
Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2016)
E. Eisemann and E. Fiume (Editors)

4D-rasterization for Fast Soft Shadow Rendering

Lili Wang † 1, Qi Zhao 1,Chunlei Meng1, and Voicu Popescu2

1China State Key Laboratory of Virtual Reality Technology and Systems,Beihang University, Beijing China
2Computer Science, Purdue University, West Lafayette, Indiana, USA

Figure 1: Soft shadows rendered with our method. Our images are identical to images rendered with ray tracing for the area light sources,
which are sampled by the same number of uniformly spaced samples. The average frame rate for our method vs. ray tracing is 5.2fps vs.
0.34fps for Tree, 10.0fps vs. 0.29fps for Tower, and 15.0fps vs. 0.60fps for Toys, which corresponds to 15×, 35×, and 25× speedups.

Abstract
This paper describes an algorithm for rendering soft shadows efficiently by generalizing conventional triangle projection and
rasterization from 2D to 4D. The rectangular area light source is modeled with a point light source that translates with two
degrees of freedom. This generalizes the projection of triangles and of output image samples, as seen from the light, to the
locus of projections as the light translates. The generalized projections are rasterized to determine a conservative set of sam-
ple/triangle pairs, which are then examined to derive light occlusion masks for each sample. The algorithm is exact in the sense
that each element of the occlusion mask of a sample is computed accurately by considering all potentially blocking triangles.
The algorithm does not require any type of precomputation so it supports fully dynamic scenes. We have tested our algorithm
on several scenes to render complex soft shadows accurately at interactive rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

† Chairman Eurographics Publications Board

1. Introduction

Many light sources in scenes of interest to computer graphics ap-
plications have a non-zero area. Such lights cast soft shadows, and

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/sre.20161205

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/sre.20161205


Lili Wang et al. / 4D-rasterization for Fast Soft Shadow Rendering

computing these shadows accurately greatly enhances the quality
of the rendered images. However, rendering soft shadows is expen-
sive as one has to estimate the fractional visibility of the area light
source from each of millions of output image samples. A common
approach is to discretize the light source with hundreds or even
thousands of point light samples, which results in having to com-
pute point-to-point visibility for billions of light rays every frame.

In this paper we present an algorithm for rendering complex soft
shadows at interactive rates. We model the light rectangle as a point
light source with two translational degrees of freedom. We esti-
mate visibility to the light rectangle from output image samples by
projecting and rasterizing the scene triangles and the output image
samples as seen from the light. The two translational degrees of
freedom of the point light source generalize the projection to the
union of conventional projections as the point light source trans-
lates on the light rectangle. The generalized projections of triangles
and samples are rasterized to define a conservative and tight set of
output image sample/triangle pairs, which are examined to derive
light occlusion masks for each output image sample. A light occlu-
sion mask is a 2D bitmap with one bit per light sample, which is
1 if the light sample is occluded, and 0 otherwise. Whereas com-
puting hard shadows cast by a fixed point light source can be done
with conventional 2D rasterization, our 4D rasterization algorithm
has to account for the two degrees of freedom added by the two
translations of the point light source on the light rectangle.

Our algorithm is exact in the sense that it estimates visibility
correctly between each output image sample and each light sam-
ple. Our algorithm does not require any precomputation and there-
fore it supports fully dynamic scenes, with moving light sources
that can change size, and with moving geometry that can deform.
We have tested our algorithm on multiple scenes with complex soft
shadows. The soft shadows in Figure 1 are rendered by sampling
the light rectangle uniformly at 32×32 resolution. Our algorithm
produces images that are identical to those rendered by ray trac-
ing for the same uniform light sampling resolution, but at 15 to 35
times higher frame rates. We compare our algorithm to NVIDIA’s
Optix ray tracer with bounding volume hierarchy (BVH) accelera-
tion. The Toys scene is dynamic so ray tracing has to recompute the
BVH for every frame. The Tree and Tower scenes are static, so the
ray tracing performance reported in Figure 1 does not include the
time to compute the BVH.

2. Related work

There has been extensive research on soft shadow rendering. In ad-
dition to this brief overview, we also refer the reader to in depth
surveys of prior techniques [ESA11, HLHS03].

Shadow simulation methods start from hard shadows that are
fitted with penumbra regions [Mol02, BS02, AHT04]. For exam-
ple soft shadows can be simulated by blurring hard shadow edges
[Fer05, MKHS10].

Shadow approximation methods simplify the blocking geome-
try to accelerate visibility querying. For example, back projection
methods approximate blocking geometry with shadow mapping
[GBP06]. Shadow mapping methods were improved by smooth

contour detection and radial area integration [GBP07], with micro-
quads and micro-triangles [SS08], with multiple shadow maps
that reduce the artifacts of sampling blocking geometry from a
single viewpoint [YFGL09], with exponential shadow filtering
[SFY13, SDMS14], or with stochastic sampling [LSMD15].

