
Fast Intra-Frame Video Splicing for Occlusion
Removal in Diminished Reality

Chengyuan Lin[0000−0002−5768−9000] and Voicu Popescu[0000−0002−8767−8724]

Purdue University, West Lafayette IN 47906, USA
popescu@purdue.edu

Abstract. In a real world scene objects of interest might be occluded by
other objects. Diminished reality (DR) aims to remove such occluders. A
popular approach is to acquire the geometry of the occluded scene, and
then to render it from the user’s viewpoint, effectively erasing the oc-
cluder. However, the approach is ill-suited for scenes with intricate and
dynamic geometry, which cannot be acquired quickly, completely, and
with only minimal equipment. This paper proposes a method to erase an
occluder in a primary video by splicing in pixels from a secondary video.
For each frame, the method finds the region in the secondary frame that
corresponds to the occluder shadow, and integrates it seamlessly into the
primary frame. Precise matching of the occluder contour is achieved by
a novel pipeline with a tracking, global alignment, and local alignment
stages. The result is a continuous multiperspective frame, which shows
most of the scene from the primary viewpoint, except for the part hid-
den by the occluder, which is shown from the secondary viewpoint. A
high quality multiperspective transparency effect is achieved for com-
plex scenes, without the high cost of 3D acquisition. When compared
with other DR methods, the proposed method shows fewer artifacts and
better continuity.

Keywords: Occluder removal · Video splicing · Multiperspective visu-
alization · Diminished reality · Augmented reality

1 Introduction

Augmented reality improves a user’s view of the real world by adding graphical
annotations. However, improving the user’s view sometimes calls for removing
objects from the user’s view. Such diminished reality visualizations are used to
eliminate distracting clutter, to preview possible changes to a real world scene
without actually modifying it, and to let the user see hidden parts of the scene
quickly, from the current location. Removing an occluder from the user’s view
of the real world requires finding the footprint of the occluder, finding a visual
description of what the user should see in the absence of the occluder, and
transferring it to the occluder footprint. One approach is 3D scene acquisition.
Once the geometry of the scene is known, the scene can be rendered from the
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Fig. 1. Results preview. The output frame is obtained by erasing the occluder from
the primary frame using pixels from the secondary frame. The result is a quality trans-
parency effect, with good continuity at the occluder contour. Our method supports
intricate dynamic scenes, and the frame rate is 75fps or better for an output resolution
of 1,920 × 1,080.

user’s viewpoint, without the occluder. This works well, for example, when one
wants to remove an object from a corner of a room, whose color and geometry are
easy to acquire or synthesize. A challenging case for this approach is when the
parts of the scene hidden by the occluder have intricate and dynamic appearance
and geometry, which cannot be acquired comprehensively in real time, and with
minimal equipment.

In this paper we propose a method to remove an occluder in a primary
video, acquired from the user viewpoint, using pixels from a secondary video,
acquired from a translated viewpoint. The secondary frame pixels are integrated
seamlessly into the primary frame, with good continuity across the occluder
contour. The result is a multiperspective frame, which shows most of the scene
from the user viewpoint, except for the part hidden by the occluder, which is
shown from the secondary viewpoint. The effect is a good approximation of the
transparency effect needed to remove the occluder, which comes without the
high cost 3D geometry acquisition.

We have tested our method with good results on a variety of challenging
scenes, with intricate and dynamic geometry (see Fig. 1 and accompanying
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video). We have compared our method to ground truth and to state of the art oc-
cluder inpainting techniques, both qualitatively, through visual inspection, and
quantitatively, through two traditional per-pixel similarity metrics and two per-
ceptual image similarity metrics. The comparison reveals that our results are
closer to ground truth than those of the prior art methods. Furthermore, since
we only compute correspondences between frames along the occluder contour,
and we do not engage in full 3D reconstruction, our method is fast, running at
over 75Hz in a CPU implementation.

2 Prior Work

The removal of objects that hinder the user’s viewing of a region of interest is
a typical diminished reality problem [42]. By covering up a real object with the
image of the background it occludes, one can make the object virtually invisible
by creating a “see-through” effect [23]. The effect is implemented in three main
steps: acquisition of the occluder background, modification of the acquired back-
ground to fit the occluder footprint, and compositing of the modified background
into the user’s view.

The background can be captured by the user in advance in the form of a
dataset of images [25] or a detailed 3D model [29, 3]. When the hidden back-
ground objects are known, such as a specific person’s face, a pre-captured dataset
with angle-dependent images is sufficient [32]. An internet photo collection can
also be used to delete a person in a video sequence, especially when the scene is
a frequently photographed sightseeing spot [19]. Another approach is to search
for the best matching disoccluded view of the target in an earlier frame [37, 12].
For a moving camera, SLAM was used to reconstruct the background progres-
sively [27, 33]. These methods fail when the current background configuration
has not been observed in any of the earlier frames. Both the pre-acquisition and
the temporal resampling methods cannot handle highly dynamic scenes, such as
a busy intersection.

A dynamic scene has to be acquired in parallel, from additional viewpoints.
Using multiple cameras installed all around the scene, unstructured light fields
can be acquired and used to render occluded rays [24]. Surveillance cameras have
been used to see through walls [22, 17]. Multiple users, each with their own hand-
held camera, can capture the background for each other but the approach was
only demonstrated for planar backgrounds with markers [10]. The background
was also acquired with a remote-controlled robot equipped with a camera [4].
Like these prior methods, we acquire the background information with a sec-
ondary camera, but without background geometry assumptions or markers.

