
1

Camera Model Design
Voicu Popescu

Purdue University

Figure 1 Disocclusion example. The bunny is occluded by the vertical block (left). The graph camera (disjoint variant middle and
overlapping variant right) eliminates the occlusion.

Figure 2 Visualizations of the graph camera used in Figure 1. Green
and blue lines show the frustum and four sample rays, respectively.

Figure 3 Corridor linearization example. The graph camera view
frustum wraps around (left), to reveal the entire corridor (right).

Abstract
Camera models are essential infrastructure in computer graphics,
visualization, and vision. The most frequently used model is the
planar pinhole camera, because it approximates the human eye
well, producing familiar images, and because it is simple,
enabling efficient software and hardware implementations.
However, the requirement that all rays pass through a common
point is restrictive and relatively little has been done to remove
this pinhole constraint. We believe that the apprehension
regarding non-pinhole camera models is based largely on
misconceptions, such as the belief that these cameras do not
produce useful images or that they are inherently inefficient.
In this paper we introduce a novel paradigm for interactive
computer graphics based on devising efficient and effective non-
pinhole camera models. Instead of using one of the few "off the
shelf" cameras, the camera model is designed to meet the
application's needs and is dynamically optimized for the data set
at hand. We show that powerful NPHC models can be designed
with fast projection, which enables efficient feed-forward
rendering. To exemplify the proposed paradigm we introduce the
graph camera, a malleable but efficient non-pinhole that creates
comprehensive images of heavily occluded environments.
CR Categories: I.3.m. [Computer Graphics]: Picture/Image
Generation– Viewing algorithms.
Keywords: camera model, interactive 3D computer graphics.

1 Introduction
Camera models define the correspondence between image pixels
and captured rays, and are essential infrastructure for many
applications in computer graphics, visualization, and computer
vision. By far the most frequently used model is the planar
pinhole camera (PPHC). One reason is that the PPHC closely
approximates the human eye, producing images familiar to us.
Another reason is that the PPHC model is simple. Physical
implementations exist for over one hundred years. Current
cameras are compact, inexpensive, and have resolutions in the
millions of pixels. The simplicity of the PPHC model also enables
efficient virtual implementations. Inexpensive graphics hardware
computes at interactive rates PPHC images of scenes modeled
with millions of triangles.
However, the PPHC model is restrictive. While the field of view
limitation has been addressed by innovations such as fisheye
lenses, panning cameras, and omnidirectional catadioptric
cameras, relatively little has been done to remove the requirement
that all rays pass through a common point. We believe that the
reluctance to remove the pinhole constraint is based on
misconceptions.
One such misconception is that non-pinhole cameras (NPHCs)
have no much use in graphics beyond automatically producing
images that deviate from the rules of perspective in the interest of
more poignant artistic expression. We believe that NPHC images

2

are likely to benefit the users of many applications as long as the
camera model exhibits some amount of coherence, which we
loosely define as the property of projecting nearby 3D points to
nearby image plane locations. Another important use of NPHC
images is in the context of image-based rendering (IBR), where
they can provide powerful intermediate scene representations
from which the desired image is produced faster and at higher
quality than when the scene is processed at its full complexity.
When the scene geometry is known, any image can be enhanced
with depth, and therefore any image can be warped to the desired
view by reprojecting its depth and color samples.
Another misconception is that rendering with an NPHC is
inherently inefficient and therefore impractical in the context of
interactive computer graphics applications. The feed-forward
graphics pipeline has proven to be the best approach when
efficiency is at a premium. The projection stage efficiently maps
primitives to relevant pixels, which avoids considering pixel-
primitive pairs that do not yield an intersection. It is true that most
NPHC models developed so far do not offer efficient projection,
therefore rendering requires ray tracing or a large number of feed-
forward rendering passes. However, powerful NPHC models can
be devised such that they offer fast projection, which enables
efficient rendering with the feed-forward approach.
The goal of this paper is to introduce a novel paradigm for
interactive computer graphics based on designing flexible yet
efficient non-pinhole camera models. The remainder of the paper
is organized as follows. Section 2 describes general principles for
camera model design. Section 3 reviews prior non-pinhole camera
models. We illustrate the paradigm of camera model design with
three examples: the occlusion camera (Section 4), the sample-
based camera (Section 5), and the graph camera (Section 6). We
have previously presented the occlusion camera [Mei 2005,
Popescu 2006a] and the sample-based camera [Popescu 2006b] in
detail. They are briefly reviewed here from the stand point of
camera model design. Section 7 discusses results and sketches
directions for future work.