Accurate soft shadow methods actually compute visibility be-
tween output image samples and light samples correctly. Our
method belongs to this category. Ray tracing [Whi79] provides
natural support for soft shadows by tracing rays between out-
put image and light samples, but performance is a concern. One
method casts a sparse and variable set of light rays per pixel to
obtain coarse visibility estimates that are then filtered adaptively
[MWR12, YMRD15]. The method gains performance by reducing
the number of rays but this comes at the cost of reduced quality. Our
method amortizes the cost of estimating visibility for individual
rays by leveraging projection followed by rasterization, which also
implies considering a fixed number of light samples for each out-
put image sample and each potentially blocking triangle. Stochas-
tic approaches can vary the number of rays as needed, at the cost of
having to compute the adequate sampling rate, and of lower quality
in some difficult cases.

Hierarchical occlusion volumes are used to estimate the soft
shadows cast by triangles [LA05], with the shortcoming that
the approach scales poorly with the light size. Soft shadow vol-
umes work with silhouette edges as opposed to all triangle edges
[LAA∗05], which gains efficiency by ignoring land-locked trian-
gles that do not affect soft shadows. Like our method, the soft
shadow volumes methods maps potentially blocking triangles to
output image samples. Performance is affected by the complexity
of the method, and by fragmented meshes, where virtually all trian-
gle edges are silhouette edges. Forest et al. [FBP08] accelerate the
approach but the poor handling of fragmented meshes remains.

Lazy visibility evaluation [MAAG12] computes accurate soft
shadows by grouping light rays in Plucker space, with the caveat
of poor scalability with scene complexity as a BSP tree has to be
built for each blocking triangle. A method for estimating visibil-
ity between two rectangular patches can be applied to soft shad-
ows, but the method relies on assumptions about receiver geometry
[ED07]. Another method estimates penumbra regions using a point
light source and blocker silhouettes, with the challenge of stable
and efficient silhouette detection [JHH∗09].

Several methods compute, in a first step, a set of potentially
blocking triangles for each output image sample by projecting tri-
angle shadow volumes and output image samples onto a grid, and
then, in a second step, estimate light visibility from the output im-
age sample viewpoint either by ray tracing [BW09,NIDN13] or by
rasterizing the set [AL04, SEA08, WZKV14, LMSG14]. The 4D
rasterization used by our method can be seen as an efficient projec-
tion of the triangle shadow volume. In the second step, our method
gains efficiency by computing the rows of the occlusion masks di-
rectly.

We take the approach of higher dimensional rasterization to esti-
mate visibility from a light rectangle. The benefits of higher dimen-
sional rasterization have also been noted in the context of motion
blur, where rapidly moving triangles are rasterized in 3D by adding
the time dimension to conventional 2D rasterization [AMMH07].

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

14



Lili Wang et al. / 4D-rasterization for Fast Soft Shadow Rendering

3. 4D Rasterization

First we present the 4D rasterization algorithm, and then we de-
scribe optimizations for performance.

3.1. General 4D rasterization algorithm

Consider the problem of computing hard shadows cast by a single
point light source L. The problem can be solved by projecting from
L the scene triangles and the output image samples onto an image
plane discretized with a uniform grid, which we call a framebuffer.
If an output image sample s projects at a framebuffer pixel p that is
also touched by the projection of a triangle T , one checks whether
T blocks L from s. Whereas a naive algorithm would consider all
sample/triangle pairs, the framebuffer is used to identify a much
smaller but conservative set of such pairs. Note that the framebuffer
is used to pair output image samples with potentially blocking tri-
angles, and it is not used as a shadow map that samples the scene
geometry in order to provide approximate visibility queries. The
visibility relationship between an output image sample and a trian-
gle is computed accurately in a second phase.

Figure 2: Construction of framebuffer plane P, parallel to light
rectangle L0L1. The generalized projection of output image sample
s1 onto P is BC. The framebuffer extends on P from A to D to
encompass the generalized projections of all output image samples.

We generalize this approach to rendering soft shadows. The rect-
angular area light source is modeled with a point light source that
translates with two degrees of freedom. This translation generalizes
the projections of triangles and of output image samples onto the
framebuffer. The generalized projection is the locus of projections
as the point light source translates. With this projection general-
ization, the framebuffer provides, as before, a conservative set of
sample/triangle pairs that have to be examined for light visibility,
which now could be fractional.

We render soft shadows according to Algorithm 1. The algorithm
proceeds in five main steps. In STEP 1, the scene is rendered from
the output view deferring shadow computation (line 2). This defines
the output image samples for which the light occlusion masks have
to be computed.

STEP 2 defines the framebuffer FB used for 4D rasterization.

Algorithm 1 4D-rasterization for fast soft shadow rendering
Input: 3D scene SCE modeled with triangles, light rectangle L,
output view V , light discretization resolution m× n, 4D rasteriza-
tion framebuffer resolution w×h.
Output: SCE rendered from V with an m×n occlusion mask of L
for each output sample s.

