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Fig. 1. Results of our from-point visibility algorithms on three datasets with 4, 55, and 500 million triangles (from top to bottom). The left
column shows the reference images on which the algorithms were run. The middle and the right columns show frames rendered from
the aggressive and exact visible sets. Despite the large zoom factors of 7x, 17x, and 10x, the frames from the aggressive set have
only a small percentage ¢ of incorrect pixels. The frames from the exact set are identical to the ones one would obtain from the entire
dataset. Despite the complex occlusion patterns in these examples, the exact algorithm converges in three iterations.

Abstract—This paper presents two from-point visibility algorithms: one aggressive and one exact. The aggressive algorithm efficiently
computes a nearly complete visible set, with the guarantee of finding all triangles of a front surface, no matter how small their image
footprint. The exact algorithm starts from the aggressive visible set and finds the remaining visible triangles efficiently and robustly.
The algorithms are based on the idea of generalizing the set of sampling locations defined by the pixels of an image. Starting from a
conventional image with one sampling location at each pixel center, the aggressive algorithm adds sampling locations to make sure
that a triangle is sampled at all the pixels it touches. Thereby, the aggressive algorithm finds all triangles that are completely visible at a
pixel regardless of geometric level of detail, distance from viewpoint, or view direction. The exact algorithm builds an initial visibility
subdivision from the aggressive visible set, which it then uses to find most of the hidden triangles. The triangles whose visibility status
is yet to be determined are processed iteratively, with the help of additional sampling locations. Since the initial visible set is almost

complete, and since each additional sampling location finds a new visible triangle, the algorithm converges in a few iterations.

Index Terms—from-point visibility, aggressive visibility, exact visibility, triangle visibility, particle visibility, image generalization.

1 INTRODUCTION

Visibility is a fundamental problem in visualization that remains open
despite decades of research. Given a 3D dataset and a set of viewpoints,
the visibility problem asks which of the geometric primitives in the
dataset are visible from at least one of the viewpoints. Visibility algo-
rithms usually work with triangles, which are building blocks of more
complex geometric primitives. A triangle ¢ is visible from a viewpoint
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v if there is a point p in 7 to which there is line of sight from v, i.e., the
line segment vp does not intersect any other triangle in the dataset. As
the number of triangles in the visible set is typically a small fraction of
the total number of triangles in the dataset, visibility is a powerful tool
for reducing dataset complexity.

One approach for solving visibility is to probe for visible triangles
along rays that originate from the given set of viewpoints. Such sample-
based visibility algorithms, called aggressive algorithms, find some but
not all visible triangles. A sample-based visibility algorithm cannot
verify that a triangle is hidden, as that would require an infinite number
of rays to verify that there is no line of sight to any of the triangle points.
Therefore, a sample-based visibility algorithm cannot know whether
the set it finds is complete. A potential advantage of sample-based
algorithms is efficiency, as they can find all the visible triangles using



one ray per triangle, but deciding which rays to use is challenging.
Aggressive visibility algorithms strive to minimize the number of rays
while maximizing the number of visible triangles found.

Another approach to visibility is to analyze the continuous space of
rays originating from the given viewpoints, subdividing it into regions
where a single triangle is visible. Such continuous visibility algorithms
can provide the exact visible set, containing all and only visible trian-
gles. Continuous visibility algorithms are computationally expensive,
as the dataset complexity is compounded by the dimension of the space
of rays. They are also prone to robustness problems, meaning that even
tiny rounding errors can cause large errors in the visibility set that they
output.

This paper addresses from-point visibility: the problem of finding all
triangles that are visible from a single viewpoint. From-point visibility
is a foundational problem with important applications in computer
graphics and visualization. One application is the computation of
accurate visualizations of complex datasets. For such datasets, the
color at a pixel depends on the contribution of the many triangles that
partially cover the pixel. Conventional antialiasing schemes, such as
4x4 supersampling, are only palliative as they haphazardly select a
subset of the triangles covering the pixel. From-point visibility can find
all triangles visible at a pixel, which results in a correct output color
computed by blending the colors of all triangles covering the pixel, with
weights commensurate to their pixel areas. A second application is to
use from-point visibility as a building block for solving higher-order
visibility problems, such as from-region visibility. The view region
is sampled with viewpoints, from-point visibility is solved for each
viewpoint, and the from-point visible sets are unioned to obtain an
approximation of the from-region visible set. A third application is
to use exact from-point visibility as an instrument for measuring the
performance of approximate visibility algorithms. Knowing the exact
visible set enables one to find the false positives and false negatives in
an approximate visible set. Furthermore, the exact set allows one to
measure the area of an output image where the approximate visible set
provides the correct visible triangle, which is a more discerning quality
metric than the number of visible triangles found.