2 Camera model design
We propose to solve challenging interactive computer graphics
problems by camera model design. Instead of using one of the few
“off the shelf” cameras, the camera model should be designed to
best fit the needs of the application, and it should be dynamically
optimized according the scene or data set of interest. Camera
model design proceeds in two major steps.
Step 1: define rays of interest. For some applications the rays of
interest are obvious and can be computed automatically from data
such as scene model and desired view. For other applications
defining the relevant rays require the insight of expert developers
or users of that particular application. To facilitate the task of
defining the rays of interest we generalize the definition of a
camera ray to allow for rays that are not a straight line. We define
a camera ray as the locus of 3D points that project at a given
image plane location.
Step 2: develop efficient projection. The output of the first step is
already the equivalent of a camera model. The list of rays of
interest defines a camera, which could be used to render the scene
by ray tracing. Following the possibly curved rays out into the
scene is not fundamentally more challenging than following
conventional straight rays. However, such an approach is
inefficient. The goal of the second step is to develop a fast
projection method given the rays of interest, which enables
efficient feed-forward rendering. Just like in the case of regular

rays, projection in the context of general rays is defined as finding
the image plane location(s) where a given 3D point is imaged,
which implies finding the ray(s) that pass through the point.
Depending on the complexity of the set of rays of interest, it could
be impossible to develop an exact projection method that is also
efficient. In such cases, an approximate projection method is
developed. The approximation quality metric and the required
quality depend on the application.

3 Prior work
Several NPHC models have been developed in the context of IBR
for the purpose of scene modeling and rendering. The light field
[Levoy 1996, Gortler 1996] is a 2D array of PPHC images. Light
fields have the advantages of capturing a 3D scene while
bypassing depth acquisition and of supporting complex rendering
effects such as reflection and refraction at no extra cost. The light
field camera model is powerful since it captures a dense set of
rays, and it can be used in other graphics applications. An
important limitation is the lengthy rendering time: the scene has to
be rendered for each of the many PPHCs. Surface [Wood 2000]
and unstructured [Buhler 2001] light fields reduce the number of
rays using surface geometry, but construction remains an offline
process. Light fields have to be used as a set of pre-computed
color samples rather than as a set of rays, which precludes
dynamic scenes.
Layered depth images (LDIs) [Shade 1998] generalize the PPHC
image by allowing for more than one sample along a ray. The LDI
camera can be thought of as a PPHC whose rays are broken into
several segments. The application of LDIs is 3D image warping
without the problem of disocclusion errors, which are artifacts due
to surfaces visible in the desired view that are not sampled by the
reference image. The number of samples stored at each LDI pixel
varies widely; therefore it is impractical to render the LDI by
successive rendering passes and by peeling off the nearest layer.
Adequate LDIs are built by combining a large number of PPHC
images rendered from views around the LDI reference view. Like
in the case of light fields, LDIs are built offline and the LDI
camera is too inefficient to accommodate dynamic scenes.
Multiple center of projection (MCOP) images [Rademacher 1998]
collect samples with a vertical slit camera that slides along a user
defined path. Possible goals in path selection are good scene
coverage or artistic value of resulting image. The great flexibility
in defining the rays of the MCOP camera makes it attractive in the
context of our paradigm of model camera design. However,
MCOP cameras are inefficient: images have to be rendered by ray
tracing or by feed-forward rendering the scene for each center of
projection along the camera path.
Another application of NPHC models is in the context of artistic
rendering where they are employed to render multiperspective
images. In one system individual PPHCs are attached to scene
objects, and the resulting sprites are composited in a multi-
projection image [Agrawala 2000]. For a small number of objects,
the multi-projection image can be updated interactively. The
approach of attaching a pinhole to each object has the
disadvantages of not scaling with the scene complexity, of
difficult—sometimes impossible—visibility ordering, and of not
supporting multiple perspectives per object.
Another multiperspective rendering system [Yu 2004b] partitions
an image plane into general linear camera (GLC) triangular
images. A GLC is constructed from three given rays [Yu 2004b]
so it offers the flexibility necessary for modeling a user specified
set of rays. Another GLC advantage is fast projection

3

Figure 4 Single-pole (top) and depth-discontinuity (bottom)
occlusion camera images.

[Popescu 2006c]. However, combining GLCs such that these
advantages are preserved is non-trivial. The solution adopted by
Yu et al. is to blend the rays of neighboring GLCs to provide a
continuous ray space which generates an image with smoothly
varying perspective. The resulting compound NPHC model does
not provide fast projection and rendering is performed offline by
ray tracing.
NPHCs have also been employed to facilitate the creation of
panoramas for cel animation [Wood 1997]. The rays of interest
are defined by the desired scene shots. The NPHC renders a
multiperspective panorama which simulates camera motion in a
3D scene when it is viewed through a rectangular frame moving
on a predetermined path. Similarly to the case of MCOPs, the
panorama is rendered by finely discretizing the 3D camera path
and by rendering an image for each position along the path. As it
is the case for the other NPHC models discussed so far, using the
multiperspective approach in the context of interactive computer
graphics is hindered by the long rendering times.
In computer vision, designing NPHC models is complicated by
several factors such as the mechanical and optical constraints of
physical implementation and the unavailability of scene geometry.
Multiperspective images are constructed by resampling a video
cube—a stack of images gathered by moving a video camera
along a continuous path [Seitz 2003]. The video cube has also
been used to support impressionism, cubism, and abstract
aesthetic video effects [Klein 2002]. Several simple NPHC
models have been studied formally, such as the pushbroom
camera [Gupta 1997], and the two-slit camera [Pajdla 2002],
which are both part of the class of general linear cameras.
Grossberg et al. describe a general camera model that defines rays
explicitly [Grossberg 2001]. The model does not offer fast