1: STEP 1: render output image without shadows
2: Render SCE from V to preliminary image I
3: STEP 2: define frame buffer for 4D rasterization
4: Define plane P for 4D rasterization frame buffer FB
5: for each pixel s in I do
6: FB.aabb = FB.aabb ∪ Proj4(s.xyz, L, P)
7: STEP 3: assign output image samples to FB pixels
8: for each output image sample s in I do
9: s.aabb = Proj4(s.xyz, L, FB)

10: for each FB pixel p in s.aabb do
11: p.sampleSet = p.sampleSet ∪ {s}
12: STEP 4: assign triangles to FB pixels
13: for each triangle t in S do
14: t.aabb = Proj4(t.v0, L, FB) ∪ Proj4(t.v1, L, FB) ∪
15: ∪ Proj4(t.v2, L, FB)
16: for each FB pixel p in t.aabb do
17: p.triangleSet = p.triangleSet ∪ {t}
18: STEP 5: computation of light occlusion masks
19: for each FB pixel p do
20: for each triangle t in p.triangleSet do
21: for each output sample s in p.sampleSet do
22: for i = 1 to m do
23: for j = 1 to n do
24: s.maski j |= Occlusion(Li j, t, s.xyz)

The plane P of FB is defined first as a plane parallel to the light
plane and sufficiently far away for all scene geometry to be located
in between the light plane and the framebuffer plane (Line 4). The
actual location of plane P is determined using the scene diameter.
The rectangular uniform grid of FB is aligned with the light rectan-
gle. The extent of the grid of FB is defined as the 2D axis aligned
bounding box FB.aabb that encompasses the generalized projec-
tions of the output image samples onto P (Lines 5-6).

The generalized projection Proj4 of a 3D point A onto a plane P
as given by a light rectangle L0L1L2L3 is the rectangle defined as
the four intersections between the rays AL0,AL1,AL2, and AL3 and
plane P. The FB.aabb is discretized to a w×h uniform grid. Figure
2 illustrates in 2D the construction of FB. In this 2D illustration,
the generalized projection of output image sample s1 is segment
BC, and FB.aabb extends from A to D.

STEPS 3 and 4 assign output image samples and scene triangles
to the pixels of FB, which defines an implicit sample to triangle
assignment. A sample is assigned to all FB pixels covered by the
generalized projection of the sample (Lines 8-11). A triangle is as-
signed to all FB pixels covered by the 2D axis aligned bounding
box (AABB) of the generalized projections of the three triangle
vertices (Lines 13-17). Figure 3 shows the assignment of samples
and triangles to the pixels of FB. The generalized projections of

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

15



Lili Wang et al. / 4D-rasterization for Fast Soft Shadow Rendering

Figure 3: Generalized projection of triangles and of output im-
age samples. The generalized projection of a triangle t is the grey
shaded area T . T is computed as the 2D AABB of the generalized
projections of the three vertices of t, shown with the red, green,
and blue rectangles. The generalized projections of two output im-
age samples sa and sb are the rectangles Sa and Sb. Both Sa and
T cover framebuffer pixel p, which creates the (sa, t) pair, so t is
considered when computing the light occlusion mask of sa. Sb is
not completely in T so t does not need to be considered for the
occlusion mask of Sb.

the three vertices of a triangle T are shown with the red, green, and
blue rectangles. T is assigned to all FB pixels covered by the 2D
AABB of these three rectangles. Rectangle Sa is the generalized
projection of an output image sample sa; sa is assigned to all pixels
touched by Sa. Pixel p is assigned both T and sa, so the pair (sa, T )
is considered at STEP 5 for light occlusion computation.

STEP 5 computes the occlusion masks of the output image sam-
ples by processing each pixel p of the 4D rasterization frame buffer.
All triangles stored at p (Line 20) are considered against all output
image samples stored at p (Line 21). For each sample/triangle pair
(s, t) the algorithm checks for each of the m× n light samples Li j
whether Li j is occluded from s by t (Lines 22-24). An occlusion
mask value of a sample s can be safely updated in parallel at multi-
ple FB pixels p since we use a logical or operation.

This general 4D rasterization algorithm for rendering soft shad-
ows is accelerated by avoiding considering the same output image
sample/triangle pair multiple times (Section 3.2), and by evaluating
at STEP 5 the occlusion of an entire row of light samples at once
(Section 3.3).

3.2. Avoiding redundant output sample/triangle pairs

We accelerate the general 4D rasterization algorithm described
above based on the fundamental observation that an output image
sample/scene triangle pair needs to be considered only if the gen-
eralized projection of the sample is completely covered by the gen-
eralized projection of the triangle. If the generalized projection of a
sample is not completely covered by the generalized projection of
a triangle, the triangle does not occlude the light rectangle as seen
from the sample. Using Figure 3 again, the generalized projection

Sb of a sample sb is not fully covered by the generalized projection
of t (gray shaded area T ), therefore the (sb, t) pair does not have
to be considered since t does not occlude the light as seen from sb.
We use this full coverage requirement property (see Appendix for
proof) to optimize Algorithm 1.

