
Online Submission ID: 1041

AR HMD Guidance for Controlled Hand-Held 3D Acquisition

Category: Research

Figure 1: Top left: Our acquisition guidance system, made up of an AR HMD and a handheld camera rig tracked using a fiducial
marker. Top middle: Operator AR view of scene, with virtual overlay of camera rig, automatically-generated suggested views (white
icons), and suggested acquisition path (blue lines). Top right: Interactive guidance (green rectangle) for precise 6-DOF alignment
of camera rig with suggested view. Second row: Photogrammetric reconstruction of scene from images captured during guided
acquisition. Third row: AR view of suggested views on outdoor scene, and photogrammetric reconstruction from acquired views.

ABSTRACT

Photogrammetry is a popular method of 3D reconstruction that
uses conventional photos as input. This method can achieve high
quality reconstructions so long as the scene is densely acquired
from multiple views with sufficient overlap between nearby images.
However, it is challenging for a human operator to know during
acquisition if sufficient coverage has been achieved. Insufficient
coverage of the scene can result in holes, missing regions, or even a
complete failure of reconstruction. These errors require manually
repairing the model or returning to the scene to acquire additional
views, which is time-consuming and often infeasible. We present
a novel approach to photogrammetric acquisition that uses an AR
HMD to predict a set of covering views and to interactively guide
an operator to capture imagery from each view. The operator wears
an AR HMD and uses a handheld camera rig that is tracked relative
to the AR HMD with a fiducial marker. The AR HMD tracks
its pose relative to the environment and automatically generates a
coarse geometric model of the scene, which our approach analyzes
at runtime to generate a set of human-reachable acquisition views
covering the scene with consistent camera-to-scene distance and
image overlap. The generated view locations are rendered to the
operator on the AR HMD. Interactive visual feedback informs the
operator how to align the camera to assume each suggested pose.
When the camera is in range, an image is automatically captured.
In this way, a set of images suitable for 3D reconstruction can

be captured in a matter of minutes. In a user study, participants
who were novices at photogrammetry were tasked with acquiring
a challenging and complex scene either without guidance or with
our AR HMD based guidance. Participants using our guidance
achieved improved reconstructions without cases of reconstruction
failure as in the control condition. Our AR HMD based approach is
self-contained, portable, and provides specific acquisition guidance
tailored to the geometry of the scene being captured.

Index Terms: Human-centered computing—Mixed / augmented
reality; Human-centered computing—User interface programming

1 INTRODUCTION

3D acquisition and reconstruction of real-world objects and scenes is
an important technology with a wide range of applications. Inspec-
tion and maintenance of industrial facilities is made more efficient
by capturing reliably precise 3D models of machinery. Capturing
high-fidelity models of living spaces for easy interactive viewing
online helps sellers in the real estate industry more efficiently attract
interested buyers. Analysis of crime scenes by law enforcement
is made more robust by 3D acquisition, by tracing bullet paths or
determining visibility of different areas of the scene. The digital
humanities and archaeology is enhanced by acquiring metrically-
accurate models of artifacts both for preservation and for analysis
by researchers around the world. The usefulness of these applica-
tions relies on the ability to acquire data efficiently with the goal of
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achieving a high-quality reconstruction.

Acquisition based on digital photography (photogrammetry) is
a popular method due to the ubiquity of high-quality cameras in
smartphones, and due to recent improvements in photogrammet-
ric reconstruction algorithms implemented in consumer-level pho-
togrammetric software, which can more robustly detect salient fea-
tures between photos captured from nearby views and can match
these features to generate 3D models of real-world scenes.

Despite its reliance on relatively time-intensive offline reconstruc-
tion, photogrammetry is able to achieve high quality results, due
to its emphasis on crisp, feature-rich images captured in a dense
arrangement around the target scene. However, the high quality
results depend on a high quality acquisition process, which depends
on several factors that an operator must simultaneously keep in mind
while acquiring the scene. The scene should be captured from views
that are approximately the same distance from the scene so that the
amount of detail is consistent across the model. Neighboring views
should also have a minimum amount of image overlap so that scene
features are imaged multiple times for reduced uncertainty. The
placement of views in space should be adapted based on the shape
of the scene. Each image captured should be blur-free so that feature
matching has the highest chance of success. Coverage of all regions
of interest in the scene is needed for an optimal reconstruction.

Poor acquisition leads to poor reconstruction results, such as
blurry textures or low geometric resolution in some regions, or holes
where geometry could not be reconstructed. In the extreme case,
entire sections of the geometry may be missing, or only a small
fraction of input images may be matched, leading to a catastrophic
failure to reconstruct any model. Such acquisition problems are
not immediately obvious until after the acquisition session, during
the computationally intensive reconstruction stage, at which point
returning to the scene to acquire more images may be impractical or
even impossible.

Achieving high quality acquisition is a challenging task for a
human operator, as it requires a quantitative analysis of the scene
and precise measurement of camera position and orientation in order
to assume the desired poses. An operator must keep track of which
views should be captured, as well as which views have and have not
yet been captured during acquisition.

While prior work has explored the problem of interactive guidance
during 3D acquisition, such approaches have relied on external cloud-
based computation or hand-held smartphone tracking that is limited
to simple scenes (e.g. approximating the scene as a hemisphere on
a flat surface) and that requires slow device movements. What is
needed is a self-contained method of automatically generating view
suggestions for complex scenes, as well as a method of intuitively
visualizing the suggestions to the operator and tracking which views
have or have not yet been captured.