projection and using it in the context of computer graphics poses
the problem of inefficient rendering, which has to be done by
tracing individual rays.
Fast projection is also important in computer vision. Finding the
image plane location of a given 3D point is a fundamental
operation in common computer vision tasks such as camera
calibration or correspondence search. Consider for example the
application of depth from stereo using two NPHCs. Given a pixel
in the left image, the locus of its possible correspondences in the
right image can be found by projecting the left camera ray onto
the right image. Fast projection would make epipolar-like
constraints practical for NPHCs, and, in general, would help port
the computational apparatus developed for pinholes to non-
pinhole cameras.

4 The occlusion camera
The first example of camera model designed according to the
proposed paradigm is the occlusion camera (OCC) [Mei 2005,
Popescu 2006a]. The application of OCCs is to produce single-
layer disocclusion-error-resistant reference images in the context
of IBR. A reference depth image is asked to provide sufficient
samples in order to reconstruct desired images from nearby views.
The samples visible in the reference view do not suffice. The
additional samples needed to prevent disocclusion errors are the
samples that project close to the edge of occluders in the reference
view, and are therefore “barely hidden”.
Step 1. What is needed is a camera whose rays reach around
occluders to gather some of the hidden samples—an occlusion
camera. Such a camera is obtained by starting out with a reference
PPHC and then by distorting its rays in 3D at the edges of
occluders. The rays are bent in, towards the occluder.
Two approaches for specifying the distortion were implemented.
The single-pole OCC is obtained by 3D distorting the rays
radially around a pole. The pole is defined as the image plane
projection of the centroid of the occluder (Figure 4, top). The
single-pole OCC is suitable for simple scenes with one or a few
major occluders. The depth-discontinuity OCC handles arbitrarily
complex scenes by specifying the distortion independently for
each ray using a distortion map (Figure 4, right). The distortion
map is calculated from the depth discontinuity map: the distortion
direction is perpendicular to the depth discontinuity direction and
towards the occluder.
Step 2. At this step the details of the OCC model are determined
such that the resulting camera offers fast projection. At step 1 the
needed distortion has been described through its action on camera
rays. The distortion has a similar effect on scene 3D points, except
that the direction is reversed: bending the rays in, towards the
occluder, is equivalent to pulling points out, away from the
occluder. The point distortion magnitude should increase with z
such that farther samples are distorted more. The goal is for
hidden samples to clear the edge of the occluder and remain
visible in the OCC image. A point is projected with an OCC by
first projecting it with the corresponding undistorted PPHC and
then by distorting it according to its depth.
Point projection is sufficient to render an image if a point-based
reconstruction approach is taken. Higher-quality reconstructions
require projecting triangles. PPHC rendering takes advantage of
the fact that scene lines project to image plane lines. For an OCC
straight lines project to curves and this complicates triangle
rasterization. The simple distortion of the single-pole OCC allows
computing a mapping from the OCC image plane to the triangle
plane, which enables rasterization in the distorted domain. The

4

Figure 5 Visualization of a few simple cameras, together with
the reflected rays they replace.

fine-grain controlled distortion of depth discontinuity OCC does
not provide such a mapping, and the true curved edges of the
projected triangle have to be approximated with lines. The
approximation error is controlled by subdividing the scene
triangles.
The resulting OCC produces a reference image that has sufficient
samples for desired images from nearby views. The OCC image
has a single layer and thus it shares advantages of regular (PPHC)
depth images such as bounded number of samples, implicit
connectivity, and efficient incremental processing. These
fundamental advantages make the OCC a substantially better
solution than LDIs, the previously best solution for disocclusion
errors. The OCC was developed under the camera design
paradigm. The camera model is tailored to the application and it is
defined based on the scene.

5 The sample-based camera
The second example of camera model design is the sample-based
camera (SBC) [Popescu 2006b]. The application of SBCs is
rendering reflections. The approach of choice in interactive
computer graphics is feed-forward rendering, with its two main
stages of projection and rasterization. Unfortunately, reflections
cannot be readily handled with this approach since one cannot
easily find the projection of a reflected vertex. Reflected vertices
can be easily projected if the reflector is planar, but for general
reflectors there is no closed form solution to the projection
equation. The SBC is a general camera that allows projecting
vertices that are reflected in curved reflectors. The SBC model
was designed as follows.
 Step 1. The rays of interest in the case of reflections are obvious:
they are the reflected rays generated by the desired view and the
reflectors in the scene. However, the set of reflected ray can be
large: the number of rays could be equal to the number of pixels if
the entire screen is covered by reflectors. Although the rays
leaving the eye are perturbed by the reflector, a considerable

Figure 6 Visualization of sample-based camera comprising 728
simple cameras.

amount of coherence remains. The goal is to take advantage of
this coherence in order to reduce the original set of reflected rays
to a representative subset. The selected rays should model the
original set well, possibly within an application specified
approximation error tolerance. Moreover, ray selection should be
fast since reflected rays depend on the desired view and ray
selection has to run once per frame.