Once acquired, the background needs to be transferred to the primary cam-
era viewpoint. By assuming the scene only consists of large planes, homography
matrices have been used to warp the background to the user view [6]. Homo-
graphies have also been used to transfer the best matching background image
from an internet image collection to the user view [19]. Another approach is to
extract the 3D geometry of the background. Using stereo vision, the background
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Fig. 2. System pipeline.

has been approximated with a set of small planes [42], or with a depth map [30].
The pixels missing due to disocclusion errors have to be filled in, e.g., through
texture synthesis [9, 34]. The background geometry has also been acquired with
the help of RGB-D cameras [21]. Reconstructing an accurate model of a complex
3D scene in real time remains challenging, and inaccurate geometry leads to out-
put image artifacts, such as holes and tears. We bypass 3D geometry acquisition
by computing a two stage bijective mapping that avoids such artifacts.

Inpaiting approaches approximate the occluded background from the sur-
rounding, visible parts of the background [8]. Patched-based inpainting methods
search iteratively in the neighborhood for best fitting patches [2, 5]. Prior in-
formation about the occluded part of the scene is useful for achieving a higher
quality inpainting, such as of occluded human faces [16, 18]. Deep-learning has
also been used to find matching patches at greater distances in the frame, with
improved global consistency [20, 38, 15]. These methods have the advantage of
not requiring a second video source, but they depend on the uniformity and pre-
dictability of the disoccluded background. As such, these methods are typically
used to remove the annoying visual presence of the occluder, and not to provide
a detailed and accurate description of the scene visible once the occluder is re-
moved. Their goal is to erase the occluder well enough as to not draw the user’s
attention to the disoccluded part of the image; on the other hand, our method
has the more challenging goal of allowing the user to focus precisely on the part
of the scene that has been disoccluded.

3 Approach

We first give an overview of our occlusion removal pipeline.

3.1 Pipeline Overview

Given a primary input video stream and a secondary input video stream, ac-
quired from a translated viewpoint, our method removes an occluder from the
primary video using pixels from the secondary video, according to the pipeline
shown in Fig. 2. First, an initialization stage defines the occluder contour in
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Fig. 3. Adjustment of approximate contour C∗
2 to C2 in image I2, given the corre-

sponding contour C1 in image I1 (Alg. 1). The algorithm searches for a better position
for each inner contour vertex q∗2 over its neighborhood S; a good position q2 yields a
high color similarity between I2 at q2 and I1 at q1; q1 is the inner contour vertex of C1

corresponding to q∗2 . Once q∗2 is adjusted, the corresponding outer contour vertex p∗2 is
adjusted to p2 with the same offset.

the first frame of each video, and computes an approximate mapping between
these two first frames. Then, pairs of primary and secondary video frames are
processed in four stages: the contour of the occluder is updated in each of the
two frames; an initial mapping between the pair of frames is computed as a ro-
tation, by minimizing color differences outside the occluder; the initial mapping
is locally refined at the occluder contour to enable splicing in the pixels from the
secondary frame with good continuity to the surrounding primary frame pixels;
finally, the occluder is removed from the primary frame by looking up its pixels
in the secondary frame, using a concatenation of the global and local mappings.

3.2 Contour adjustment

Our pipeline relies several times on a contour adjustment algorithm, which we
describe first. We define a contour as a pair of polylines that model the inner and
outer boundaries of an object visible in an image. The inner contour is on the
object and the outer contour is on the surrounding background. The inner and
outer contours are needed to restrict color comparisons to the occluder or to its
surrounding background. The two contours have the same number of 2D vertices,
the segments of a contour do not intersect, each contour has disk topology, and
contours do not have to be convex.

Our contour adjustment (Alg. 1) takes as input a first image I1, a known
contour C1 in I1, a second image I2, and an estimate C∗

2 of C1 in I2. The
algorithm output is a contour C2 in I2 obtained by adjusting C∗

2 . The algorithm
adjusts C∗

2 by moving one pair of vertices (p∗2, q
∗
2) at the same time, where p∗2

and q∗2 are corresponding vertices on the inner and outer contours (line 1). We
describe the algorithm for the case when the adjustment proceeds along the inner
contour (Fig. 3). Adjustment along the outer contour is similar.
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Algorithm 1 Contour adjustment (also see Fig. 3)

Input: Image I1, contour C1 in I1, image I2, contour C
∗
2 in I2

Output: Adjusted contour C2

1: for each vertex pair (p∗2, q
∗
2) in C∗

2 do
2: smax = −∞
3: for each pixel center q in neighborhood S of q∗2 do
4: Q1 = I1 patch centered at q1
5: Q2 = I2 patch centered at q

6: sq = sim(Q1, Q2) + λe−|q−q∗2 |2/(2σ2)

7: if sq > smax then
8: q2 = q, smax = sq
9: end if
10: end for
11: p2 = p∗2 + q2 − q∗2
12: end for
13: RemoveSelfIntersections(C2)