Augmented reality head-mounted displays (AR HMDs), which
couple an augmented overlay of visual information onto the real
world with real-time acquisition of rough geometric models for local-
ization purposes, can help address this challenge. The combination
of these two properties allows for geometric analysis of a target
scene for photogrammetric acquisition, while also providing the
tracking and visualization needed to show an operator which views
should be acquired and to guide the operator to capture imagery
from precise locations that fulfill the acquisition criteria needed for
good coverage.

In this paper we present a method for AR HMD-based guidance
to enable efficient photogrammetric acquisition with guarantees.
Specifically, our approach provides guidance to achieve consistent
coverage of a target region of interest, consistent image overlap
between neighboring views, and consistent distance between views
and the scene.

Our system is made up of an AR HMD and a smartphone camera
rig (Fig. 1, top left). Using the onboard camera on the AR HMD,

we track the 6-degree-of-freedom (6-DOF) pose of the camera from
a fiducial marker rigidly attached to the camera rig. The AR HMD
automatically tracks its own pose within the operator’s environment
and generates a low-polygon approximate geometric model using
active onboard sensors. The operator can select within the scene a
region of interest to be acquired. Upon selection, we generate a set
of views that surround the region of interest and that are suitable for
photogrammetric acquisition (Fig. 1, top middle). The suggested
views are rendered as AR overlays onto the operator’s view of the
real world scene. When the operator places the camera rig near the
suggested view, visual feedback is provided to guide the operator to
assume a precise 6-DOF pose, and a photo is automatically captured
when the camera is held stably in place (Fig. 1, top right). The oper-
ator moves from view to view until a set of hundreds of images has
been acquired suitable for offline photogrammetric reconstruction
(Fig. 1, middle row). Our approach is self-contained and portable
and works both indoors and outdoors in overcast/cloudy weather,
making it well-suited to the use case of photogrammetry (Fig. 1,
bottom row). We refer the reader to our accompanying video, which
demonstrates our approach in use on a variety of scenes.

There are two central research problems addressed by our work.
First is how to define a set of acquisition poses that enforce coverage
guarantees specific to our reconstruction method of photogrammetry;
our solution is based on signed distance functions and iterative mesh
refinement that relies on representing overlap between images as
the length of edges in a mesh. Second is how to provide visual
guidance to allow a user to capture an image of a real-world scene
from a specified 6-DOF pose; our approach hinges on adaptive
visual guidance offset from the physical camera that allows the
user to position the camera intuitively for each one of hundreds of
acquisition poses.

We have validated our approach in a user study (N = 10) in
which participants acquired imagery of a real-world scene either
with a conventional smartphone camera (Control condition) or with
our AR HMD based guidance system (Experimental condition).
When compared against a ground truth reference reconstruction of
the scene, images acquired in the Experimental condition led to a
significantly more complete model, with approximately 95% of the
scene reconstructed to within 5cm of ground truth as oppose to only
60% of the scene reconstructed in the Control condition.

2 PRIOR WORK

In this section, we touch on some relevant prior work, particularly
in the areas of view planning and the use of AR for acquisition
guidance.

There has been much research into the problem of view planning,
with the goal of defining a set of views to acquire that efficiently
and completely cover a region of interest [7]. Ahn et al. examined
a method of planning the placement of 3D scanners for large out-
door historical sites [3]. Wakisaka et al. used a voxel occupancy
classification approach to define an optimal placement of terrestrial
laser scanners for acquisition of industrial spaces [28]. While these
approaches are suitable for the task of capturing a large scale scene
with a capture device that is inconvenient to move regularly, the
approach requires pre-labeling an existing aerial map which is less
suited for more casual photogrammetric acquisition. Additionally,
these approaches focus on the 2D placement of a scanner within
an environment, while handheld photogrammetry usually relies on
the additional views that specific 3D, 6-DOF poses can add to a
reconstruction.

Augmented reality has been explored for its potential to improve
the act of view planning during 3D acquisition and to integrate
visual feedback into the capture process. Pan et al. presented an
early approach to this problem by interactively reconstructing a
handheld object while presenting a video AR overlay of the current
reconstruction, as well as guidance arrows to tell the operator to
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manipulate the object to view all sides [21]. This approach is suited
for small-scale objects that can be easily approximated as a sphere
for outside-in capture, but a different approach for visualization and
analysis is needed for larger and more arbitrary geometry.

Some approaches to interactive guided 3D acquisition focus on on-
line reconstruction, where each acquired image is integrated into an
increasingly-improving model [14]. To some degree, our approach
makes use of such incremental reconstruction by relying on the
rough geometry generated by the AR HMD. However, our approach
makes the assumption that a truly high quality photogrammetric
reconstruction (of the sort that justifies the use of photogrammetry)
is computationally intensive and not well suited for a fully self-
contained and portable platform. By ensuring that our acquisition
approach is self-contained, we retain an advantage of photogramme-
try in that external computation or an always-on broadband Internet
connection is not needed, and that in situ capture can be done even
in austere environments such as archaeological sites.

This disadvantage of online reconstruction is illustrated by the
work of Langguth and Goesele, in which a robust incremental recon-
struction is achieved with next-best-view guidance to a user, but the
processing time between each view limits feasible capture to only
a few dozen images and not the hundreds that usually needed for
high quality photogrammetric reconstruction of larger objects [16].
Another example of online reconstruction for guided AR acquisition
was shown by Locher et al., where a smartphone interface displayed
a next-best-view map to a user to encourage acquisition of a scene
from uncaptured views [18]. However, each view was sent to a
remote server for incremental reconstruction and recalculation of the
next best view, a process took almost 3 minutes per view. This ap-
proach is suitable for a mass of users each acquiring a few additional
images while walking past a famous landmark; it is less suitable for
single-session acquisition by one or a few users.