First, we avoid unnecessary sample/triangle pairs by modifying
STEP 3 as shown in Algorithm 2. Based on the full coverage re-
quirement property, we only need to worry about sample/triangle
pairs for which the triangle generalized projection completely con-
tains the generalized projection of the sample. Therefore it is suf-
ficient to assign a sample to only one of the pixels covered by the
generalized projection of the the sample. The generalized projec-
tion of the output image sample is replaced with a conventional
projection from just one corner of the light, i.e. L0. This way the
sample is assigned to exactly one FB pixel p, and a sample/triangle
pair is considered at most once since a triangle covers p at most
once. The optimization removes the redundancy of considering the
same sample/triangle pair multiple times.

Algorithm 2 STEP 3 optimization

1: STEP 3: assign output image samples to FB pixels
2: for each output image sample s in I do
3: p = Proj(s.xyz, L0, FB)
4: p.sampleSet = p.sampleSet ∪ {s}

We use the same full coverage requirement property for a second
optimization of Algorithm 1. STEP 5 is modified as shown in Algo-
rithm 3. Lines 5-6 add a trivial rejection of the sample/triangle pair
(s, t) if the generalized projection of s is not fully contained in the
generalized projection of t. Whereas the first optimization avoids
considering the same sample/triangle pair at multiple pixels, this
second optimization reduces the number of pairs considered at the
same pixel. A pair is considered only if the triangle could occlude
the light as seen from the sample. Lines 7-17 show that the occlu-
sion mask is now computed one entire row at a time, as described
in Section 3.3.

Algorithm 3 STEP 5 optimization

1: STEP 5: computation of light occlusion masks
2: for each FB pixel p do
3: for each triangle t in p.triangleSet do
4: for each output sample s in p.sampleSet do
5: if Proj4(s.xyz, L, P) 6⊂ t.aabb then
6: continue
7: P0 = Plane(s.xyz, t.v0, t.v1)
8: P1 = Plane(s.xyz, t.v1, t.v2)
9: P2 = Plane(s.xyz, t.v2, t.v0)

10: P3 = Plane(t.v0, t.v1, t.v2)
11: for i = 1 to m do
12: if ((Li1Lin∩P0) = Lik) = /0 then
13: M0 = P0(Li1)>0 ? 0xFFFF : 0x0000
14: else
15: k = Li1Lik / Li1Lin; temp = (1<<k) -1
16: M0 = P0(Li1)>0 ? temp : ¬ temp
17: s.maski |= M0 & M1 & M2 & M3

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

16



Lili Wang et al. / 4D-rasterization for Fast Soft Shadow Rendering

3.3. Row-based light occlusion computation

Referring again to the optimized STEP 5 of Algorithm 1 shown in
Algorithm 3, lines 7-9 compute the three planes given by the three
triangle edges and the output image sample, and line 10 computes
the triangle plane. Lines 11-16 update the occlusion mask for an
entire row at the time.

Figure 4: Direct (non-iterative) computation of row i of the light
occlusion mask for output image sample Q. The intersection Lik
between the row segment Li1Lin and the triangle edge plane QV0V1
defines the column k where the row bits switch from not occluded
to occluded.

If the light row segment Li1Lin does not intersect plane P0, then
the entire light row segment is either completely occluded or com-
pletely unoccluded, based on the sidedness of Li1 with respect to P0
(Line 13). Here it is assumed that the light is sampled with a resolu-
tion of 16×16, hence the four hexadecimal digits used to represent
the partial row occlusion mask M0. If Li1Lin does intersect P0 (Line
14), then the light row segment is partitioned in two subsegments
Li1Lik and LikLin, with one occluded and one not (Lines 15-16).
Figure 4 illustrates the case when LikLin is occluded and Li1Lik is
not, which corresponds to the second value in the conditional as-
signment in Line 16. The partial row occlusion masks M1,M2,M3
corresponding to the planes P1,P2,P3 are computed the same way
(not shown in Algorithm 3 for conciseness). The partial masks are
combined and the row occlusion mask of s is updated (Line 17).

4. Results and discussion

In this section, we discuss the quality of the shadows rendered
by our method, we report frame rate measurements, and we dis-
cuss limitations. We tested our algorithm with several scenes: Tree
(367ktris), Tower (514ktris), Toys (263ktris), Dragon (81ktris),
Coaster (1,096ktris), and Church (240ktris) (see Figs. 1 and 5). All
performance measurements reported in this paper were recorded
on measured on a workstation with a 3.5GHz Intel(R) Core(TM)
i7-4770 CPU, with 8GB of RAM, and with an NVIDIA GeForce
GTX 780 graphics card. We compare our method to NVIDIA’s Op-
tix ray tracer [Nvi16], for the same uniform sampling of the light
rectangle. The average frame rates were computed over the paths
shown in the accompanying video.