Ray selection begins by computing a reflected ray map that stores
a reflected ray at each pixel covered by a reflector. The first-order
ray map is computed in hardware by rasterizing the reflector
triangle and by computing per-pixel reflected rays from vertex
normals. The ray map is then subdivided in quadtree fashion until
a rectangular region in the ray map can be approximated well by
the four corner rays. The quality of the approximation is judged
by fitting a simple camera to the four corner rays. The
approximation error is given by the projection error of the simple
camera, which is estimated at the center of the rectangular region.
If the projection error is smaller than an application chosen limit,
the recursive subdivision stops and the reflected rays are replaced
with the simple camera (Figure 5). The simple cameras are
modeled as PPHCs or as more powerful continuous 3-ray
cameras, which are simple non-pinholes with closed form
projection [Popescu 2006c].
Step 2. The algorithm described above quickly finds the rays of
interest and uses them to build a set of simple cameras (Figure 6).
However, depending on the desired projection accuracy, on the
curvature of the reflector, and on the distance from the reflector to
the desired viewpoint, the number of simple cameras can be large
(Figure 7). For this it is inefficient to project every scene vertex in
every simple camera. Projection is accelerated by arranging the
simple cameras at the leafs of a binary space partitioning (BSP)
tree. Given a vertex, the BSP tree is used to efficiently find the
simple cameras with which the vertex needs to be projected.

5

In conclusion, the SBC is a compound camera designed for
efficiently projecting reflected vertices. The SBC casts the
problem of rendering reflections on curved objects in terms
tractable by the feed-forward graphics pipeline. The SBC depends
not only on the desired view, but also on the reflective geometry it
encompasses.

6 The graph camera
A third example of camera model design is the graph camera, a
novel camera that enables convenient visualization of heavily
occluded environments. When a user explores a complex virtual
3D scene, navigation is challenging. Avoiding obstacles,
inspecting hidden parts of the scene, and simply covering great
distances in large-scale scenes reduce the efficiency with which
the user assimilates information about the scene. Moreover, the
interface through which the user has to specify the desired view is
often non-intuitive.
For applications where the experience of actual locomotion in the
virtual scene is unnecessary, user navigation can be reduced or
even avoided by visualizing the scene with a comprehensive
NPHC image that shows more of the scene than a regular PPHC
image. The approach is supported by the high resolution of
today’s displays, which can show in detail such complex NPHC
images. LCD’s with over 9 million pixels are available for over
four years now [IBM T221].
When compared to a set of PPHC images, each covering a
different part of the scene, a comprehensive NPHC image has the
advantage of visualization continuity. Although the rules of single
perspective are distorted, an NPHC image allows the user to
develop a better intuition for the overall scene than a set of
disjoint PPHC images. Using overlapping PPHC images alleviates
the problem somewhat but introduces costly redundancy.
Consider the example of a video surveillance application in the
context of a building monitored with security cameras. The
current approach is to display the images captured by the cameras
on an array of monitors. First, there are typically fewer monitors

C

Image
plane

Figure 8 Ray distortion to enable “seeing” around the corner.

than cameras, which implies that several cameras share the same
monitor. The time sharing follows a pre-determined algorithm or
is orchestrated by the user (security guard), but either way,
important security events can be missed. Second, inspecting the
monitors reliably is challenging. The user has to scan the monitors
sequentially. The effective time allotted to a monitor is further
reduced by the need to adapt visually and cognitively to the image
of each monitor. The application would benefit from a
comprehensive view of the building obtained by integrating the
multiple video feeds into a single NPHC image.
Another application example is in the visualization of large scale
computer simulations. The raw performance of computing
hardware and the sophistication of numerical codes have reached
a stage that enables simulating with high temporal and spatial
resolution the interaction of complex entities under extreme
conditions. Visualization is an essential tool for designing,
validating, and disseminating the results of such a simulation.
Visualizing the dynamic scene with an NPHC image has the
advantage of allowing the user to examine simultaneously several
locations of interest in synchronized and visually coherent
manner. For example, in our simulation of the September 11
Attack on the Pentagon, the interaction between the jet fuel—
which concentrated most of the kinetic energy of the aircraft—and
the numerous columns—the most relevant structural element of
the building—was of highest interest to the civil engineering
researchers [Popescu 2003, 2005]. An NPHC image could have
shown simultaneously and in detail many of the columns affected.