While most prior work on AR view guidance has focused on
smartphones or tablets, there has been some investigation into the
secondary perspective that an AR HMD can provide. Andersen and
Popescu proposed an AR HMD based method of guiding a user to
acquire a dense set of panoramas for the purpose of image-based
modeling [4, 5]. The user wore an AR HMD with a panoramic
camera attached, and walked with consistent head height through
an indoor scene; an AR interface displayed a top-down view of the
room, divided into grid cells that were marked as either captured or
not yet captured. While this approach is suitable for capturing a large
and dense set of panoramas, it is not suitable for photogrammetric
capture which requires a set of views that is both varied in height
and concentrated around a consistent distance to the target.

Our work is inspired by automated capture of outdoor scenes
by aerial drones. Such approaches rely on an explore-and-exploit
strategy in which a rough, low-detail reconstruction is made of a
scene by acquiring imagery from a known safe altitude, and then
determining a set of additional views that are both navigable and
achieve a higher quality reconstruction [27]. Huang et al. imple-
mented a next-best-view acquisition of scenes using a toy drone, for
the purposes of image-based modeling [15]. Roberts et al. proposed
a method of drone-based refined acquisition by voxelizing the scene,
determining an optimal camera orientation for each voxel, and using
an additive approximation of a coverage criterion to select views and
an efficient path [26]. Our approach to view generation is perhaps
most similar to the work of Peng and Isler, who simplify the 3D
search space of finding views from voxels into a 2D search space
by defining points on a manifold that wraps around the target scene;
however, our approach uses signed distance fields rather than relying
solely on extrusion of mesh points along a surface normal due to the
noisy nature of the rough geometry from our AR HMD [22, 23].

Some recent research has focused on fully autonomous scene
reconstruction by robotic operators [1]. For example, Liu et al. in-
vestigated a method of both autonomously exploring a scene without

Figure 2: Pipeline of our approach.

prior human input while also scanning individual objects within the
scene [17]. While autonomous devices hold great promise for the
future of 3D acquisition, especially for large scenes that would be
tedious to acquire manually, it is still the case that robotic systems
are expensive, bulky, and have difficulty navigating many cluttered
environments. In contrast, humans are extremely effective at navi-
gating the sorts of human-designed environments that contain many
interesting acquisition subjects.

We also wish to distinguish our approach from a recent work by
Dong and Höllerer that uses an AR HMD to capture color textures
of a scene and apply them to a reconstructed mesh [9]. The work is
focused on augmenting the AR HMD’s rough geometric model of
the scene (which we also use in our work) with color aligned from
the AR HMD’s onboard RGB camera. The goal of their work is
to operate under a constrained memory and performance footprint
and to achieve good texturing of that rough geometry in real time.
However, their approach only results in a textured mesh at the same
level of quality as the original rough geometric model, with holes
or artifacts still present. Regions of missing geometry cannot be
repaired after acquisition because image data is not preserved. Our
approach acknowledges that a high quality reconstruction is only
feasible with offline processing, and so focuses only on guidance
and saving all input data during acquisition for later processing.

3 OVERVIEW

In this section, we provide an overview of our approach. An op-
erator uses our AR acquisition interface (Sect. 4), which is made
up of an AR HMD and a tracked handheld camera rig. The AR
HMD visualizes a set of suggested acquisition views, and provides
interactive guidance to the operator to assume each view with the
handheld camera rig.

Fig. 2 illustrates our pipeline, which can be divided into an online
acquisition stage and an offline reconstruction stage. In our work,
we focus exclusively on the online acquisition stage in order to
increase the coverage and density of acquired images, and we use
conventional off-the-shelf 3D reconstruction approaches to generate
a 3D model from the acquired images.

Acquisition of geometric proxy: Our method first requires the ac-
quisition of a rough geometric proxy of the scene. We rely on modern
AR HMDs’ ability to provide rough geometry of the wearer’s envi-
ronment using onboard sensors. An operator can simply wear the
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AR HMD and walk around a target scene and generate a geometric
proxy in a matter of seconds.

Selection of target scene: The operator uses an interface on the
AR HMD to select a region of interest and a selection radius. The
subset of the rough geometric proxy that is within the selection radius
is copied and used for generating suggested acquisition views.

Generation of suggested views: Given an input mesh taken from
the AR HMD’s rough geometry, our approach automatically gener-
ates a set of acquisition views based on heuristics that are widely
used in the photogrammetric community to ensure a high quality
reconstruction. First, imagery should be captured from a consistent
distance from the scene, so as to prevent cases where some regions
of interest have widely varying resolution or detail from other re-
gions of interest. Second, a large amount of images overlap (usually
50%−70%) between adjacent photos is important, so that a single
feature point is imaged in multiple views and can be reconstructed
accurately. A third, and implicit, design requirement is that any
views presented to the operator should be physically reachable by a
human without excessive difficulty. Sect. 5 provides detail about our
method of automatic view generation.

View acquisition with AR guidance: Once a set of views has
been generated, they are visualized to the operator as an AR overlay
superimposed onto the target scene. The operator then is tasked with
physically placing the handheld camera rig at each view, matching
both position and orientation. The AR interface provides interactive
visual feedback so that the operator can precisely align the camera
with the suggested view. Once the camera has been placed near the
suggested view, the camera automatically captures an image. The
operator repeats this process until all views have been captured.