In addition to these three applications, which we demonstrate in our
paper, from-point visibility can also reduce bandwidth and latency in
remote visualization. The client sends the desired viewpoint to the
server; the server computes the visible set and sends it to the client; the
visible set is a fraction of the entire dataset, which saves bandwidth; the
client renders the visible set locally, with low latency, to support user
view rotations and zoom changes at interactive rates; the completeness
of the from-point visible set supports zooming in with good output
image quality, even for large magnification factors. Another application
of from-point visibility is accurate hard shadow computation. Finding
all triangles visible from a point light source avoids the light leaks that
plague methods that rely on an approximate from light-point visibility
solution, such as shadow mapping. From-point visibility is also useful
for the high-fidelity simulation of sound propagation.

From-point visibility does not have a prior algorithm that is efficient
and robust. A promising aggressive approach is to render the dataset
from the given viewpoint into an image that records one visible triangle
per pixel. The advantage is efficiency, as visibility is probed along a
large number of rays at a small computational cost in feed forward
fashion, by projection followed by rasterization. The challenge is
that, in the case of complex datasets, many visible triangles have a
small image footprint and hence are not found by any of the centers
of the image pixels. Improving the aggressive visible set by uniformly
increasing the resolution of the image is inefficient. Continuous from-
point visibility algorithms have to build a subdivision of the 2D space of
rays originating at the viewpoint, which is computationally expensive
if they have to process all the triangles of a complex dataset.

We present two from-point visibility algorithms, one aggressive
and one exact. The algorithms are based on the idea of generalizing
the set of sampling locations defined by the pixels of an image. The
aggressive algorithm starts from a conventional image with sampling
locations at pixel centers, and adds sampling locations to make sure
that each triangle is sampled at all the pixels that it touches. If a triangle

t is completely visible at a pixel p, t is guaranteed to be found by its
sampling location in p. Hence, the algorithm finds all triangles of a
front surface, regardless of geometric level of detail, distance from
viewpoint, or view direction.

The exact algorithm starts from the aggressive visible set and finds
the remaining visible triangles efficiently and robustly. It builds an
initial visibility subdivision from the aggressive visible set, which it
then uses to find most of the hidden triangles. The triangles whose
visibility status is yet to be determined are processed iteratively, by
generating additional sampling locations where these triangles are not
hidden by the current visibility subdivision. The additional sampling
locations find new visible triangles, which are added to the visibility
subdivision. The algorithm converges quickly because the initial visible
set is almost complete and each additional sampling location finds a
new visible triangle. Only visible triangles are added to the visibility
subdivision, which makes our exact algorithm output sensitive.

The robustness requirement is that the visibility subdivision be cor-
rect. Correctness is challenging because the subdivision is computed
by evaluating millions of predicates: numerical expressions on whose
sign the algorithm execution branches. A single incorrect predicate,
due to floating point rounding error, can corrupt the entire subdivision
because of global dependencies. We achieve robustness using the Exact
Geometric Computation (EGC) [43] strategy of evaluating predicates
correctly despite numerical error.

Figure 1 illustrates our from-point visibility algorithms. The aggres-
sive visible set is nearly complete, as confirmed by the small errors
obtained in frames with a large zoom factor (middle column). The few
incorrect pixels are at surface boundaries, so the frames are comparable
to the truth frames obtained from the exact set. Another measure of the
completeness of the aggressive set is the percentage of the reference
image where visibility is solved correctly, which is 99.98%, 99.82%,
and 99.66% for the three datasets. In all our experiments, the exact
visibility algorithm extended the aggressive set to the exact set in at
most four iterations. We also refer the reader to the accompanying
video.