The algorithm adjusts the position of q∗2 by searching its neighborhood S
for a better location (lines 3–10). For each candidate location q, the algorithm
computes color similarity between I2 at q and I1 at q1. Color similarity is evalu-
ated over square image patches Q1 and Q2 (lines 4–6). The inner contour vertex
q2 is adjusted every time image similarity improves (lines 7–8). Once the en-
tire neighborhood of q∗2 has been searched, the contour vertex p2 is adjusted
by the same offset q2 − q∗2 as q∗2 (line 11). Once the inner and outer contours
have been adjusted, C2 is returned after any self intersection is removed (line
13). Our algorithm checks and removes self-intersections by traversing the outer
contour; if two outer contour segments (pi2, p

i+1
2 ) and (pj2, p

j+1
2 ) intersect, where

i < j, all outer contour vertices from pi+1
2 to pj2 are removed, together with their

corresponding inner contour vertices.
In line 6, the similarity between image patches Q1 and Q2 is computed differ-

ently based on whether images I1 and I2 are frames of the same video, i.e. both
primary or both secondary, or not, i.e. one primary and one secondary. When
I1 and I2 are from the same video, we compute similarity using negative sum of
squared per-pixel color differences:

simintra(Q1, Q2) = −
∑
p

(Q1[p]−Q2[p])
2. (1)

When I1 and I2 are from different videos, we use a cosine similarity [31],
in order to compensate for any large exposure and white balance differences
between the two videos. Cosine similarity is computed by treating each patch as
a vector, and by computing the cosine of the angle between the two vectors:

siminter(Q1, Q2) =

∑
p Q1[p] ·Q2[p]√∑

p Q1[p]2
√∑

p Q2[p]2
. (2)
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Algorithm 2 Intra-frame video splicing for occlusion removal

Input: Primary video V1, secondary video V2

Output: Disoccluded primary video Vd

// Initialization
1: B0

1 = UserInputContour(V 0
1 )

2: C1 = RefineContour(B0
1)

3: C∗
2 = HomographyMapping(C1, V

0
1 , V

0
2 )

4: C2 = AdjustContour(C1, V
0
1 , C

∗
2 , V

0
2 )

5: R0
1 = I; R0

2 = InitializeRotation(C1, V
0
1 , V

0
2 )

6: for each frame i do
// Contour tracking

7: C1 = AdjustContour(C1, V
i−1
1 , C1, V

i
1 )

8: C2 = AdjustContour(C2, V
i−1
2 , C2, V

i
2 )

// Global alignment
9: j = k × ⌊i/k⌋
10: Ri

1 = Rj
1 × RotationMapping(C1, V

j
1 , V

i
1 , R

i−1
1 )

11: Ri
2 = Rj

2 × RotationMapping(C2, V
j
2 , V

i
2 , R

i−1
2 )

12: R = (Ri
2)

−1 ×Ri
1

// Local alignment
13: A1 = SalientContourPoints(C1)
14: A2 = AdjustContour2(A1, V

i
1 , R×A1, V

i
2 , R)

// Occlusion removal
15: V i

d = V i
1

16: for each pixel p ∈ C1 do
17: p′ = LookUp(p,R,A1, A2, C2)
18: V i

d [p] = Blend(V i
1 [p], V

i
2 [p

′])
19: end for
20: end for

In addition to the color similarity value sim, the aggregate similarity score sq
(line 6) also includes a displacement term λe−|δp|2/(2σ2), which favors small con-
tour adjustments when sim values are similar. The displacement follows a nor-
mal distribution N (0, σ), where σ controls the distribution flatness. The weight
λ achieves the right balance between the cosine similarity term and the displace-
ment term. Both parameters σ and λ are set empirically in the 5-10 and 0.5-1.5
ranges, respectively, and tuned for each of the scenes. The displacement term
aims to avoid large adjustments for marginal color similarity improvements, e.g.
to avoid that a patch on an object edge slide up and down the edge without
meaningful color similarity changes.

3.3 Video splicing for occlusion removal

Our pipeline implements Alg. 2, which takes as input the primary V1 and sec-
ondary V2 videos and removes an occluder from V1 using pixels from V2.

Initialization. The algorithm first performs a once per session initialization
(lines 1–5). The user selects the occluder to be removed interactively by drawing
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Fig. 4. Contour initialization (left and middle), and contour tracking (right). Left: first
frame of primary video, with user drawn outer contour (red), and initial inner (white
dots) and outer (white line) contours. Middle: first frame of secondary video, with
contour lines transferred from primary video (white), and adjusted (green). Right: old
contour in blue, adjusted contour in red.

in the first frame V 0
1 of the primary video an approximate piecewise linear outer

boundary B0
1 of the occluder (line 1, red line in Fig. 4 left). An approximate

boundary that overestimates the occluder is sufficient, as the occluder will be
removed with safety margins. Whereas other applications of segmentation have
to recover an object contour with high-fidelity, as needed to paste it inconspic-
uously into a destination image, our application simply has to make sure that
the entire occluder is discarded.

The outer boundary B0
1 is refined to define the initial contour C1 in frame

V 0
1 (line 2), as follows: B0

1 is rasterized to obtain a pixel mask M1; M1 is eroded
to pixel mask M ′

1; the inner contour of C1 is defined as a subset of the outer
pixels of M ′

1, i.e. pixels who have at least one of their eight neighbors not part
of M ′

1 (white dots in Fig. 4 left); every inner contour vertex is moved outwards
along its normal to define its outer contour vertex pair (white line in Fig. 4 left).

C1 is used to initialize the occluder contour C2 in the secondary video. C1 is
transferred to V 0

2 in two steps.