6. 1 Design of graph camera model
Step 1. The rays of interest are defined by considering the parts of
the scene that the user desires to visualize simultaneously. There
have to be rays that sample each of these parts, and the image has
to be as coherent as possible. A convenient way of specifying the
rays of interest is to start with a PPHC and then to bend its rays
making sure that they reach all the parts of the scene to be
visualized. For example in Figure 8, the rays (see dotted lines) of
a PPHC with center of projection C are bent to reach around the
grey corner. The resulting NPHC model has one C0-continuous
ray per pixel. In addition to the literal malleability of the camera

ε = 1pix
R = 4m
N = 728

ε = 1pix
R = 28.5
N = 30

ε = 5pix
R = 1

N = 147

D0

N = 172

D1 >D0
N = 26

D2 >D1
N = 13

D3 >D2
N = 5

Figure 7 Visualization of reflector surface subdivision induced
by simple cameras. The number of simple cameras N decreases
with the increase of the projection error threshold ε, with the
increase of the curvature radius R, and with the increase of the
distance from the viewpoint to the reflector surface D.

6

Figure 9 Seeing around the corner using two connected
pinhole cameras C0 and C1.

model, this also brings the advantage of unambiguous visibility. A
ray describes a rigorous order of the points that project at the
respective pixel, which avoids visibility problems specific to other
NPHC models [Agrawala 2000].

Step 2. One could simply define each individual ray as a set of
adjoining curve segments and render by tracing each of the rays
into the scene. In the interest of efficiency we model a general C0
continuous ray as a chain of straight line segments, and we group
the ray segments in a set of pinhole cameras. The piecewise linear
approximation does not reduce the flexibility of the NPHC camera
model significantly, and the set of pinholes allow rendering the
NPHC image efficiently in hardware in feed-forward fashion. In
Figure 9, the same effect as in Figure 8 is obtained using two
pinhole cameras with centers of projection C0 and C1. The curved
rays replaced by the two PPHCs are shown with dotted lines. The
two pinhole cameras are connected at a plane.
Like in the case of sample-based cameras, the NPHC is
decomposed in a set of simple cameras. The NPHC image is
rendered by rendering the scene with each pinhole camera and
compositing the individual images using a painter’s style
algorithm. Depth testing is unnecessary since the images are
sorted in visibility order by construction. For the simple example
in Figure 9, the image of C1 should only overwrite the background
pixels of the image gathered by C0.
In order to implement the graph camera, several issues have to be
addressed. First, the pinhole cameras used to model segments of
the rays are not planar pinhole cameras. Even though a plane is
used to describe the virtual imaging surface, the ray-image plane
intersections do not define a regular 2D grid. We describe an
efficient general pinhole camera (GPHC) model in Section 6. 2 .
Second, the graph camera model has to be flexible, and we
describe constructing GPHCs by folding the rays of a given
GPHC in Section 6. 3 , by splitting a given GPHC in Section 6. 4
, and by splicing two adjacent GPHCs in Section 6. 5 .

6. 2 General pinhole camera
A simple GPHC model is obtained by enhancing a PPHC model
with two scalars per pixel which indicate the actual image plane

C

d

a

b
ri

ai

bi

Figure 10 General pinhole camera. Ray ri is defined by image
plane coordinates (ai, bi).

point where the pixel ray intersects the image plane. In Figure 10,
C marks the center of projection, and the vector d translates C to
the origin of the image plane coordinate system with axes defined
by vectors a and b. Each GPHC ray is explicitly defined by its
intersection with the image plane. Like in the case of a PPHC,
field of view limitations can be overcome by using a cube map
centered at the center of projection.
Given a 3D point P one can trivially compute its projection by
intersecting CP with the image plane. However, finding the
closest pixel requires a search. Rendering a triangle with such a
GPHC is even more expensive. While it is easy to compute the
projected triangle by projecting each of the three vertices, it is
difficult to find the pixels covered by the triangle.
For the GPHCs of interest to the application at hand, the rays
sample the image plane fairly uniformly. This enables an efficient
implementation of the GPHC based on defining an auxiliary
PPHC whose resolution is fine enough such that there is at most
one GPHC ray per PPHC pixel. The GPHC and the auxiliary
PPHC have the same center of projection and the same image
plane. The PPHC pixels are equal image plane parallelograms. If
for a given PPHC pixel there is a GPHC ray that intersects the
image plane within the pixel’s parallelogram, then the intersection
is encoded with a pair of floats that give the offsets from the top
left corner of the parallelogram.
In Figure 11 the GPHC has 10 rays and it is modeled with an
auxiliary PPHC with a 4x3 image plane. The two grey shaded
PPHC pixels do not store a GPHC ray. We call such a pixel
inactive. GPHC ray ri is stored by PPHC pixel (u, v). The
intersection between ri and the image plane is recorded with two
offsets xuv and yuv and can be reconstructed with the expression
C+d+au+bv+axuv+byuv. The offset mechanism is similar to the

C

d

a

b
riv

u

ouuv
ovuv

Figure 11 General pinhole camera implemented with an
auxiliary planar pinhole camera.