Photogrammetric reconstruction: The output of acquisition is a
set of photos that cover the scene, along with a rough estimate of
the camera’s pose based on the AR HMD’s tracking of the camera
rig. We input these to a conventional structure-from-motion system,
which extracts and matches features of nearby photos, generates a
sparse point cloud, and then creates a textured 3D mesh of the target
scene.

4 AR ACQUISITION INTERFACE

In this section, we describe our AR HMD-based acquisition inter-
face. We explain how an operator can use our approach to select
a region of the environment for acquisition, to visualize a set of
acquisition views suitable for photogrammetric reconstruction, and
to use AR-based guidance to precisely place a handheld camera at
each suggested view.

During acquisition, the operator wears an AR HMD and uses a
handheld camera rig to capture imagery of the scene from multiple
views (Fig. 1, top middle). The camera rig and AR HMD are wire-
lessly networked together. The AR HMD contains active sensors that
track the headset’s position/orientation relative to the environment as
the operator walks around the scene. The AR HMD also uses these
active sensors to generate a rough geometric model of the scene. A
forward-facing RGB camera onboard the AR HMD is calibrated
prior to operation to determine the camera intrinsics and is used to
track the 6-DOF pose of a fiducial marker attached to a handheld
camera rig. The camera rig is made up of a smartphone with a scene-
facing RGB camera and a rigidly-mounted fiducial marker. Fig. 1,
top right, illustrates the operator’s view of the tracked camera rig
as seen through the AR HMD. The frame of the smartphone (white
rectangles) and the position of the smartphone’s camera (blue dot in
top left of frame) are highlighted to the operator as AR overlays.

Given a real-world scene to be acquired, the operator first points
at the center of the scene with an AR cursor visible on the AR HMD,
and defines a radius of interest to select a subset of the AR HMD’s
rough geometric model. A user interface on the camera rig allows the
operator to specify a desired target image overlap ω ∈ [0.0,1.0] and
desired camera-to-scene distance d. Our automatic view generation

approach defines, in a matter of seconds, a set of camera poses that
cover the region of interest at a consistent distance from the scene
and with the desired image overlap. We next describe the details of
our automatic view generation approach.

5 GENERATION OF SUGGESTED VIEWS

Input: mesh M, camera-to-scene distance d, image overlap ωh,
image sidelap ωv, camera horizontal FOV θh, camera
vertical FOV θv, user height hu, floor height h f

Output: set of 6-DOF views

1 bh ← (1−ωh)
(

2d tan θh

2

)

;bv ← (1−ωv)
(

2d tan θv

2

)

2 sd f ← SignedDistance(M)
3 IC← IsoContour(sd f ,d)
4 Mo f f set ←MarchingCubes(IC)
5 Mre f ined ←Mo f f set

// Baseline enforcement

6 for k iterations do
7 foreach edge ei j = (vi,v j) in Mre f ined do

8 ni ← vi.normal
9 viewi ← LookAt(vi,−ni,up)

10 (x j,y j)← Pro ject(viewi,v j)

11 bi j ← lerp(bh,bv,atan2(y j,x j)
2
π
)

12 if ei j.length < bi j− ε then collapse ei j

13 else if ei j.length > bi j + ε then split ei j

14 end

15 end
16 Mclipped ←Clip(Mre f ined ,hu,h f )
// View definition

17 views← {}
18 foreach vertex vi, normal ni in Mclipped do

19 viewi ← LookAt(vi,−ni,up)
20 views← views∪{viewi}
21 end
// View augmentation

22 foreach vertex vi, normal ni in M do
23 p← vi +d ∗ni

24 if dist(p,NearestNeighbor(p,views))> max(bh,bv) then
25 v← LookAt(p,−ni,up)
26 views← views∪{v}
27 end

28 end
29 return views

Algorithm 1: Our method of generating acquisition views.

In this section, we describe our method of generating a set of
suggested acquisition views suitable for photogrammetric recon-
struction. algorithm 1 provides an overview of our approach. The
input to our algorithm is a triangle mesh M that is copied from the
AR HMD’s rough geometric model and which defines a region of
interest in the scene (Fig. 3, top left). The output of our algorithm is
a set of 6-degree-of-freedom poses (positions and orientations) that
define the suggested views for the operator’s handheld camera rig.

Besides the input mesh M, we also take as an input parameter a
desired camera-to-scene distance d, as well as a desired image over-
lap as a value between 0.0 (0% overlap) and 1.0 (100% overlap). We
consider both horizontal overlap (which we label ωh), and vertical
sidelap or ωv. The handheld camera’s field of view is an additional
parameter and is a fixed property of the camera hardware. We label
the camera’s horizontal field of view as θh and the vertical field of
view as θv. Our view generation method takes into account both the
horizontal and vertical field of view of our acquisition device.

As explained in Sect. 3, our method must also ensure that the
suggested views are reachable by a human operator. At runtime,
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Figure 3: The stages of the view generation pipeline. Top left: input mesh M selected from the AR HMD rough geometry. Top center: mesh Mo f f set

created with marching cubes from offset SDF isocontour. Top right: mesh Mre f ined after iterative mesh refinement. Bottom left: mesh trimmed to
remove human-unreachable views. Bottom center: generated views (white arrows). Bottom right: suggested acquisition path between views (blue
lines).

we raycast from the operator’s HMD position directly downward
to the floor, and estimate the operator’s height hu and the height of
the floor plane h f . We include h f and hu as input parameters to our
view generation.