First, C1 is taken almost all the way to its correct location in V 0
2 with a

homography mapping from the C1 region of V 0
1 to V 0

2 ; this provides an estimate
C∗

2 of the occluder contour in V 0
2 (line 3). The homography assumes that the

occluder is a 3D plane, which is imaged by the two cameras with known intrinsic
parameters. The homography is computed by detecting SURF features [7] inside
the occluder region C1 in V 0

1 , and over the entire frame V 0
2 . Each V 0

1 feature
is matched to a V 0

2 feature with similar descriptor using FLANN [26]. The ho-
mography is determined by minimizing the reprojection error of corresponding
features, using a RANSAC approach [11], which provides robustness to outlier
feature correspondences. Fig. 4, middle, shows the outer and inner contours of
C∗

2 with white solid and dotted lines, respectively; C∗
2 does not capture the oc-

cluder quite perfectly as the outer contour crosses into, and the inner contour
crosses out of the occluder.

Second, C∗
2 is adjusted to C2, using our contour adjustment Alg. 1 (line

4). Since the frames provided to Alg. 1 belong to different videos, the cosine
similarity metric is used. Fig. 4, middle, shows the adjusted contour C2 with
green solid and dotted lines.



Title Suppressed Due to Excessive Length 9

Fig. 5. Initialization of rotation from the first frame of the secondary video V 0
2 (left) to

the first frame of the primary video V 0
1 (middle). The rotation is visualized by blending

V 0
1 with the rotated V 0

2 (right). The rotation is recovered robustly (see alignment of
distant parts of the scene), despite the considerable disparity between the two frames
(see ghosting of near parts of the scene).

The algorithm maintains two arrays of 3D rotations, R1 and R2, one for each
video. Ri

1 rotates frame i of the primary video to frame V 0
1 . R

i
2 rotates frame i

of the secondary video to V 0
1 as well, that the first frame of the primary video

serves as a common reference. The last step of the initialization sets R0
1 and

R0
2 (line 5). R0

1 is the identity matrix. R0
2 is computed by minimizing feature

reprojection error, as described in Sec. 3.4. Fig. 5 illustrates R0
2 by blending the

rotated V 0
2 on top of V 0

1 .

After initialization, each pair of primary and secondary video frames is pro-
cessed with the four main stages of our pipeline.

Contour tracking. Contours C1 and C2 are updated in the current frames
V i
1 and V i

2 , using the known contours in the previous frames V i−1
1 and V i−1

2 (lines
7–8). We use Alg. 1 again: the frame with the known contour is the previous
frame, the frame where to adjust the contour is the current frame, and the
estimate of the contour in the current frame is given by the contour in the
previous frame. This no-motion contour prediction is sufficient because of the
high frame rate of the videos compared to camera and occluder motion and
velocity, and it bypasses the expense of computing a homography to provide
the initial guess [13]. The frames are part of the same video, so similarity is
computed using color difference. Fig. 4, right, shows the output of our contour
tracking stage.

Global alignment. The algorithm has to compute a mapping from the
primary video frame V i

1 to the secondary video frame V i
2 . For this, the algorithm

first computes an approximate mapping. The approximate mapping is found by
computing, for each video, the rotation of the current frame i to an earlier frame
j of that same video (lines 9–11). Once the two rotations Ri

1 and Ri
2 are known,

the approximate mapping R from V i
1 to V i

2 is easily obtained by leveraging the
common reference V 0

1 of all rotations (line 12).

To find the rotation of the current frame i with respect to the earlier frames
we use a more distant key frame j, and not the previous frame i−1, as consecu-
tive frames would be too similar, and the alignment would drift. The key frames
are spaced k frames apart (typically k = 120). Unlike for initial rotation com-
putation (Sec. 3.4), here the rotation has to connect two video frames acquired
by the same camera, from a similar viewpoint. Consequently, the global align-
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Fig. 6. Global alignment of two primary video frames (left and middle). The frames
differ in view direction (see light post), and in time (see turning car). The blended
visualization (right) shows that the global alignment recovers the rotation robustly
(see alignment of distant scene), despite the motion in the scene (e.g., turning car) and
the disparity of near objects (e.g., occluder and handrail).

Fig. 7. Local mapping need (left), implementation (middle), and result (right). Left:
disoccluding using only the global mapping results in discontinuities where near objects
cross the occluder contour, e.g. where the sidewalk and handrail cross the red line
in the left image. Middle: the local mapping connects primary frame salient contour
points (red points) to their correspondence in the secondary frame (green points); the
local alignment offset is larger for near objects. Right: disocclusion with continuity at
occluder contour.

ment can be computed by directly minimizing color differences, bypassing the
slower feature detection and matching. However, global alignment has to avoid
the inconsistencies introduced by moving or near geometry, which create frame
disparity even for small camera translations. Our global alignment computation
is described in Sec. 3.5. Fig. 6 illustrates the accuracy and robustness of our
global alignment stage.

Local alignment. The mapping R between frames V i
1 and V i

2 will be used
to replace the occluder pixels in frame V i

1 with pixels from V i
2 . The mapping

is approximate when the occluded scene is near and it has to be refined. The
inaccuracy of the mapping is noticeable only at the occluder contour C1, where
the V i

2 pixels are spliced into V i
1 (Fig. 7, left). The algorithm computes a local

alignment that alleviates color differences on each side of the occluder contour
(lines 13–14). First, the outer contour of C1 is sampled to gather a set of pointsA1

with large color changes (line 13, and red dots in Fig. 7, middle). These points are
better suited for computing the local alignment than the outer contour vertices
because they do not sample wastefully regions of uniform color, and because
they sample most regions with large color changes.