7

Figure 12 Visualization of the inactive auxiliary PPHC pixels,
shown in blue.

one used in image-based rendering by warping to accurately
locate the projection of a forward mapped depth and color sample
[Popescu 2000].
When determining the resolution of the auxiliary PPHC, one has
to make sure that there is no more than one GPHC ray per PPHC
pixel. A possible solution is to find the smallest distance m
between any two GPHC ray-image plane intersections and to use
a PPHC with square pixels with a diagonal of m. In practice, this
approach is too conservative: it generates a large number of
inactive PPHC pixels. For the graph camera, the rays of the
GPHCs are organized in a 2D mesh. Using Figure 9 again, the
second pinhole is a GPHC that continues the rays of the first
pinhole, which is a PPHC. The rays (u+1, v), (u, v+1), and (u+1,
v+1) which are neighbors of ray (u, v) for the first camera will
also remain the neighbors of ray (u, v) for the second camera. We
determine the resolution of the auxiliary PPHC for the second
camera by computing the minimum distance between the image
plane intersections of neighboring rays. Figure 12 shows the
inactive pixels for the auxiliary PPHC of a typical GPHC. In this
particular case there are 512x512 GPHC rays and the auxiliary
PPHC image has a resolution of 627x627.
The auxiliary PPHC allows rendering triangles by projection
followed by rasterization. Rasterization proceeds on the uniform
pixel grid, which allows evaluating the bounding box of the
projected triangle and the edge expressions at the current pixel.
The inner most rasterization loop simply continues to the next
iteration if the current pixel is inactive. For an active pixel, the
rasterization parameters are computed at the actual GPHC ray by
modulating the rasterization parameter values for the PPHC pixel
using the pair of offsets. Let r be a rasterization parameter whose
linear model space variation is expressed by the equations

r(u, v) = (Aru+Brv+Cr)/w(u, v)
w(u, v) = Azu+Bzv+Cz

Examples of rasterization parameters include color channels (R,
G, B, A), depth (z), normal components (nx, ny, nz), texture
coordinates (s, t), and any parameter desired by a custom shader.
The value at the GPHC ray is given by r(u+x(u, v), v+y(u, v)),
where x(u, v) and y(u, v) are the offsets at the current pixel.

Figure 13 Visualization of folding operation.

The rasterization parameter modulation can be easily
implemented in a shader that looks up the offsets in a texture.
However, visibility will be decided along the center of the PPHC
pixel since the shader runs after visibility and current
programmable graphics hardware does not expose the visibility
stage to the application. The approximation is only visible at
edges where the actual GPHC ray might have an intersection with
the foreground object whereas the ray through the center of the
PPHC pixel might not have one, or vice versa.
True hardware support for the GPHC would consider the map of
offsets as part of the camera model and would directly rasterize at
the offset locations. In the mean time we use an efficient
implementation that renders the scene with the auxiliary PPHC
using the fixed pipeline and then resamples to form the GPHC
image using the map of offsets. Bilinear interpolation produces
good results since the sampling rates of the GPHC and of the
PPHC are similar.

6. 3 Folding operation
The main operation needed to build a graph camera is folding the
view frustum of a GPHC in order to change the perspective and
see around corners or other occluders. Given a GPHC G0 and a
plane Π, the rays of G0 are folded at Π with the following steps.
A. Construct GPHC G1 to continue the rays of G0 beyond Π.

a. Construct auxiliary PPHC camera P1
b. Compute offsets and inactive pixels

B. Limit the view frustum of G0 to Π.

8

Figure 14 Illustration of splitting followed by splicing in order
to see behind occluder. The resulting graph camera consists of
4 GPHCs, shown with different colors.

To construct the auxiliary camera P1 the rays of G0 are first
intersected with Π. Then a 2D coordinate system is defined on Π,
which is used to compute an axis aligned bounding box of the
intersections. The bounding box defines the image frame of P1.
The resolution of P1 is determined as described in the previous
section. The center of projection of P1 is chosen to define the
desired change in perspective. Once P1 is constructed, the
intersections between the rays of G0 and Π are projected on P1 to
set the offsets to the actual GPHC ray. P1 pixels that do not
receive any intersection point are marked as inactive. The rays of
G0 end at Π, which is implemented with a clipping plane that
discards the half space on the opposite side of Π compared to the
center of projection of G0.
In Figure 13 the view frustum of a GPHC is folded 90o to the
right. Intermediate positions are computed for illustrative
purposes. Three rays are also shown. The rays are C0-continuous
at the connection plane. In Figure 3 the view frustum is folded 90o
three times to effectively linearize the rectangular corridor. The
resulting graph camera consists of 4 GPHCs, one for each corridor
section.

6. 4 Splitting operation
Based on the folding operation, splitting a GPHC into two or
more GPHCs is straight forward. Given a GPHC G0 and a plane
Π, G0 is split into two GPHCs G0l and G0r by first partitioning the
image plane of G0 into two disjoint regions to create two GPHCs
G0l

* and G0r
* and then by folding G0l

* and G0r
* as before to form

G0l and G0r. G0l
* and G0r

* could have overlapping frusta, which
implies that some scene parts can appear twice in the resulting
graph camera image. A separator plane implemented as a clipping
plane can be used to keep the two frusta disjoint.