Given values of d, ωh, ωv, θh, and θv we define a desired hor-
izontal camera baseline bh and a desired vertical camera baseline
bv. That is, if two views are horizontally adjacent to each other,
their baseline should be bh to achieve an image overlap of ωh; if
two views are vertically adjacent (one directly above the other), the
baseline should be bv to achieve an image sidelap of ωv. We assume
that the scene can be locally approximated as a plane imaged by
adjacent cameras oriented opposite the plane’s normal. algorithm 1
details how the baseline values are computed. For example, with an
FOV θh = 65◦, a camera-to-scene distance d = 0.5m, and an overlap
of ωh = 0.67, the horizontal baseline bh is approximately 0.21m.

We create a signed distance field (SDF) from our input region of
interest mesh M. We define an offset isocontour from the SDF at
distance d, and convert the offset implicit function to a triangulated
mesh Mo f f set using marching cubes [19]. Fig. 3, top center, shows
Mo f f set .

We next iteratively refine the offset mesh. The vertices and surface
manifold of Mo f f set are approximately distance d from the surface
of M, but the initial distance between the vertices is arbitrary and
derived only from the resolution of the marching cubes algorithm.
We use a modified version of Garland and Heckbert’s Quadric Error
Metric (QEM) algorithm for iterative mesh refinement to split and
join faces based on a target edge length. [10].

By default, the QEM algorithm adjusts meshes based on a single
target edge length. In our case, we desire a differing edge length
for each edge depending on whether camera views centered at the
two vertices of the edge, and oriented opposite the vertices’ normals,
would be horizontally or vertically aligned with each other. During
each iteration of mesh refinement, we use the LookAt function to
compute a 6DOF view for each endpoint of an edge ei j in the mesh.
The position of the view is at the vertex position, the forward direc-
tion of the view is opposite the vertex’s normal, and the input up
direction is the world up direction in the AR HMD coordinate system
(+Y). We then project the vertex position of one edge endpoint onto

the other endpoint’s view. Depending on how horizontal vs vertical
the projected point is, we linearly interpolate between bh and bv to
get a baseline bi j, which we set as the target edge length for this
edge during this iteration of mesh refinement. To prevent the refined
mesh from oversmoothing and changing its shape radically from
the original surface manifold defined by the SDF, we project the
updated vertex positions after each iteration onto the nearest triangle
of the original Mo f f set . We refine the mesh over k iterations (we use
k = 20 in our experiments) until all edge lengths are approximately
bi j . After iterative mesh refinement, we have a mesh Mre f ined where
all vertices are approximately d from the surface of M while also
having adjacent vertices separated by a baseline between bh and bv,
depending on how horizontally or vertically aligned the adjacent
vertices are (Fig. 3, top right).

The resulting mesh Mre f ined may include regions that are difficult
or impossible for a human operator to reasonably reach (e.g. vertices
under the floor, or too high to reach with one’s arms). Using the
defined input parameters h f and hu for the height of the floor and
the height of the user, we clip Mre f ined of all faces and vertices that
are above a certain offset from hu or below a certain offset from h f .
In our experiments, we set the lower cutoff to 0.6m above the floor
height h f , and we set the upper cutoff to 1.05 times the estimated
height of the operator hu. Fig. 3, bottom left, shows the resulting
trimmed mesh.

We now convert the generated mesh into a set of camera positions
and camera forward vectors. We take each vertex Vi and associated
normal Ni of Mre f ined and define a camera pose Ci with position
Vi and forward direction −Ni. To avoid regions of the scene being
undersampled in a complex scene, we augment the set of views by
taking the original vertices of our input mesh M, extruding them d
along their normal directions, and adding them iteratively to our set
of camera poses if (1) they are in between our cutoff heights, (2)
they are not within a collision distance of M, and (3) they are not
within max(bh,bv) of any other camera in the list of camera poses.

Now that we have our list of positions and forward directions
for our cameras, we create full 6-DOF poses for each by using
the LookAt method with the world up-direction (+Y ) as the input
up direction. This direction assures that most poses will keep the
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handheld camera rig in a consistent orientation during acquisition,
which is most comfortable for a human user. Fig. 3, bottom center,
shows the generated views.

At runtime, the operator is shown a suggested acquisition path
from one view to the next (Fig. 3, bottom right). This is computed
by starting at the closest view to the operator, then selecting the
immediate nearest neighbor view repeatedly in a greedy approach
until all currently-unacquired views are in the path. The path is
recomputed each time the user acquired a new view.

6 VIEW ACQUISITION WITH AR GUIDANCE

Once the set of suggested acquisition views has been generated, they
are rendered on the AR HMD as floating icons to indicate both the
position and orientation of the views (Fig. 1, top middle). We also
calculate and present to the operator a suggested acquisition path,
which starts at the nearest view to the user’s current position and con-
nects each subsequent closest neighbor view in a greedy algorithm.
At this point, the operator can begin photogrammetric acquisition
of the scene. The goal for the operator is to physically position the
camera rig such that the smartphone’s camera matches the position
and orientation of the suggested view, and then to capture an image
of the scene from the view.

Our AR HMD interface provides interactive adaptive guidance to
help the operator more precisely guide the camera rig into the proper
location, as well as an automatic photo capture feature to ensure that
acquired images are free from motion blur. When the camera on
the handheld rig is placed near an acquisition view, the view’s icon
(Fig. 4, a) expands into a world-space-aligned yellow frame (Fig. 4,
b). The operator aligns the camera rig such that the rectangular
frame of the smartphone is aligned with the suggested view’s frame.
As the camera rig is aligned, the frame changes color gradually
from yellow to green (Fig. 4, c). Once the camera rig’s position and
orientation are both within a desired threshold (in our experiments
we set the position threshold to 5cm and the rotation threshold to
15◦), the AR HMD indicates to the smartphone that a photo should
be taken. The smartphone tracks its own acceleration using onboard
accelerometers, and once the phone has been held stably in place
at the suggested view, a photo is automatically captured and the
view is removed from the AR visualization (Fig. 4, d). We define
the smartphone to be held stably in place if its linear acceleration
remains below 1m/s2 for 300ms.

