

Figure 13 Visualization of folding operation. 

The rasterization parameter modulation can be easily 
implemented in a shader that looks up the offsets in a texture. 
However, visibility will be decided along the center of the PPHC 
pixel since the shader runs after visibility and current 
programmable graphics hardware does not expose the visibility 
stage to the application. The approximation is only visible at 
edges where the actual GPHC ray might have an intersection with 
the foreground object whereas the ray through the center of the 
PPHC pixel might not have one, or vice versa. 
True hardware support for the GPHC would consider the map of 
offsets as part of the camera model and would directly rasterize at 
the offset locations. In the mean time we use an efficient 
implementation that renders the scene with the auxiliary PPHC 
using the fixed pipeline and then resamples to form the GPHC 
image using the map of offsets. Bilinear interpolation produces 
good results since the sampling rates of the GPHC and of the 
PPHC are similar. 

6. 3   Folding operation 
The main operation needed to build a graph camera is folding the 
view frustum of a GPHC in order to change the perspective and 
see around corners or other occluders. Given a GPHC G0 and a 
plane Π, the rays of G0 are folded at Π with the following steps. 
A. Construct GPHC G1 to continue the rays of G0 beyond Π. 

a. Construct auxiliary PPHC camera P1 
b. Compute offsets and inactive pixels 

B. Limit the view frustum of G0 to Π. 
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Figure 14 Illustration of splitting followed by splicing in order 
to see behind occluder. The resulting graph camera consists of 
4 GPHCs, shown with different colors. 

To construct the auxiliary camera P1 the rays of G0 are first 
intersected with Π. Then a 2D coordinate system is defined on Π, 
which is used to compute an axis aligned bounding box of the 
intersections. The bounding box defines the image frame of P1. 
The resolution of P1 is determined as described in the previous 
section. The center of projection of P1 is chosen to define the 
desired change in perspective. Once P1 is constructed, the 
intersections between the rays of G0 and Π are projected on P1 to 
set the offsets to the actual GPHC ray. P1 pixels that do not 
receive any intersection point are marked as inactive. The rays of 
G0 end at Π, which is implemented with a clipping plane that 
discards the half space on the opposite side of Π compared to the 
center of projection of G0. 
In Figure 13 the view frustum of a GPHC is folded 90o to the 
right. Intermediate positions are computed for illustrative 
purposes. Three rays are also shown. The rays are C0-continuous 
at the connection plane. In Figure 3 the view frustum is folded 90o 
three times to effectively linearize the rectangular corridor. The 
resulting graph camera consists of 4 GPHCs, one for each corridor 
section. 

6. 4   Splitting operation 
Based on the folding operation, splitting a GPHC into two or 
more GPHCs is straight forward. Given a GPHC G0 and a plane 
Π, G0 is split into two GPHCs G0l and G0r by first partitioning the 
image plane of G0 into two disjoint regions to create two GPHCs 
G0l

* and G0r
* and then by folding G0l

* and G0r
* as before to form 

G0l and G0r. G0l
* and G0r

* could have overlapping frusta, which 
implies that some scene parts can appear twice in the resulting 
graph camera image. A separator plane implemented as a clipping 
plane can be used to keep the two frusta disjoint. 

6. 5   Splicing operation 
The splicing operation is the reverse of splitting. Two GPHCs are 
spliced into a single GPHC at a plane Π by intersecting the rays of 
each GPHC with Π and then by unioning the intersections to form 
a single GPHC whose frustum begins at Π. Figure 14 shows how 

  

  

Figure 15 Continuous morph as object traverses boundary 
between connected GPHCs. 