6. 5 Splicing operation
The splicing operation is the reverse of splitting. Two GPHCs are
spliced into a single GPHC at a plane Π by intersecting the rays of
each GPHC with Π and then by unioning the intersections to form
a single GPHC whose frustum begins at Π. Figure 14 shows how

Figure 15 Continuous morph as object traverses boundary
between connected GPHCs.

a GPHC with center of projection C (blue) is first split into two
GPHCs with centers of projection Cl (red) and Cr (blue), and then
how the two GPHCs are spliced into GPHC Clr (yellow). The
resulting graph camera composed of 4 GPHCs sees behind the
ellipsoidal occluder. The shadow of the occluder is reduced from
the area p0p1p2p3 to the area p0p5p4p3.
The view frusta of Cl and Cr can be kept disjoint using a separator
plane through p4 and p5. The separator plane clips some of the
rays. For example the Cl ray through p3 ends at the separator
plane. This simply means that the graph camera ray Cp3 ends at
p4. The maximum depth along the ray poly line is given by the
distance Cp3 + p3p4. Since some of the rays of Cl and Cr do not
reach the plane defined by p6p7, camera Clr has fewer rays than
the first camera C. If a ray clipped by the separator plane does not
encounter any surface before it ends at the separator plane, its
corresponding pixel remains uninstantiated. The separator plane
acts like a yon plane. An actual graph camera built according to
Figure 14 is visualized in Figure 2, and the images it produces are
shown in Figure 1. When the separator plane is used (Figure 1,
middle), the bunny is not sufficiently large to occlude the
separator plane hence the grey regions in the middle of the image.
Not using the separator plane (Figure 1, right) covers all pixels at
the cost of redundancy.

7 Discussion
The graph camera is a versatile yet efficient camera model that
captures in a single image a complex 3D scene, reducing or even
eliminating the need for navigation in the virtual environment.
Multiple perspectives are integrated in a coherent, mostly
continuous (Figure 15), visibility ordered (Figure 16) image.
The graph cameras used in this paper consist of 4 GPHCs. The
scene’s geometric complexity is given by the bunny statue which
has ~70 thousand triangles. The scene is rendered once for each of
the GPHCs (Figure 17) and the average frame rate is 5fps (3GB
3GHz Pentium 4 Xeon PC with an Quadro FX 3400 NVIDIA
graphics card). The frame rate only increases to 5.5fps if the

9

Figure 16 Illustration of correct visibility ordering. The four
bunnies along the corridor (top) are correctly sorted near to far
in the graph camera image.

bunny is not drawn, which indicates that the main factor affecting
performance is reading back the 4 auxiliary PPHC images and
resampling them to the graph camera image.
Performance can be increased by making better use of existing
graphics hardware. We will investigate resampling on the GPU,
which will also save the cost of reading the framebuffer back in
main memory. Heavier geometry loads will warrant separating the
view frusta of the GPHCs with a hierarchical space subdivision.
As in the case of sample-based cameras, a BSP tree should
provide a good solution. When the graph camera consists of a
small number of GPHCs, the scene could be rendered in a single
pass by providing the BSP tree to the vertex program via an array
of uniform parameters. Special care is needed to handle the
triangles that intersect more than one auxiliary camera frustum.
True hardware support for the model camera design paradigm is
achieved if the graphics hardware is extended to offer
programmability at the camera model level. The current
programmability at vertex level is primarily intended for
computing at each vertex the rasterization parameter values
needed in the shader to evaluate the fragment color. Multiple
projections, clipping with view volume walls that are not a plane
but rather a higher-order surface, and rasterization of projected

Figure 17 The 4 auxiliary PPHC images used to build the
graph camera image in Figure 1—middle.

triangles with curved edges are not supported in hardware yet they
are essential infrastructure for many NPHC cameras. For
example, once the application developer specifies the projection
function of the newly developed camera model, the hardware
should be able to render a triangle with the new camera in feed
forward fashion by subdividing the triangle as needed in order to
meet an application specified error threshold for the
approximation of the curved edges.
We will investigate how to implement the graph camera
physically in order to provide support for applications such as
video surveillance. Still and video digital cameras have become
ubiquitous and they can be used in sufficient numbers to capture
most of the needed rays. The challenges that have to be overcome
include camera intrinsic and extrinsic calibration, camera
placement in the context of physical constraints, and
implementation of clipping planes. Although the precise geometry
of the real-world environment is not known, a proxy of the
background geometry should suffice for providing by 3D warping
the rays that cannot be captured directly.
This paper discusses the occlusion camera and sample-based
camera from the stand point of camera model design and
introduces graph cameras. It is our hope that this work contributes
substantially to the argument that non-pinhole cameras can be
useful and efficient. Such NPHCs enable the model camera design
paradigm, which opens the door to a new approach for finding
solutions of difficult problems in computer graphics and beyond.