4.1. Quality

Our method correctly estimates visibility between light source sam-
ples and output image pixel samples. Consequently the soft shad-
ows rendered are identical to those rendered by ray tracing, when
using the same uniform sampling of the light rectangle. The only
approximation made by our method that influences quality is the
resolution at which the light rectangle is sampled, i.e. the resolu-
tion of the occlusion masks. Whereas 8×8 is clearly insufficient,
16×16 results in occasional shadow discretization artifacts, 32×32
produces consistently good results, and there is virtually no im-
provement for an even higher light sampling resolution (Figure 6).

4.2. Performance

We implemented our algorithm using a combination of shaders
(STEP 1) and CUDA code (STEPS 2-5), see Algorithm 1, and the
optimizations in Algorithms 2 and 3. It is true that the generalized
projections of output image samples and of triangles could be ras-
terized with the hardware rasterizer. However, each pixel needs to
accumulate a variable number of samples and triangles, which is
more easily handled using CUDA. We report the dependency of
the frame rate on the various parameters of our algorithm. Unless
otherwise specified, the light sampling resolution is 32×32, the res-
olution of the framebuffer FB used to assign triangles to samples is
128×128, and the output resolution is 512×512.

Table 1 gives the average frame rate for our test scenes for var-
ious output image resolutions, as well as the speedups versus ray
tracing. Our method provides interactive rates for the 512×512 res-
olution, the frame rate decreases linearly with the number of output
image pixels, and our method is substantially faster than ray tracing
in all cases. STEPS 1, 2, and 3 have negligible time cost. Table 3
gives the time costs of STEP 4, which assigns triangles to FB pix-
els, and of STEP 5, which computes the occlusion masks for each
sample. STEP 5 has the dominant cost.

Table 1: Frame rates [fps] and speedup versus ray tracing for vari-
ous output resolutions.

5122 1,0242 1,2802

Tree 5.2 (18×) 1.4 (15×) 0.8 (11×)

Tower 10 (35×) 3.4 (21×) 1.8 (20×)

Toys 15 (25×) 3.8 (18×) 2.2 (18×)

Dragon 20 (15×) 5.5 (9×) 3.5 (9×)

Coaster 6.7 (14×) 1.9 (11×) 1.2 (11×)

Church 13 (10×) 3.2 (6×) 2.2 (6×)

Table 2 shows the benefits of three optimizations of our algo-
rithm. The optimization of STEP 3 shown in Algorithm 2 which
avoids storing a sample at multiple FB pixels avoids significant
sample redundancy, as seen in column 2. Column 3 gives the sig-
nificant frame rate speedups provided by the early rejection of sam-
ple/triangle pairs in the optimization of STEP 5 (Lines 5-6 in Algo-
rithm 3). Column 4 gives the significant speedups of processing one
entire occlusion bitmask row at the time (Lines 11-15 in Algorithm
3).

Table 4 gives the average frame rate for our test scenes for var-
ious light sampling resolutions. The time cost of our algorithm

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

17



Lili Wang et al. / 4D-rasterization for Fast Soft Shadow Rendering

Figure 5: Additional scenes used to test our method.

(a) 8×8 (b) 16×16

(c) 32×32 (d) 64×64

Figure 6: Quality as a function of light sampling resolution.

is linear with the number of rows in the occlusion bit masks. As
the number of light samples increases four times, the frame rate
only decreases two times. This is an important advantage over al-
gorithms that compute the bits in the masks one at the time, for
which the frame rate is reduced fourfold when the light sampling
resolution doubles. Table 5 gives the average frame rate for our test
scenes for various lengths of the light rectangle diagonal. The diag-
onals of our scenes are 114, 54, 46, 58, 28 and 22, respectively. The
center of the light is 69, 50, 43, 32, 37 and 47 away from the center
of the scene. For these test scenes the frame rates are approximately
inversely proportional to the light rectangle diagonal, and not to the
rectangle area.

Table 6 gives the average frame rate for our test scenes for var-

Table 2: Benefits of algorithm optimizations.
Sample Early rejection Row-based

redundancy speedup speedup

Tree 100 3.3× 13×

Tower 88 4.4× 12×

Toys 40 3.8× 12×

Dragon 206 4.8× 10×

Coaster 50 2.5× 13×

Church 183 12× 11×

Table 3: Time costs [ms] for the main steps of our algorithm.
Tree Tower Toys Dragon Coaster Church

ST EP4 27 16 5 5 15 18

ST EP5 160 72 60 36 121 52

ious resolutions of the framebuffer FB used to assign triangles to
samples. The best performance is obtained for 128×128. When FB
resolution is too low, the generalized projection of triangles is ap-
proximated coarsely which leads to considering a large number of
sample/triangle pairs unnecessarily. When FB is too fine, STEP 4
is expensive, as each triangle is assigned to a large number of FB
pixels, and the number of samples per FB pixel is imbalanced.