In summary, our paper makes three major contributions:

* the first aggressive visibility algorithm with a quality guarantee;

* the first exact from-point visibility algorithm with an output-
sensitive visibility subdivision construction;

« the first robust implementation of exact from-point visibility.

2 PRIOR WORK

Visibility algorithms are classified based on the visible sets that they
compute. Conservative algorithms overestimate visibility, so no visible
triangle is omitted. The benefit is an accurate image, but the number of
hidden triangles in the output can be substantial [10, 14]. Aggressive
algorithms underestimate the set of visible triangles, which leads to
image errors. The goal of aggressive visibility research is to reduce
and control the error [35,42]. Exact algorithms find only and all visible
triangles, which avoids the cost of rendering unnecessary triangles as
well as any image error.

Aggressive Visibility. We distinguish between probing visibility by
casting individual rays and by rendering entire images. Algorithms
in the first category use heuristics to shoot rays that are likely to find
visible triangles, and subsequent sampling is guided by what the initial
rays find [4,29,42]. The advantage is the flexibility to cast precisely
the rays deemed necessary, which limits sampling redundancy, and
allows supporting effects such as lens distortion, foveation, or depth of
field [25]. However, it is difficult to place error bounds on the results,
and, as we show in the results section, our aggressive visible set has a
quality advantage over guided visibility sampling [4,29].

Algorithms in the second category leverage the fact that the amor-
tized cost of rays in an image is lower than that of individual rays. Our
algorithms fall in this second category. An image only captures samples
visible from its viewpoint. One option is to use images from additional
viewpoints [31], which are highly redundant, or to eliminate redun-
dancy as a pre-process [30, 39]. The challenge of these approaches



is to decide which images are needed for a sufficient sampling of the
visibility parameter space. The usual strategy is to sample uniformly
as densely as possible, and thus the visibility error is not bounded.
Multiperspective images capture in a single shot more than what is
visible from a single viewpoint through innovation at the camera model
level [11,44], but there is no visible set quality guarantee.

Specialized visibility algorithms have been developed for many
contexts. The algorithms are typically aggressive, focusing on finding
the visible triangles of highest relevance in the particular context. The
semi-analytical visibility algorithm [21], developed for motion blur,
samples the image with lines as opposed to points, an idea borrowed
from temporal antialiasing [27]. Visibility is analyzed continuously
over time for each line sample. The algorithm is aggressive because
the analysis is restricted to a uniform grid of image lines. Line samples
are a brute force approach for improving uniform point sampling. The
line parameter adds an expensive second dimension to the 1D motion
blur visibility problem. The uniform line sample pattern is heuristic, so
even after solving the higher-dimension visibility problem, there is still
no guarantee for the quality of the solution. We propose deterministic
point sampling that guarantees a quality visible set without increasing
the visibility problem dimensionality.

Recent work analyzes visibility in the camera offset space defined
by viewpoint translations [24]; the visible set is exact at pixel centers
under camera translations, which means that visible triangles that are
not visible at a pixel center are missed; in order to capture additional
visible triangles, such as those visible under camera rotations, additional
sampling locations are added heuristically. Our aggressive algorithm
guarantees quality by generalizing the set of sampling locations on the
image plane, beyond the predefined set of pixel centers.

Exact Visibility. Finding all and only visible triangles brings the
greatest possible reduction of the dataset without the errors implied by
false negatives. Theoretical computational geometry has explored the
high-dimensional space of the visibility rays for from-region visibility.
In from-rectangle visibility, one strategy is to decompose the 4D non-
Euclidean space of rays according to visibility criteria. A complete
model with 0(n4) complexity and output sensitive construction is yet
to be practical [15]. Another strategy is to compute visibility between
pairs of polygons [9,22,34], using constructive solid geometry in the
5D ambient space of the Plucker coordinate representation of lines.
The algorithms have high computational complexity and have not been
demonstrated on large datasets.

Early work on from-point visibility focuses on antialiasing. The
solution was to compute a visibility subdivision for each pixel, defined
by the triangle fragments visible at each pixel [6,7,41]. The solution is
inefficient because fragments of hidden triangles are added and then
removed from the visibility subdivision. We compute the visibility
subdivision exclusively from visible triangles, which amounts to an
efficient way of computing an accurate image that takes into account
the contributions of all visible triangles, no matter how small their
footprint. Pixel-free from-point visibility algorithms are also inefficient
because they compute occluded intersections [20]; typical running
times are O((n+ k)logn) or O(nlogn+k+1) for n triangles with
k edge intersections and ¢ triangle intersections on the image plane.
Output sensitive algorithms are restricted to special input [28, 40].
From-point visibility was implemented on the GPU [2], but with a
running time quadratic in the number of triangles.