The newly defined outer contour A1 is adjusted with an algorithm similar
to Alg. 1, with two differences. The first difference is that the adjustment now
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proceeds following the outer contour, and not the inner one. Using Fig. 3 again,
adjustment based on the outer contour is not concerned with the outer contour
vertices and directly moves p′2 to its better position p2 that minimizes the color
difference between I2 at p2 and I1 at p1. The second difference is that the ad-
justment now compares Q1 to a rotated image patch Q2, and not an axis aligned
one (line 6 in Alg. 1). The rotated Q2 is computed using rotation R. This more
accurate comparison is now needed because the contour adjustment for the lo-
cal alignment crosses between videos, and axis aligned patches do not match.
Furthermore, adjustment is performed at the output frame cut line between the
two video sources, so an inaccurate alignment would be readily visible. Fig. 7,
middle, visualizes the displacement of the points of A1 (red dots) to their correct
locations A2 (green dots). Fig. 7, right, shows the continuity achieved at contour
boundary in the disoccluded frame using our local alignment.

Occlusion removal. Finally, the algorithm removes the occluder in the
primary frame V i

1 (lines 15–19). The disoccluded frame V i
d starts out as a copy

of V i
1 (line 15), and then pixels p inside the contour are looked up in V i

2 . A pixel
p is first rotated to pr using R, and then pr is offset with a weighted sum of
offsets a2 − R × a1, for all a1 points in the vicinity of p (typically in a 45 × 45
neighborhood). We support several disocclusion visualization modes, such as
cutaway, where p′ completely replaces p, and transparency, where p and p′ are
blended together, with and without showing the contour of the occluder.

3.4 Rotation Initialization

The videos V1 and V2 are acquired from different viewpoints, so computing the
rotation R0

2 of frame V 0
2 to V 0

1 is challenging, as it does not benefit from frame
to frame coherence. Indeed, the gap between V1 and V2 only has to be bridged
for the first frame of V2, as subsequent V

0
2 frames only have to be registered to

their previous frame, whose rotation to V 0
1 is already known.

R0
2 is computed by finding SURF features [7] in V 0

1 , outside of C1, and
in V 0

2 . V
0
1 features are matched to V 0

2 features using FLANN [26]. A pair of
corresponding features is given a weight commensurate to the confidence in its
correctness. The weight wij of a correspondence between a feature f1i in frame
V 0
1 and the most similar feature f2j in frame V 0

2 is computed with:

wij = |f1i − f2k|/|f1i − f2j | (3)

where f2k is the feature second most similar to f1i, and |fa−fb| is the difference
between the descriptors of two features fa and fb. The smallest possible weight
is 1, when f1i is equally similar to its best two matches, indicating the possibil-
ity of an ambiguous correspondence. When the second most similar feature f2k
is considerably less similar to f1i than f2j is, the correspondence is less likely
to be incorrect, hence the larger weight. The reprojection error of correspond-
ing features is minimized using a Gauss-Newton non-linear optimization [28],
while also leveraging a RANSAC [11] approach to mitigate possible incorrect
correspondences.
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Fig. 8. Weights used in the global alignment from Fig. 6. Moving objects (e.g., car,
pedestrians), and regions with high disparity (e.g., contour of near person), are assigned
low weights, to reduce noise in the rotation computation.

3.5 Global Alignment

The global alignment computes the rotation of the current frame i to a previous
key frame j, independently, for each of the two videos. We globally align two
frames with a rotation because it provides a good approximation of the map-
ping between the frames without the prerequisite of scene geometry. We use the
Gauss-Newton method [28] to find the three rotational degrees of freedom that
minimize color difference.

Given a current frame V i, a key frame V j , the camera intrinsic matrix M
(from a standard camera calibration process [41]), and a candidate rotation R
from V i to V j , the color residual rp at pixel p is:

rp(R) = V j [p]− V i[M−1(RM) · p] (4)

In Eq. 4, p is first unprojected from Vi, then rotated, and then projected to
Vj . The stacked color residual vector over the entire frame is r⃗ = (r1, . . . , rn)

T ,
and the color error E(R) is the ℓ2 norm |r⃗| of the residual vector. We use a
left-compositional formulation. Starting with an initial estimate R∗ given by the
rotation of Vi−1 to Vj , we compute an increment δR for each iteration:

δR = −(JTJ)−1JT r⃗(R), where J =
∂r⃗(ϵ⊕R)

∂ϵ
|ϵ=0 (5)

J is the derivative of the residual vector r⃗ with respect to an increment ϵ, and
JTJ is the Gauss-Newton approximation of the Hessian matrix of E. We then
update the rotation estimate by multiplying it with the iteration’s increment:

R = δR⊕R (6)

To gain robustness with outliers caused by moving objects, by the disparity
of near objects, and by view dependent effects (e.g. reflections), the minimization
is done in an iteratively reweighted fashion [14]. The weight of a pixel p equals
the inverse 1/rp of its residual. The weight is capped to avoid infinite weights
when a pixel residual is very small. Fig. 8 visualizes the pixel weights for the
global alignment from Fig. 6. The weighted rotation increment is:
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Table 1. Average per-frame running times for the stages of our pipeline [ms], and
overall frame rate [fps].