An essential aspect of our algorithm is the efficiency of the as-
signment of triangles to output image samples, so we analyze it
in detail. A perfect assignment would only pair a triangle with an
output image sample if the triangle is relevant, i.e. if the triangle
blocks at least one light sample. Our algorithm is conservative, in
the sense that a sample is assigned all, but not only, blocking tri-
angles. The algorithm stores a set of triangles and a set of output
image samples at each FB pixel, and then considers, for each FB
pixel, all sample/triangle pairs given by the two sets (Lines 2-4 in
Algorithm 3). Many of these pairs are trivially rejected as irrelevant
(Lines 5-6). Not all remaining pairs are relevant, since the general-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

18



Lili Wang et al. / 4D-rasterization for Fast Soft Shadow Rendering

Table 4: Frame rates [fps] for various light resolutions.
8×8 16×16 32×32 64×64

Tree 12 8.2 5.2 2.2

Tower 20 15 10 5.4

Toys 30 24 15 6.3

Dragon 45 30 20 9.1

Coaster 15 11 6.7 3.2

Church 24 18 13 6.7

Table 5: Frame rates [fps] for various lengths of the light rectangle
diagonal.

1 2 3 4 5

Tree 19 9.4 5.2 3.2 2.3

Tower 29 17 10 6.8 5.0

Toys 26 20 15 12 9.5

Dragon 43 30 20 15 10

Coaster 20 11 6.7 4.3 3.1

Church 36 21 13 8.6 5.2

ized projection of the triangle is approximated with a 2D AABB of
the generalized projections of its three vertices. Table 7 shows the
efficiency of the assignment achieved by our algorithm with two
numbers, for each scene, which report the percentage of relevant
sample/triangle pairs before and after early rejection. The trivial
rejection improves the assignment efficiency considerably, which
is between 28% and 65%.

Whereas Table 1 provides a frame rate comparison between our
method and ray tracing for equal quality, we have also performed
a quality comparison for equal frame rate. As shown in Table 8, to
achieve the same performance, ray tracing has to reduce the light
sampling resolution considerably, which results in objectionable ar-
tifacts (Figure 7).

4.3. Limitations

Like for all exact soft shadow rendering algorithms, the cost of our
algorithm is linear with the number of pixels in the output image,
so it increases fourfold as the resolution increases twofold in each
direction. Fast frame rates are obtained only for a relatively low
output image resolution of 512×512. However, our algorithm is ef-
ficient, in the sense that for about 50% of the sample/triangle pairs
(s, t) that are processed t actually occludes the light as seen from s.
In other words, assuming the same processing of a sample/triangle
pair, the frame rates achieved are within a factor of two of the frame
rates of an ideal exact algorithm that only considers relevant sam-
ple/triangle pairs.

Our algorithm processes an entire row of the occlusion bit mask
at once, leveraging bit shift operations, which can support up to
64×64 bit mask resolutions, limitation due to the maximum length
of integers on 64 bit architectures. One possible future work direc-
tion is to lookup the partial occlusion mask inferred by a triangle

Table 6: Frame rates [fps] for various resolutions of the framebuffer
used to pair triangles with samples.

256×256 128×128 64×64 32×32

Tree 4.5 5.2 4.6 3.1

Tower 8.4 10 9.9 7.8

Toys 15 15 9.2 6.1

Dragon 18 20 17 12

Coaster 6.9 6.7 6.4 5.2

Church 9.4 13 12 8.7

Table 7: Efficiency of triangle to sample assignment, as a percent-
age of relevant sample/triangle pairs from the total number of pairs
considered by our algorithm, before and after early rejection.

Tree Tower Toys Dragon Coaster Church

Before 15% 14% 23% 26% 8% 10%

After 44% 45% 53% 65% 28% 37%

edge plane (e.g. P0 in Figure 4) directly into an LUT, which also
has the potential to accelerate STEP 5 by eliminating the for loop
on the bit mask rows (Line 11 in Algorithm 3). Another limitation
of our algorithm is a frame rate dependence on the prevalence of
soft shadows in the output image, which can cause frame rate fluc-
tuations during scene exploration. Providing a frame rate guarantee
is more challenging in the case of algorithms like ours that evalu-
ate visibility by projection followed by rasterization, compared to
ray tracing. Projection followed by rasterization has the benefit of
amortizing the cost of individual rays, but the individual rays of
ray tracing can be budgeted with more flexibility to meet a desired
performance.

5. Conclusions and Future work

We have presented an algorithm for rendering complex soft shad-
ows accurately at interactive rates. Our algorithm probes visibility
from the light source with a generalized projection and rasteriza-
tion of blocking triangles. The algorithm has the desirable prop-
erties of generality and of simplicity, which are prerequisites for
benefiting from future advances of raw GPU compute power, and
for widespread adoption in applications.