Beam tracing [23] analyzes from-point visibility continuously by
using conical or frustum-like beams. The unsampled gaps between
rays are avoided, but beam-triangle intersection is costly. Beam-tracing
has also been used for shadow [1, 36] and sound [8, 37] rendering,
using acceleration schemes based on adaptive beam splitting. Beam
tracing has been recently revisited for its ability to integrate visibility,
which supports the differentiable rendering used for example in inverse
graphics [46]; the complexity of the polygonal regions of the visibility
subdivision of the beam is capped at four vertices, but that increases
the number of regions; most importantly, the visibility subdivisions are
computed from all triangles, unnecessarily adding and then removing
the contributions of triangles that are only visible with respect to the
triangles considered so far, and that ultimately turn out to be hidden. We

Fig. 2. Animage of a finely tessellated sphere (left) and a frame rendered
from the visible triangles found by the image, using the same viewpoint
with a slightly different view direction (right). The frame shows that the
visible set is far from complete.

bypass the need for beams, replacing them with the smallest number of
rays needed to capture the visible triangles over a solid angle; we do not
trace rays, but rather evaluate visibility along them by projection onto
their sampling locations; finally, we compute the visibility subdivision
exclusively from visible triangles, and with numerical robustness.

Conservative Visibility algorithms are exact algorithms that run on
a visibility problem that was conservatively simplified, e.g. through
extended projections [16], or occluder erosion [13]. Our aggressive
algorithm produces a visible set that is almost complete, so adding
the triangles that are not hidden by the aggressive set yields a good
conservative visible set. Per-frame occlusion culling improves render-
ing performance by batch discarding triangles that are hidden in the
current output frame [5]. Triangles are grouped inside containers with
simple geometry, the containers are rendered on a partial z-buffer of
the output frame obtained from known big blockers, and the triangles
of hidden containers are discarded. Occlusion culling methods can also
be aggressive by fusing blockers heuristically [45].

We discuss the hierarchical visibility culling algorithm [3] since it
addresses our problem of from point visibility. The algorithm first finds
a subset of the hidden triangles using a hierarchical spatial subdivision.
A subdivision region is ruled as hidden, together with its descendants,
by finding large convex polygonal occluders, and by checking whether
the region is in the occlusion shadow of any such occluder. Then the
triangles in the remaining subdivision regions, i.e., those that have
not been ruled as hidden, are rendered with z-buffering to compute
the output image. The algorithm has the merit of removing some of
the hidden triangles efficiently, in group, without considering them
individually. However, for this, it relies on the assumption that the
dataset has large polygonal blockers, which have to be found in a
preprocessing step. The algorithm is conservative, in the sense that it
finds all but not only visible triangles. The algorithm does not compute
the exact set, it merely z-buffers the conservative set to obtain the output
image. Our algorithms do not group triangles, but they find a quality
aggressive visible set with most visible and no hidden triangles, or they
find the exact set.

Irregular Framebuffers. We advocate abandoning the uniform sam-
pling of conventional images in favor of adding sampling locations
deterministically to guarantee that all visible triangles are found. The
benefits of irregular framebuffers have been noted before in contexts
that include: pixel-accurate shadow mapping [26], where the shadow
map estimates light visibility precisely at the point samples captured
by the output image; point-based rendering [38], where projected refer-
ence image samples are not clamped to the output image pixel grid but
rather located precisely within the output image pixel using a pair of
offsets; and focus plus context visualization where focus regions are
sampled at a higher rate [19].