a GPHC with center of projection C (blue) is first split into two 
GPHCs with centers of projection Cl (red) and Cr (blue), and then 
how the two GPHCs are spliced into GPHC Clr (yellow). The 
resulting graph camera composed of 4 GPHCs sees behind the 
ellipsoidal occluder. The shadow of the occluder is reduced from 
the area p0p1p2p3 to the area p0p5p4p3.  
The view frusta of Cl and Cr can be kept disjoint using a separator 
plane through p4 and p5. The separator plane clips some of the 
rays. For example the Cl ray through p3 ends at the separator 
plane. This simply means that the graph camera ray Cp3 ends at 
p4. The maximum depth along the ray poly line is given by the 
distance Cp3 + p3p4. Since some of the rays of Cl and Cr do not 
reach the plane defined by p6p7, camera Clr has fewer rays than 
the first camera C. If a ray clipped by the separator plane does not 
encounter any surface before it ends at the separator plane, its 
corresponding pixel remains uninstantiated. The separator plane 
acts like a yon plane. An actual graph camera built according to 
Figure 14 is visualized in Figure 2, and the images it produces are 
shown in Figure 1. When the separator plane is used (Figure 1, 
middle), the bunny is not sufficiently large to occlude the 
separator plane hence the grey regions in the middle of the image. 
Not using the separator plane (Figure 1, right) covers all pixels at 
the cost of redundancy. 

7  Discussion 
The graph camera is a versatile yet efficient camera model that 
captures in a single image a complex 3D scene, reducing or even 
eliminating the need for navigation in the virtual environment. 
Multiple perspectives are integrated in a coherent, mostly 
continuous (Figure 15), visibility ordered (Figure 16) image. 
The graph cameras used in this paper consist of 4 GPHCs. The 
scene’s geometric complexity is given by the bunny statue which 
has ~70 thousand triangles. The scene is rendered once for each of 
the GPHCs (Figure 17) and the average frame rate is 5fps (3GB 
3GHz Pentium 4 Xeon PC with an Quadro FX 3400 NVIDIA 
graphics card). The frame rate only increases to 5.5fps if the 
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Figure 16 Illustration of correct visibility ordering. The four 
bunnies along the corridor (top) are correctly sorted near to far 
in the graph camera image. 

bunny is not drawn, which indicates that the main factor affecting 
performance is reading back the 4 auxiliary PPHC images and 
resampling them to the graph camera image. 
Performance can be increased by making better use of existing 
graphics hardware. We will investigate resampling on the GPU, 
which will also save the cost of reading the framebuffer back in 
main memory. Heavier geometry loads will warrant separating the 
view frusta of the GPHCs with a hierarchical space subdivision. 
As in the case of sample-based cameras, a BSP tree should 
provide a good solution. When the graph camera consists of a 
small number of GPHCs, the scene could be rendered in a single 
pass by providing the BSP tree to the vertex program via an array 
of uniform parameters. Special care is needed to handle the 
triangles that intersect more than one auxiliary camera frustum. 
True hardware support for the model camera design paradigm is 
achieved if the graphics hardware is extended to offer 
programmability at the camera model level. The current 
programmability at vertex level is primarily intended for 
computing at each vertex the rasterization parameter values 
needed in the shader to evaluate the fragment color. Multiple 
projections, clipping with view volume walls that are not a plane 
but rather a higher-order surface, and rasterization of projected 

 

  

 

Figure 17 The 4 auxiliary PPHC images used to build the 
graph camera image in Figure 1—middle. 

triangles with curved edges are not supported in hardware yet they 
are essential infrastructure for many NPHC cameras. For 
example, once the application developer specifies the projection 
function of the newly developed camera model, the hardware 
should be able to render a triangle with the new camera in feed 
forward fashion by subdividing the triangle as needed in order to 
meet an application specified error threshold for the 
approximation of the curved edges. 
We will investigate how to implement the graph camera 
physically in order to provide support for applications such as 
video surveillance. Still and video digital cameras have become 
ubiquitous and they can be used in sufficient numbers to capture 
most of the needed rays. The challenges that have to be overcome 
include camera intrinsic and extrinsic calibration, camera 
placement in the context of physical constraints, and 
implementation of clipping planes. Although the precise geometry 
of the real-world environment is not known, a proxy of the 
background geometry should suffice for providing by 3D warping 
the rays that cannot be captured directly. 
This paper discusses the occlusion camera and sample-based 
camera from the stand point of camera model design and 
introduces graph cameras. It is our hope that this work contributes 
substantially to the argument that non-pinhole cameras can be 
useful and efficient. Such NPHCs enable the model camera design 
paradigm, which opens the door to a new approach for finding 
solutions of difficult problems in computer graphics and beyond. 
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