We compared our method to ray tracing for the same uniform
sampling of the rectangular light source, where we have a signif-
icant performance advantage. Of course, ray tracing can choose
an irregular, and/or stochastic light sampling pattern. Compared to
uniform light sampling, irregular sampling pattern brings higher
quality for the same number of light samples. In future work, our
method could be extended to work with a jittered set of light sam-
pling locations obtained by perturbing an initially uniform set of
sampling locations, which will alleviate shadow banding. Our ap-
proach of amortizing the cost of estimating triangle occlusion of
light samples by projection followed by rasterization does not eas-
ily support adapting the sampling pattern. This lack of flexibility
brings a quality guarantee that stochastic/adaptive methods cannot

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

19



Lili Wang et al. / 4D-rasterization for Fast Soft Shadow Rendering

Table 8: Equal performance quality comparison of our algorithm to
ray tracing.

Frame rate 4D rasterization Ray tracing

[fps] bit mask res. # of light rays

Tree 5.2 32×32 = 1,024 72

Tower 10.0 32×32 = 1,024 36

Toys 15.0 32×32 = 1,024 42

Dragon 20.0 32×32 = 1,024 72

Coaster 6.7 32×32 = 1,024 81

Church 21.4 32×32 = 1,024 100

Figure 7: Quality comparison between our 4D rasterization algo-
rithm (left) and ray tracing (right) for equal performance, which
forces ray tracing to undersample the light.

easily meet, as an aggressive reduction of the number of light sam-
ples considered for a given output image sample can increase the
noise.

Our work addresses the problem of soft shadows by sampling
the light rectangle with one thousand point light sources. However,
the algorithm leverages the locality and the uniform structure of
the light samples, and future work is needed to generalize to the
interactive rendering of scenes lit with many area and point light
sources.

6. Acknowledgements

This work was supported in part by the National Natu-
ral Science Foundation of China through Projects 61272349,
61190121 and 61190125,by the National High Technology Re-

search and Development Program of China through 863 Program
No.2013AA01A604.

7. Appendix

Figure 8: The generalized projection S of output image sample
Q is not completely contained by the generalized projection T of
triangle t, therefore t does not occlude any point of the rectangular
light source L0L1L2L3 as seen from Q, and the pair (Q, t) does not
need to be considered when rendering soft shadows.

Full Coverage Requirement Property
Let s be an output image sample and let t be a scene triangle. Let S
be the generalized projection of s with a light rectangle L0L1L2L3
onto a plane P, and let T be the AABB of the generalized projection
of t. If S 6⊂ T , then t does not occlude L0L1L2L3 from s.

Proof
Since S 6⊂ T , S−T 6= /0. (see Figure 8)
Let A be a point such that A ∈ S−T .
Since A 6∈ T , AL∩ t = /0, ∀ point L ∈ L0L1L2L3.
Therefore T∩ pyramid AL0L1L2L3 = /0. (1)
Let Q = s.xyz, and let LA = AQ∩L0L1L2L3.
Since A ∈ S, LA ∈ L0L1L2L3.
Therefore Q ∈ pyramid AL0L1L2L3.
Therefore pyramid QL0L1L2L3 ⊂ pyramid AL0L1L2L3. (2)
From (1) and (2) it follows that t ∩ pyramid QL0L1L2L3 = /0.
This terminates the proof that t does not occlude L0L1L2L3 as seen
from s.

References

[AHT04] ARVO J., HIRVIKORPI M., TYYSTJRVI J.: Approximate soft
shadows with an image-space flood-fill algorithm. Computer Graphics
Forum 23, 3 (2004), 271–280. 2

[AL04] AILA T., LAINE S.: Alias-free shadow maps. Proceedings of
the Fifteenth Eurographics conference on Rendering Techniques (2004),
161–166. 2

[AMMH07] AKENINE-MÖLLER T., MUNKBERG J., HASSELGREN J.:
Stochastic rasterization using time-continuous triangles. Proceedings of
the 22Nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics
Hardware (2007), 7–16. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

20



Lili Wang et al. / 4D-rasterization for Fast Soft Shadow Rendering

[BS02] BRABEC S., SEIDEL H.: Single sample soft shadows using depth
maps. Graphics Interface (2002), 219–228. 2

[BW09] BENTHIN.C., WALD I.: Efficient ray traced soft shadows using
multi-frusta tracing. Advances in Computer Graphics Hardware (2009),
135–144. 2

[ED07] EISEMANN E., DCORET X.: Visibility sampling on gpu and ap-
plications. Computer Graphics Forum 26, 3 (2007), 535–544. 2

[ESA11] EISEMANN E., SCHWARZ M., ASSARSSON U.: Real-time
shadows. CRC Press (2011). 2

[FBP08] FOREST V., BARTHE L., PAULIN M.: Accurate shadows by
depth complexity sampling. Computer Graphics Forum 27, 2 (2008),
663–674. 2

[Fer05] FERNANDO R.: Percentage-closer soft shadows. ACM SIG-
GRAPH 2005 Sketches (2005). 2