8 Acknowledgments
We would like to thank Chunhui Mei, Jordan Dauble, Elisha
Sacks, Dan Aliaga, Chris Hoffmann, and the entire computer
science graphics group at Purdue University for useful
discussions. This work was supported by NSF grant SCI-

10

0417458. Equipment was donated by Intel and IBM. The bunny
geometric model is courtesy of the Stanford 3D Scanning
Repository.

References
[Agrawala 2000] M. Agrawala, D. Zorin, and T. Munzner.
Artistic multiprojection rendering. In Eurographics Rendering
Workshop 2000 (2000).
[Buhler 1999] C. Buhler et al. Unstructured Lumigraph
Rendering. Proc. SIGGRAPH 2001, (2001).
[Chang 1999] C-F Chang, G. Bishop, and A. Lastra. LDI Tree: A
Hierarchical Representation for Image-Based Rendering, Proc.
SIGGRAPH’99, (1999).
[Gortler 1996] S. Gortler, R. Grzeszczuk, R. Szeliski, M. Cohen.
The Lumigraph. Proc. of SIGGRAPH 96, 43-54.
[Grossberg 2001] D. Grossberg and S. Nayar. A General Imaging
Model and a Method for Finding its Parameters. In Proceedings of
ICCV 2001 (2001).
[Gupta 1997] R. Gupta, R. I. Hartley. Linear Pushbroom Cameras.
IEEE Trans. Pattern Analysis and Machine Intell. vol. 19, no. 9
(1997) 963–975.
[IBM T221] http://www.ibm.com/us/
[Klein 2002] A. Klein, P.-P. Sloan, A. Finkelstein, M. F. Cohen.
Stylized Video Cubes. Proc of Symposium on Computer
Animation 2002, 15-22 (2002).
[Levoy 1996] M. Levoy, and P. Hanrahan. Light Field Rendering.
Proc. of SIGGRAPH 96, 31-42 (1996).
[Mei 2005] C. Mei, V. Popescu, and E. Sacks. The Occlusion
Camera. In proc. of Eurographics 2005, Computer Graphics
Forum, vol. 24, issue 3, sept 2005.
[McMillan 1995] L. McMillan and G. Bishop. Plenoptic
modeling: An image-based rendering system. In Proc.
SIGGRAPH '95, pages 39-46, 1995.
[Pajdla 2002] T. Pajdla. Geometry of Two-Slit Camera. Research
Report CTU–CMP–2002–02, 2002.
[Popescu 2006a] V. Popescu and D. Aliaga. The Depth
Discontinuity Occlusion Camera. In Proc. of ACM Symposium
on Interactive 3D Graphics and Games, 2006.
[Popescu 2006b] Popescu, V., E. Sacks, and C. Mei. Sample-
Based Cameras for Feed-Forward Reflection Rendering. To
appear in IEEE Transactions on Visualization and Computer
Graphics, (2006).
[Popescu 2006c] Popescu, V., C. Mei, J. Dauble, and E. Sacks.
An Efficient Error-Bounded General Camera Model. In
Proceedings of 3rd International Symposium on Data Processing,
Visualization, and Transmission 2006.
[Popescu 2005] Popescu, V., and C. Hoffmann. Fidelity in
Visualizing Large-Scale Simulations. Journal of Computer Aided
Design, Elsevier, 37 (2005), pp 99-107.
[Popescu 2003] Popescu, V., C. Hoffmann, S. Kilic, M. Sozen, S.
Meador. Producing High-Quality Visualization of Large-Scale
Simulations. In Proceedings of IEEE Visualization, (2003).
[Popescu 2000] Popescu, V., et al. The WarpEngine: an
Architecture for the Post-Polygonal Age. In Proc of
SIGGRAPH’00, pp 433-442, (2000).
[Rademacher 1998] P. Rademacher, G. Bishop. Multiple-center-
of-Projection Images. Proc. ACM SIGGRAPH ’98 (1998)199–
206.

[Seitz 2003] S.M. Seitz, J. Kim. Multiperspective imaging.
Computer Graphics and Applications, IEEE Volume 23, Issue 6,
Nov.-Dec. 2003 Page(s):16 – 19.
[Shade 1998] J. Shade, S. Gortler, L. He, et al. Layered Depth
Images, In Proceedings of SIGGRAPH 98, 231-242.
[Wood 1997] D. N. Wood, A. Finkelstein, J. F. Hughes, et al.
Multiperspective Panoramas for Cel Animation. Proc. ACM
SIGGRAPH ’97 (1997) 243-250.
[Wood 2000] D. Woord, D. Azuma, W. Aldinger, B. Curless, T.
Duchamp, D. Salesin, W. Stuetzle. Surface Light Fields for 3D
Photography. Proceedings of SIGGRAPH 2000.
[Yu 2004a] J. Yu, and L. McMillan. General Linear Cameras In
8th European Conference on Computer Vision (ECCV), 2004,
Volume 2, 14-27.
[Yu 2004b] J. Yu, and L. McMillan. A Framework for
Multiperspective Rendering. In Proceedings of Eurographics
Symposium on Rendering (EGSR), 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