Stage
Contour
tracking

Global
alignment

Local
alignment

Occlusion
removal FPS

Snow 1.3 1.8 3.3 1.8 122
Terrace 1.1 1.8 4.8 5.5 76
Atrium 1.6 1.8 5.1 2.9 88
Clutter 1.9 1.8 4.5 4.6 79
Crossing 1.3 1.8 5.3 1.6 100
Intersection 1.4 1.8 3.4 2.1 114

δR = −(JTWJ)−1JTWr⃗(R), where W = diag(1/r1, . . . , 1/rn) (7)

For speed, we perform this color residual minimization with a coarse-to-fine
approach, that works at different levels of the image resolution pyramid. We
start from the coarsest level of 30 × 17, as our frames have a 16:9 aspect ratio,
and we stop at four levels deeper, i.e. at 480× 270. The minimization converges
at each level in between 2 and 4 iterations.

4 Results and Discussion

We have tested our occlusion removal method on several scenes, including Snow,
Terrace,Atrium, and Clutter (Fig. 1), Crossing (video), and Intersection (Fig. 11).
All scenes were abundantly dynamic, except for the Clutter scene, which was
stationary. Each scene was acquired with two videos, captured with separate
handheld phone and tripod mounted tablet cameras, from different viewpoints,
matching the scenario described in the paper; the Clutter scene was acquired
with a single handheld camera that revolved around the occluder, and the later
frames were used to disocclude the earlier frames. The input and output videos
have a 1,920 × 1,080 resolution. Our method worked well with all scenes, alle-
viating occlusions by creating a convincing transparency effect. We first report
the running time of our method (Sec. 4.1), we discuss the quality of the oc-
clusion removal achieved by our method (Sec. 4.2), we compare our method to
ground truth (Sec. 4.3), and we compare our method to state of the art occlusion
removal method (Sec. 4.4).

4.1 Time

We ran our disocclusion method for each pair of videos on an Intel i5-7600k
workstation with a 3.8GHz CPU clock. Our implementation uses only the CPU
(and not the GPU). The videos were played back at the original frame rate
(60fps for Snow and Terrace and 30fps for the other scenes), and our method
comfortably processed the frames in real time, with no precomputation.
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Table 1 gives the average times for each of the four stages of our pipeline,
as well as the average frame rate, which is at least 75fps. Contour tracking
performance depends on the number of contour vertices, global alignment per-
formance depends on the number of pixels in the resolution pyramid level used,
local alignment performance depends on the number of salient contour points,
and occlusion removal depends on the number of pixels in the occluder foot-
print. For Snow, Atrium, Crossing and Intersection, the slowest stage is the
local alignment stage, which evaluates color differences with rotated and not
axis aligned patches (parameter R of line 14 in Alg. 2). In addition to the cost of
the rotation itself, comparing color between a rotated patch and an axis aligned
patch introduces a bilinear interpolation per color comparison. For Terrace and
Clutter, the occluder footprint is larger than for the other scenes, and occlusion
removal takes slightly longer than local alignment. In all cases, our performance
is sufficient even for 60Hz videos.

4.2 Quality

Our method handles well a variety of scenes, replacing the occluder pixels with
pixels from the secondary video, with good continuity, as can be seen in the
figures throughout the paper and in the accompanying video. The limitations of
our method are discussed in the next section. Our method relies on a weak con-
nection between the primary and the secondary frames: the frames are connected
by an approximate mapping inside the occluder contour, and by a more rigorous
mapping along the occluder contour. The weaker connection is faster to compute
than the per-pixel correspondences used in structure from motion. Moreover, the
weaker connection has the advantage of avoiding disocclusion errors.

Our method bypasses the computational expense of finding depth based on
the disparity between the two video feeds, yet it avoids disocclusion errors that
would plague such a depth-based approach.

Even if both videos are replaced with perfect RGBD streams, disocclusion
errors can occur when the occluder is removed and the primary viewpoint gains
line of sight to a part of the scene not visible from the secondary viewpoint.
In Fig. 9, the primary viewpoint is O1 and the secondary viewpoint is O2. The
secondary frame samples the green object from the left until B, and then the
blue object from C towards the right. The primary frame is affected by the
occluder FG. The primary frame sees the green object from the left until A, then
the occluder, and then the blue object from E to the right. A depth-based, 3D
occluder removal method leverages the perfect depth available at each secondary
frame pixel to project the secondary frame pixels to their correct location in the
primary frame. However, since the secondary frame does not sample the green
object between B and D, the 3D occluder removal method leaves a gap, i.e. a
disocclusion error, between B and C.

Our occluder removal method replaces the occluder pixels FG in the primary
frame with the secondary frame pixels from A to E. Our local alignment makes
sure that the primary and secondary frames are aligned at A and E. Our method
does not recreate the primary view for the disoccluded part of the scene. Instead,
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Fig. 9. Disocclusion error caused by 3D occluder removal. The secondary frame with
viewpoint O2 does not capture the green object between B andD. Even if the secondary
frame has perfect depth per pixel, projecting the 3D samples of the secondary frame
onto the primary frame will leave a gap between the projection of B and the projection
of C. Our occluder removal method does not suffer from such a disocclusion error, as
the mapping it uses does not allow B and C to separate in the primary frame.

Fig. 10. Illustration of the multiperspective effect achieved by our disocclusion method:
primary view, secondary view, ground truth transparency effect, and our output.

the pixels used to fill in the occluder shadow in the primary view come from the
secondary view which has a different viewpoint, i.e. a different perspective on
the disoccluded scene. This different perspective is maintained because the global
alignment of our method is a homography and not a 3D warp. Our method does
not remove the viewpoint difference but rather transitions from one viewpoint
to another at the occluder contour.