The operator repeats this process view by view, until all desired
views have been captured by the handheld camera rig. The output
of the acquisition is a set of RGB images that achieve coverage
of the scene subject to the input parameters of camera-to-scene
distance and image overlap. The set of acquired images can then be
processed offline by conventional structure-from-motion software
for photogrammetric 3D reconstruction. We additionally save at the
time of each photo capture the estimated poses of the camera rig in
the AR HMD’s coordinate system, and we use these initial poses as
input during camera alignment.

7 RESULTS AND DISCUSSION

In this section, we provide implementation details of our prototype
AR HMD guided acquisition system, we present results of several
acquired scenes, and we detail a user study conducted to validate
our approach.

7.1 Implementation overview

We implemented a prototype system for our AR-HMD-guided pho-
togrammetric acquisition method. The AR HMD we used was the
first version of the Microsoft HoloLens, and we used a Google Pixel
3 smartphone (resolution: 4032 x 3024, FOV: 65deg x 49deg) in our
handheld camera rig [12,20]. The handheld camera rig was mounted
with ArUco fiducial markers and was tracked by the HoloLens us-
ing the HoloLensARToolkit library [6, 11, 25]. The marker was

Table 1: Summary of acquired scenes.

Scene
(Figs.)

Distance
d (m)

Overlap ω Time (sec)
Num.
images

StackedRocks
(1, bottom row)

0.5 0.50 430 93

Pentagon
(5)

0.5 0.50 510 146

Turbine
(1, middle row)

0.5 0.66 667 170

tracked by the AR HMD at 30fps, which is also the frame rate of the
HoloLens’ onboard RGB camera. Wireless communication between
the AR HMD and the camera is achieved with a socket connec-
tion and using the smartphone as a Wi-Fi hotspot, which makes
the system completely self-contained and portable even in austere
environments without any Internet connection. Our application runs
on the AR HMD at 60fps. Given an input region of interest about
2.5m to a side (represented in the AR HMD rough geometry with
about 15000 triangles) our system generates a set of suggested views
in about 13 seconds, as computed locally on the HoloLens.

7.2 Reconstruction results

We captured sets of images from several scenes using our AR HMD
guidance method. Table 1 summarizes each scene’s input parameters,
number of pictures taken, and acquisition time. As can be seen, high
quality reconstructions can be achieved by following the guidance
provided by our AR HMD approach in just a matter of minutes.

7.3 User study

To validate our approach and to gain formative feedback on our
user interface, we conducted a user study in which ten participants
each acquired imagery of a medium-sized complex scene (2.0m x
1.6m x 1.7m) under both unguided (Control) and AR HMD guided
(Experimental) conditions.

Participants: 10 participants (8 male, 2 female; age: 28.9±4.4)
were recruited. In a pre-session 5-point Likert scale questionnaire,
participants self-reported their prior experience levels in various
skills related to the task. Participants reported some knowledge of
augmented reality (2.6± 1.1), head-mounted displays (2.9± 1.4),
and 3D reconstruction (2.4± 1.1), but were generally unfamiliar
with photogrammetry itself (1.5±0.7).

Task: Participants were tasked with acquiring images of a target
scene with the goal of achieving a complete 3D reconstruction. Fig. 6
shows the target scene set up for participants to acquire. The scene
is feature-rich but is geometrically complex, with challenges such as
a thin barrier bisecting the scene that could result in reconstruction
failure if the edges are insufficiently acquired.

Prior to acquisition, participants were given a short tutorial about
the principles of photogrammetry: how images are matched, and
the importance of consistent distance to the scene, image overlap,
and scene coverage. For each condition, participants were asked to
acquire imagery while keeping approximately 0.5m from the scene
(camera-to-scene distance) and with approximately 50% overlap.
Participants were not told the specific number of images they should
take to achieve a good coverage of the scene, as this would require
prior knowledge specific to the scene rather than general knowledge
of photogrammetric principles.

Conditions: Participants were randomly placed into one of two
groups in a 2x2 counterbalanced design. All participants acquired
the scene twice: one group acquired the scene first under the Control
condition and second under the Experimental condition; the other
group acquired imagery with the Experimental condition first and
then the Control condition.
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Figure 4: AR interactive guidance to place camera at suggested view. (a): before approaching view. (b): as camera approaches, view icon
transforms (yellow rectangle). (c): camera in range with visual feedback (green rectangle and loading circle). (d): feedback immediately after
automatic capture (view disappears with animation).

Figure 5: An example of our AR HMD guided acquisition functioning
in an outdoor environment. Top: Suggested views and acquisition
path. Bottom: High quality photogrammetric reconstruction.

For the Control condition, participants used a handheld camera
rig with a smartphone, but without wearing an AR HMD or having
a fiducial marker on the camera rig. A Bluetooth-connected shutter
release button on the rig allowed the user to take pictures manually.
Participants were told to take pictures of the scene until they felt
confident that they had acquired enough for a good reconstruction.

For the Experimental condition, participants wore the AR HMD
and a short tutorial (5-10 minutes) was given in the functionality
of the AR HMD guidance system, during which participants were
allowed to practice placement of the camera rig given a test set of
acquisition poses to ensure they were comfortable with the automatic
capture functionality. Approximately 150 acquisition locations were
visualized by the system to the participant, and participants were
asked to capture every view.