3 GUARANTEED-QUALITY AGGRESSIVE VISIBILITY

An image is an appealing tool for computing visibility. Rendering an
image is equivalent to probing dataset visibility efficiently with millions
of rays, one for each pixel. However, the visible set found by an image
can be incomplete because triangles can have small footprints due to
high dataset complexity, to large distances to the eye, or to grazing
viewing angles. Figure 2 shows that a conventional image misses most
visible triangles of the front surface of a finely tessellated sphere. A
slightly different view direction reveals the many gaps in the aggressive



P x
x / x x
x
x
x x
x
(]
x
x
x
x x x x
% <50 X

Fig. 3. (Left) Finding all front-surface triangles. The triangles (blue lines)
projecting at a pixel (black lines) are shown in wireframe. A sampling
location at the pixel center (dot) captures only one of the many visible
triangles. Our aggressive algorithm adds sampling locations (diagonal
crosses) to sample all triangle fragments at the pixel. (Right) Aggres-
sive visibility and extension to exact visibility. The aggressive algorithm
processes triangles a—d in that order, finding the visible triangles a, b,
and c. Triangle d is missed because it does not have a completely visible
fragment and because its only partially visible fragment (in pixel 2) is
sampled where d is hidden by b. The exact algorithm finds that the
fragment of d in pixel 2 is not hidden by a—c and adds sampling locations
(red straight crosses) in the visible part of the fragment.

visible set. A single sampling location per pixel, e.g., at the center
of the pixel, captures only one of the many visible triangles whose
projections overlap with the pixel (Figure 3, left). Alleviating the
problem by increasing image resolution is inefficient, as some triangles
will be sampled multiple times, and only palliative, as no resolution
can guarantee that all the triangles are found.

3.1 Approach

We improve the quality of the visible set found by an image by aug-
menting the image with additional sampling locations where visibility
is probed. The goal is to minimize the number of additional sampling
locations and to maximize the number of triangles found. We construct
sampling locations with a greedy approach that guarantees that each
triangle fragment is sampled. A triangle fragment is the intersection of
a triangle with a pixel. Sampling location construction is illustrated in
Figure 3, left). The dataset is then rendered over the sampling locations
to obtain the visible set.

Our approach guarantees finding all completely visible triangles, in-
cluding all front surfaces, because all their fragments are completely vis-
ible and contain sampling locations. Our approach is efficient. Whereas
the conventional approach of uniformly increasing the image resolution
adds sampling locations blindly, our approach adds a sampling location
only to sample a fragment that is not sampled by any of the current
sampling locations. Our approach increases the image resolution lo-
cally, as needed to sample the visibility of dataset regions with higher
complexity. It finds all the triangles of the front face of the sphere in
Figure 2 at the cost of one sampling location per fragment.

3.2 Algorithm

Our aggressive from-point visibility algorithm (Algorithm 1) takes as
input the dataset D, the viewpoint o from which to compute visibility,
and a uniform 2D grid of pixels G that corresponds to the reference
image where visibility is computed.

(Line 1) Each pixel of G stores a set of sampling locations S, which
initially contains only pixel centers. In addition to its 2D coordinates,
a sampling location stores the depth and index of the closest triangle
sampled so far.

The algorithm takes three passes over the dataset.

(Line 2) The first pass is a conventional rendering over the pixel grid
with one sampling location at each pixel center. In Figure 3 (right),
this pass finds triangle a in pixels O and 1, and triangle ¢ in pixels 2
and 3. The motivation for the first pass is efficiency. It finds nearby
triangles with a large footprint, which hide many other triangles. The
nearby triangles are used in the second pass to avoid creating sampling
locations that cannot find new visible triangles.

Algorithm 1 Aggressive from-point visibility

Input: dataset triangles D, viewpoint o, grid of pixels G
Output: aggressive set of visible triangles V{

1: for all pixels p € G do p.S = {Center(p)}

2: Render D from o over G // PASS 1

3: for all triangles t € D do // PASS 2

4: t' = Project(t,0,G)

5 for all pixels p that intersect t' do
6: if 3 s € p.S such that s € ¢/ then
7.
8

fragment f =t'Np
sampling location s = Centroid(f)

9: N = triangles visible at centers of p and its neighbors
10: if 7 is closer to o than every n € N at s then
11: p.S=pSU{s}

12: Render D from o over G // PASS 3

13: for all sampling locations s of all pixels in G do
14: Vo = Vo U {s.triangle}

15: return V)

(Lines 3—11) The second pass adds sampling locations to ensure that
all triangle fragments are sampled. For each pixel p intersected by the
projection ¢’ of a triangle ¢ (line 5), the algorithm checks whether p
already has a sampling location s that samples # (line 6). Since s must
be inside p, this is equivalent to checking whether p has a sampling
location inside the fragment f of ¢ at p. If not, a sampling location s is
created at the centroid of f (lines 7-8). s is added to the set of sampling
locations of p unless ¢ is hidden at s by a triangle # that is visible at
the center of p or of one of its four horizontal and vertical neighbors
(lines 9-11). This test performs occlusion culling relative to the visible
triangles found in the first pass.