Fig. 10 illustrates on a synthetic scene the multiperspective nature of the
disocclusion effect achieved by our method. In the primary view (top left), the
yellow rectangle occludes a cube with red, green, and blue faces. In the secondary
view (top right), the cube is seen from a translated viewpoint, which reveals the
blue and green faces. The first view occluder contour is shown with black in
all images. on the background grid. Whereas the ground truth transparency
effect only shows the front (red) face of the cube (bottom left), our visualization
(bottom right) shows the cube from the secondary perspective, revealing its red,
green, and blue faces. Our visualization changes perspective continuously based
on the local alignment step which splices in the pixels from the secondary view.
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Fig. 11. Comparison of our disocclusion method to a ground truth transparency effect:
(a) primary and secondary frames with occluder, (b) extracted occluder, (c) primary
and secondary frames without occluder, (d) extracted occluder b inserted into frames
c, (e) ground truth transparency effect, (f) output of our algorithm.

4.3 Comparison to ground truth

We have also compared our method to ground truth transparency over a real
world video sequence (Fig. 11). For this, we recorded primary and secondary
videos with the occluder obstructing both views (a), from which we extracted
the occluder from each video (b); then we recorded primary and secondary videos
without the occluder (c), which serve as ground truth; then we inserted the ex-
tracted occluders in each video (d), on which we run our algorithm. Our algo-
rithm produces results (f) that are comparable to the ground truth (e). A sliver
of the occluder remains at the bottom of our frame since the secondary view
direction is tilted up and it does not cover that part of the occluder. Please also
refer to the accompanying video.

4.4 Comparison to state of the art methods

We compare our results to those obtained with a commercial image processing
platform, i.e. by using the content-aware fill tool of Adobe PhotoShop 2020 [1].
The tool is based on earlier occluder removal techniques [5, 36], updated based
on image correction techniques based on deep-learning [38]. The tool relies on a
second image from where to select pixels to inpaint the first image. In addition
to the primary and secondary view frames, we provide as input the contour of
the occluder in each frame. We also compare our method to a state of the art
inpainting method based on partial convolution [20], and to two state of the
art inpainting methods that use deep learning with typical convolution layers,
namely DeepFill v2 [39] and Globally and Locally Consistent Image Completion
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Fig. 12. Comparison to prior art methods: a ground truth, b our method, c content-
aware fill [1], d partial convolution [20], e DeepFill [39], f GLCIC [15].

Table 2. Quality of occluder removal quantified by comparison to ground truth, for
the images in Fig. 12, using two per-pixel comparison metrics, i.e. mean ℓ1 error and
PSNR, and two perceptual image comparison metrics, i.e. LPIPS, which measures
image dissimilarity, so the lower the better, and SSIM, which measures image similarity,
so the higher the better.

ℓ1 error (%) PSNR LPIPS SSIM

Our method 1.928 26.46 0.024 0.952
Content-Aware Fill [1] 2.565 23.15 0.100 0.810
Partial Convolution [20] 3.476 21.61 0.143 0.818
DeepFill v2 [39] 4.046 20.41 0.170 0.810
GLCIC [15] 4.775 20.75 0.219 0.785

(GLCIC) [15]. All three inpainting methods find occluder replacement pixels in
the input frame, and therefore they have the advantage that they do not require
acquiring the scene from a secondary viewpoint.

Fig. 12 shows the results obtained by the five methods and the ground truth
result, on the same frame. Our result shows significantly fewer artifacts and bet-
ter continuity. We quantify the quality achieved by each method by comparing
the result of each method to ground truth. We quantify the differences in terms
of two per-pixel image comparison metrics, i.e. the mean ℓ1 error and the peak
signal-to-noise ratio (PSNR), as well as in terms of two perceptual image com-
parison metrics: the Learned Perceptual Image Patch Similarity (LPIPS) metric
[40], and the Structural SIMilarity (SSIM) index [35]. Table 2 summarizes the
comparisons which show that our result is closer to ground truth than that of
the two other methods, even with the residual occluder sliver. Furthermore, the
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methods above were not designed for real-time video processing; according to
our measurements, they require about one second of processing time per frame,
on the same machine used to time our method. The authors of GLCIC report
0.5s on the GPU or 8.2s on the CPU for 1,024 × 1,024 images [15]. The authors
of DeepFill v2 report 0.2s on the GPU or 1.5s on the CPU for 512 × 512 im-
ages [39]. We conclude that inpainting methods are better suited for the offline
filling-in of small-area image holes, where they can extrapolate successfully from
not too distant neighboring regions, and are less suited for filling-in in real time
the large occluder footprint.

5 Conclusions. Limitations. Future Work

We have presented a method for removing an occluder from a video, by transfer-
ring pixels from a second video that captures what the first video should show if
the occluder were not present. In actual use cases, the secondary viewpoint can
be provided by a surveillance camera, or can be crowd-sourced, i.e., from the
cameras of other people in the scene who volunteer to share their camera feed.

The pixels from the second video are spliced in with good continuity across
the occluder contour. The method is based on the insight that a convincing
transparency effect can be obtained without knowledge of 3D scene geometry.
The method computes a mapping from the first video to the second video, which
orients the second camera the same way as the first camera, but which does
not attempt to translate the second camera viewpoint to the first viewpoint.
The result is a multiperspective visualization, where the scene surrounding the
occluder is shown from the first viewpoint, and the scene behind the occluder is
shown from the second camera viewpoint. The two perspectives are connected
seamlessly, with a local mapping that achieves a gradual transition from one
viewpoint to the other.