Metrics: After each acquisition session (Control or Experimental)
was complete, participants filled out a questionnaire that included a
NASA Task Load Index (NASA-TLX) workload assessment [13].
The NASA-TLX questionnaire contains 6 metrics on a 21-point
scale: mental demand, physical demand, temporal demand, per-
formance, effort, and frustration. Participants also answered an

Figure 6: The scene captured by user study participants.

additional questionnaire, which asked their level of agreement with
a series of seven statements on a 5-point Likert scale:

1. Using this approach was enjoyable
2. Using this approach was comfortable
3. I feel confident that the images I took will make a good 3D

reconstruction
4. The method helped me learn how to do 3D capture
5. After using this approach, I am interested in doing 3D capture
6. It was easy for me to know which areas I should capture
7. It was easy for me to remember which areas I had already

captured

Additionally, the number of captured images in each session and
the scan session time were recorded.

The acquired images for each session were input into a conven-
tional photogrammetric reconstruction software (Agisoft Metashape
[2]). In the case of images acquired during the Experimental condi-
tion, the estimated poses of the camera rig at each capture timestamp
(according to the AR HMD’s coordinate system) were input to ini-
tialize cameras during SfM reconstruction. For all sets of images,

7
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Table 2: Summary of results for our user study.

Metric Control Experimental p

Images captured 91±59.5 162.6±15.5 0.005
Time (sec) 358.5±178.4 1033.2±310.3 0.0004
Time per image (sec) 4.5±1.3 6.3±1.5 0.003
% points reconstructed
within 1cm

33.7±20.3 64.6±7.2 0.0011

% points reconstructed
within 3cm

46.6±25.3 84.0±4.1 0.0009

% points reconstructed
within 5cm

60.1±26.4 95.9±2.0 0.0021

reconstruction was completed using identical settings in the software
and without manual cleanup of extraneous points in between stages.

To quantify the completeness of the participants’ models, we sep-
arately acquired a ”ground truth” model of the scene reconstructed
from a highly dense set of 600 photos (over three times as many
photos as captured by any participant). Each reconstructed model
was manually aligned into the same coordinate system as the ground
truth model. 10,000 sample points were uniformly selected from the
surface of the ground truth model, and the distance between each
ground truth sample point and the closest point on the reconstructed
model was found. We computed the percentage of points that were
within 1cm, 3cm, and 5cm of the ground truth model.

We also analyze whether or not there is a significantly different
amount of blurriness in the images acquired in the Control or in
the Experimental conditions. For each set of acquired images, we
compute the frequency domain based image quality metric of De
and Masilamani for each image [8].

7.3.1 User study results

All scan session results were considered to be in one of two popula-
tions, Control and Experimental; the independent variable was the
use of either a conventional smartphone for acquisition or our AR
HMD guidance system for acquisition. A paired two-tailed T-test
was performed on our dependent variables. Dependent variables are:
acquisition time, number of images captured, reconstruction quality
as measured by percent of ground truth points in reconstruction, and
the responses to our post-session questionnaires.

Table 2 summarizes the results of our metrics for the user study.
Participants using our system captured significantly more images
when using our approach. However, the acquisition time for the Ex-
perimental condition was far longer than for the Control condition,
measured both in total time and in seconds per image captured. One
cause may be the automatic capture feature of our system; several
participants described issues in precisely aligning the camera rig
with the AR guidance in order to trigger an automatic capture. In
particular, the depth cues of aligning the camera frame with a rect-
angle signifying the suggested view were not very strong. While
alignment in X and Y (left/right/up/down relative to the operator)
was easier to achieve, alignment in Z (towards or away from the
operator) was not clear, leading to participants holding out the cam-
era rig and waiting for automatic capture while still being out of
range. In future work we plan to investigate improved interfaces
for intuitive 6-DOF alignment that address this ambiguity in the Z
direction.

Examples of the models generated by participants can be seen
in Fig. 7. The reconstructions under the Experimental condition
(Fig. 7, right column) tend to be far more complete than those cap-
tured under the Control condition (Fig. 7, left column). Fig. 8 shows,
for each reconstructed model, the results of our quantitative geo-
metric analysis. The Experimental condition showed a statistically
significant improvement in the percentage of the ground truth model
that was reconstructed to within 1cm, 3cm, and 5cm. While a few

Figure 7: Example scene reconstructions generated from datasets
acquired by study participants in both Control (left column) and Ex-
perimental (right column) conditions. Each row corresponds to an
individual participant.

participants achieved a complete reconstruction under the Control
condition, it was much more likely that participants without our AR
HMD guidance would acquire images that led to only a partial (or
highly distorted) reconstruction. Only 3 out of 10 reconstructed
models from the Control condition achieved over 50% of the ground
truth scene reconstructed to within 1cm, while all 10 of the 10 recon-
structed models in the Experimental condition did. One cause of the
difference is the wall divider that bisects the target scene; participants
in the Control condition would adequately capture each individual
side but would neglect the transition from one side to another, which
is needed by the reconstruction software to automatically register the
scene into a single frame of reference. The Experimental condition’s
ability to use the camera rig’s estimated position as an initial guess
in the reconstruction software also provides a great advantage.

Participants’ responses to the post-session NASA-TLX question-
naire are detailed in Fig. 9. The Experimental condition was found
to significantly increase the amount of Physical Demand (TLX-2)
on the participant. We attribute this largely to the weight and dis-
comfort of the AR HMD and the fatigue from holding the camera
rig to precisely align with the suggested view. The NASA-TLX
metric of Performance (TLX-4), where a lower score indicates a
higher self-appraisal of success in accomplishing the task, showed
significant improvement. No other values in the NASA-TLX ques-
tionnaire (Mental Demand, Temporal Demand, Effort, Frustration)
were found to have statistically significant differences.