[GBP06] GUENNEBAUD G., BARTHE L., PAULIN M.: Real-time soft
shadow mapping by backprojection. In Eurographics Symposium on
Rendering (2006), 227–234. 2

[GBP07] GUENNEBAUD G., BARTHE L., PAULIN M.: High-quality
adaptive soft shadow mapping. Computer Graphics Forum 26, 3 (2007),
525–533. 2

[HLHS03] HASENFRATZ J., LAPIERRE M., HOLZSCHUCH N., SIL-
LION F.: A survey of real-time soft shadows algorithms. Computer
Graphics Forum 22, 4 (2003), 753–774. 2

[JHH∗09] JOHNSON G., HUNT W., HUX A., MARK W., BURNS C.,
JUNKINS S.: Soft irregular shadow mapping: fast, high-quality, and ro-
bust soft shadows. ACM Symposium on interactive 3D graphics (2009),
57–66. 2

[LA05] LAINE S., AILA T.: Hierarchical penumbra casting. Computer
Graphics Forum 24, 3 (2005), 313–332. 2

[LAA∗05] LAINE S., AILA T., ASSARSSON U., LEHTINEN J.,
AKENINE-MOLLER T.: Soft shadow volumes for ray tracing. ACM
Transactions on Graphics 24, 3 (2005), 1156–1165. 2

[LMSG14] LECOCQ P., MARVIE J.-E., SOURIMANT G., GAUTRON P.:
Sub-pixel shadow mapping. In Proceedings of the 18th meeting of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(2014), ACM, pp. 103–110. 2

[LSMD15] LIKTOR G., SPASSOV S., MÜCKL G., DACHSBACHER C.:
Stochastic soft shadow mapping. In Computer Graphics Forum (2015),
vol. 34, Wiley Online Library, pp. 1–11. 2

[MAAG12] MORA F., AVENEAU L., APOSTU O., GHAZANFARPOUR
D.: Lazy visibility evaluation for exact soft shadows. In Computer
Graphics Forum (2012), vol. 31, Wiley Online Library, pp. 132–145.
2

[MKHS10] MOHAMMADBAGHER M., KAUTZ J., HOLZSCHUCH N.,
SOLER C.: Screen-space percentage-closer soft shadows. ACM SIG-
GRAPH 2010 Posters (2010), 1–1. 2

[Mol02] MOLLER T.A.AND ASSARSSON U.: Approximate soft shadows
on arbitrary surfaces using penumbra wedges. Eurographics Symposium
on Rendering/Eurographics Workshop on Rendering Techniques (2002),
297–305. 2

[MWR12] MEHTA S. U., WANG B., RAMAMOORTHI R.: Axis-aligned
filtering for interactive sampled soft shadows. ACM Transactions on
Graphics (TOG) 31, 6 (2012), 163. 2

[NIDN13] NABATA K., IWASAKI K., DOBASHI Y., NISHITA T.: Effi-
cient divide-and-conquer ray tracing using ray sampling. In Proceed-
ings of the 5th High-Performance Graphics Conference (2013), ACM,
pp. 129–135. 2

[Nvi16] NVIDIA: Nvidia optix ray tracing engine.
http://developer.nvidia.com/optix (2016). 5

[SDMS14] SELGRAD K., DACHSBACHER C., MEYER Q., STAM-
MINGER M.: Filtering multi-layer shadow maps for accurate soft shad-
ows. Computer Graphics Forum 34, 1 (2014), 205–215. 2

[SEA08] SINTORN E., EISEMANN E., ASSARSSON U.: Sample based
visibility for soft shadows using alias-free shadow maps. In Computer
Graphics Forum (2008), vol. 27, Wiley Online Library, pp. 1285–1292.
2

[SFY13] SHEN L., FENG J., YANG B.: Exponential soft shadow map-
ping. Computer Graphics Forum 32, 4 (2013), 107–116. 2

[SS08] SCHWARZ M., STAMMINGER M.: Microquad soft shadow map-
ping revisiteds. Eurographics 2008 Annex to the Conference Proceed-
ings: Short Papers (2008), 295–298. 2

[Whi79] WHITTED T.: An improved illumination model for shaded dis-
play. Communications of The ACM 23, 6 (1979), 343–349. 2

[WZKV14] WANG L., ZHOU S., KE W., V. P.: Gears: A general and
efficient algorithm for rendering shadows. Computer Graphics Forum
33, 6 (2014), 264–275. 2

[YFGL09] YANG B., FENG J., GUENNEBAUD G., LIU X.: Packet-
based hierarchal soft shadow mapping. Computer Graphics Forum 28, 4
(2009), 1121–1130. 2

[YMRD15] YAN L.-Q., MEHTA S. U., RAMAMOORTHI R., DURAND
F.: Fast 4d sheared filtering for interactive rendering of distribution ef-
fects. ACM Transactions on Graphics (TOG) 35, 1 (2015), 7. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

21