The method achieves good results on a variety of scenes with intricate and
dynamic geometry. We have shown that our method can produce results compa-
rable to ground truth video obtained by recording the scene without occluder,
and better results than prior occluder removal approaches. The method is fast,
with a minimum frame rate of 75fps. Our method is fast because it only searches
for correspondences between the two video frames along the occluder contour,
and not for all the frame pixels, a fundamental advantage over traditional multi-
camera computer vision pipelines. Our method is at a performance/quality point
that prior art methods cannot approach, as shown in Fig. 12.

Our method does not require that any of the cameras be stationary — camera
movement is accounted for by the global alignment stage. In fact, both cameras
can move freely, as long as the region of interest is captured by the secondary
camera. This first, rough alignment aligns well for the distant part of the scene,
but it alone does not produce continuity across the contour (Fig. 7 middle).
Continuity is achieved by our second step, i.e., local alignment along the contour,
which is a key distinguishing feature with respect to prior methods.
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Fig. 13. Disocclusion of partially visible object: secondary view frame (left) primary
view frame (middle) and our output (right).

Fig. 14. Method limitation due to near object crossing the occluder contour: (left)
perspective switch deformation (A) and extrapolation discontinuity (B); (right) the
local mapping achieves continuity across the occluder contour for the pavement line
(A), for the moving foot (B), but fails for the backpack (C).

Our method is interactive, allowing the user to specify the object to be re-
moved by sketching a rough contour in the first frame, after which the contour
is tracked automatically. Our pipeline is readily compatible with prior art tech-
niques that can detect the “near” object from the first two frames of the primary
and secondary feeds, which can be used to seed contour tracking automatically.

One limitation of our method pertains to near objects that cross the occluder
contour. A near object is imaged from different directions by the two cameras,
and therefore it has a different appearance in the two frames, a difference that
cannot be alleviated by the global mapping rotation. This poses no problems
when the near object is completely hidden behind the occluder (e.g. Fig. 10).
However, when the object crosses the occluder contour, the object is distorted
by the multiperspective effect, as it starts out in one perspective and ends in the
other, the same way the subject is distorted in Picasso’s cubist portraits that
connect two views of the subject’s face in a single painting. In Fig. 13, the switch
from the primary to the secondary perspective occurs over the cube, distorting
the cube. In Fig. 14, left, the handrail crosses the occluder contour in region
A, where it switches from the primary perspective, outside the occluder, to the
secondary perspective, inside the occluder. The switch is continuous, but the
handrail is distorted as it is shown with two perspectives.

Another problem posed by partially occluded near objects arises when the
secondary frame does not see everything the occluder hides in the primary frame.
In such a case, a piece of the object is missing from both frames, and the local
mapping cannot fill in the missing piece. In Fig. 14, left, the visualization appears
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discontinuous to a human observer in region B, who knows that the scene has
one straight, uninterrupted handrail, and therefore expects that the disoccluded
hand rail be aligned with the handrail reemerging to the left of the occluder. We
call this an extrapolation discontinuity.

The perspective switch deformation and the extrapolation discontinuity prob-
lems are inherent to our method, in the sense that they occur even though our
algorithms work as intended. The Atrium scene is a worst case scenario for these
problems as the long, straight handrail makes them conspicuous. Future work
could aim to reduce the perspective switch deformation by widening the area
over which the switch between perspectives occurs; the extrapolation discontinu-
ity could be reduced by leveraging or even pursuing a high-level understanding
of the scene that maintains handrail continuity even though a handrail piece is
missing from both frames.

A third problem posed by near objects that cross the occluder contour is
that the local mapping fails occasionally (Fig. 14, right). For near objects, cor-
recting the global mapping requires large offsets, and the search is less robust.
The problem is exacerbated when the object moves quickly, and when the object
does not have much texture, as is the case of the backpack and jacket in region
C of Fig. 14, right. Using a small search neighborhood in the interest of perfor-
mance reduces local mapping robustness. Future work could examine increasing
the robustness of the local mapping with a strategy that leverages the image
resolution pyramid to search over large distances to gain robustness without a
significant performance trade-off.

Another limitation of the current implementation is that the visualization is
not always perfectly stable. Presently, the set of salient points used by the local
mapping is computed from scratch for every frame. Future implementations
could limit the number of points replaced at every frame, in the interest of
stability. Finally, the current implementation computes the global alignment
with respect to a fairly recent key frame of the same video, and global alignment
is computed across videos only once, for the first pair of frames. This works well
for our sequences of 30s, but for longer sequences, global alignment drift could
be a concern, which will have to be addressed by occasionally recomputing the
global alignment between the current frames of the two videos.

We have shown that our method runs fast enough on a workstation, using
only its CPU, to keep up with prerecorded videos. Future work should deploy our
pipeline to phones and tablets, leveraging their GPUs. Future work could focus
on absorbing into the local adjustment algorithm the latency of transmitting the
secondary video to the user device where the disocclusion effect is computed.
Another possible direction of future work is to use multiple secondary video
streams to handle complex occlusions.

We describe a multiperspective framework for the continuous and non-redundant
integration of multiple images, which, compared to traditional structure from
motion, comes at the lower cost of only having to establish O(w)—and not
O(wh)—correspondences between pairs of w× h images. This framework might
find other applications, in augmented reality and beyond.
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