Fig. 10 shows the results of our 5-point Likert scale post-session
questionnaire. While participants reported significantly greater dis-
comfort (Q2) using the Experimental approach, participants found
the Experimental approach significantly more enjoyable (Q1) than
the Control approach. While the mere novelty of using new tech-
nology may be a contributing factor, we hypothesize that our AR
guidance acts as an example of gamification for what would typically
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Figure 8: Result of comparison between reconstructed models gener-
ated from images acquired by user study participants, using threshold
distance between ground truth model of target scene and nearest
point on participant’s reconstruction. Dashed blue lines: control condi-
tion. Solid orange lines: experimental condition.

be a tedious task for an operator. Participants using the Experimental
also reported significantly increased ease at knowing which areas
should be captured (Q6) and which areas had already been captured
(Q7), suggesting that our approach helps offload the cognitively
demanding task of maintaining a mental map of the scene. Our
approach also seems to help participants learn how to do 3D cap-
ture (Q4) significantly more than the Control condition, making AR
assistance useful for training purposes. No statistically significant
difference (p = 0.11) was found between conditions in the level of
interest of participants in doing 3D capture.

For our analysis of the blurriness of acquired images in Con-
trol and Experimental conditions, we computed a paired two-sided
T-test, comparing the mean image quality between the population
of Control sessions and the population of Experimental sessions.
Using the aforementioned image quality metric of De and Masil-
amani, we found no statistically significant difference in image
quality between Control (0.001287± 0.00017) and Experimental
(0.001290±0.00012) conditions (P = 0.95). We conclude that our
feature of automatic image capture sufficiently avoids motion blur.

Additional findings: Several participants mentioned that when
using the AR HMD based guidance, they did not pay any attention
to the camera view on the smartphone screen; instead, they only
focused on the AR overlay rendered by the headset. While further
research is needed, we believe that this suggests a decreased cog-
nitive load, as matching a pre-defined 6-DOF pose requires less
mental analysis than the higher-dimensional analysis of evaluating a
detailed on-screen image for overlap of salient features.

The FOV of the AR HMD’s onboard camera is greater than the
display’s FOV, which means that the fiducial marker does not need
to be within the display’s FOV to be tracked. However, several
participants found themselves attempting to keep the entire camera
rig within the display’s FOV, leading to stretching the arm straight
out and resulting in greater fatigue and slowness during acquisition.
It is possible that future AR HMDs with larger FOVs will mitigate
this issue; however, a more limited AR overlay that is local only to

Figure 9: Box-and-whisker plot for each of the six NASA-TLX subscale
scores, for both Control and Experimental conditions. All scores are
on a 21-point scale. A star (*) indicates that a statistically significant
(p < 0.05) difference was found between the two conditions.

the region immediately surrounding the rig’s camera may also solve
this issue.

7.4 Limitations

Our approach relies on an environment in which the AR HMD can
(1) track itself relative to the environment, (2) generate a reason-
able rough geometric model of the scene, and (3) display content
clearly to the operator. Poorly-lit scenes, moving objects, or reflec-
tive materials can disrupt the AR HMD’s tracking. However, our
approach does work robustly in outdoor environments provided that
the scene is in shadow or the weather is overcast, as evidenced in
Fig. 5; the display of the AR HMD is faint but still usable. Such
overcast weather is in fact preferred for outdoor photogrammetry as
the ambient light prevents strong shadows from being baked into the
model.

Our method of view generation is entirely geometry-based in that
we do not analyze image features at runtime, and implicitly assume
that all parts of the scene are equally feature-rich. Future work
could analyze frames from AR HMD’s camera at runtime to identify
feature-rich or feature-poor areas and adapt the view generation
accordingly.

Our acquisition path between suggested views is computed by
only considering Euclidean 3D distance between views. However,
this can lead to inefficient movement because physically stepping
around the scene is more laborious than standing still while mov-
ing the camera rig. We hypothesize that an acquisition path that
takes into account the human factors of movement would reduce
acquisition time and fatigue.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel HMD-based approach
for AR guidance during 3D acquisition that helps ensure sufficient
images are acquired for reconstruction coverage and quality. We
have demonstrated several quality reconstructions generated from
our acquisition approach, as well as a user study that reveals that
novice participants using our method can achieve more complete
reconstructions.

We are interested in the potential for expanding our guided ac-
quisition to a multi-user approach, where multiple operators can
simultaneously acquire a large environment in parallel [24]. By shar-
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Figure 10: Box-and-whisker plot for the seven questions in the post-
session questionnaire. All scores are on a 5-point Likert scale. A star
(*) indicates that a statistically significant (p < 0.05) difference was
found between the two conditions.

ing a common coordinate system and tracking the position of other
users, the workload of acquisition could be greatly parallelized.

Additionally, our work has revealed an important future research
direction of AR interfaces that guide users to precisely assume a
handheld 6-DOF pose in open space, as opposed to the simpler
problem of annotating a surface location on a physical object. We
hope our work both justifies and encourages future research into
such interface design.

Combining the flexibility of a handheld acquisition device with
the world-aligned visualization and tracking of an AR HMD is a
pairing that achieves high quality results and has direct, practical
application in the use case of photogrammetric acquisition. As AR
interfaces become integrated into day-to-day life we anticipate that
such multimodal combinations of devices will become increasingly
beneficial.
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