In Figure 3 (right), a generates one sampling location in pixel 3
(cross) and b generates one in each of the four pixels. Triangle d
generates no sampling locations, as the fragments of d in pixels 1 and 2
already contain sampling locations that were added for b. The fragment
of d in pixel 0 does not contain a sampling location because d is hidden
at the centroid of its fragment by a, which was found at step 1. A
sampling location at the centroid of the fragment of d in pixel O would
be wasteful as it would only reconfirm that a is visible, with no chance
of elucidating the visibility status of d.

(Line 12) The third pass renders the dataset over the sampling loca-
tions defined by the second pass. Each triangle is projected onto the
pixel grid G. For every pixel that the projection intersects, the triangle
is z-buffered over the sampling locations that are inside the projection.

(Lines 13—15) The closest triangles recorded by the sampling loca-
tions after the third pass are collected to form the visible set.

Fig. 4. Visibility subdivision for top-left image in Figure 1.
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Fig. 5. lterative from-point visibility approach combining sample-based
(green) and continuous (blue) visibility analysis.

3.3 Complexity

The complexity of the aggressive algorithm (Algorithm 1) is dominated
by the point-in-triangle tests in lines 6 and 12. Our implementation
tests every site in a pixel against every triangle that intersects the
pixel. The cost for a pixel with ¢ triangles and s < 7 sites is O(ts).
We can reduce the number of tests by storing the sites in a quadtree,
retrieving the ones inside the bounding box of the triangle, and testing
if they are in the triangle. In our experiments, quadtrees reduce the
number of tests by 20% to 80%, but their construction cost outweighs
these savings. Maximum-spread kd-trees [18] have better asymptotic
complexity than quadtrees, but perform similarly on step 12 in our
experiments, and are inapplicable to step 6 because they cannot be built
incrementally. Range trees with dynamic fractional cascading [32]
are best in theory because they have optimal O(logs) query time, but
they use many pointers, which degrades GPU performance. Another
option is to use a simplex search to find the sites in a triangle. In
our experiments, only 10% to 20% of the sites in the bounding box
of a triangle are in the triangle, so the potential savings are large.
Unfortunately, the best known simplex algorithms take O(4/s) time
per query or use O(s?) memory [12, Chapter 16]. Moreover, they are
complicated to implement, have large constant factors, and cannot be
built incrementally.

4 EFFICIENT AND ROBUST EXACT VISIBILITY

The from-point visibility subdivision is the partition of the image plane
induced by the projected edges of the visible triangles. The regions
of the partition are polygons in which a single triangle is visible. The
region boundaries are the visible segments of the projected triangle
edges. Figure 4 shows the subdivision of the Manhattan dataset shown
in Figure 1.

4.1 Approach

We employ a novel hybrid approach to exact visibility computation that
combines sample-based with continuous visibility analysis (Figure 5).

Algorithm 2 Exact from-point visibility

Input: dataset D, viewpoint o, reference image G, aggressive visible
set Vp
Output: exact set of visible triangles V
1. V=VWU=D-V,,VS=0
2: for all triangles 7 € Vy do AddTriangle(VS,t,0,G)
3: while U # 0 do

4 for all pixels p€ Gdo p.S=0

5 for all triangles r € U do

6: if ¢ is hidden by VS then

7: U=U—{t}

8: else

9: AddSamplingLocations(VS,t,0,G)
10: Render U from o over G
11: for all sampling locations s of all pixels in G do
12: t = s.triangle
13: ift V then
14: V =VU{t},U=U—{t}, AddTriangle(VS,t,0,G)

15: returnV

Vo Vo Vo
v
A VA A
v; v, v, Vg v v, v
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1 V2
(1) (3)
Fig. 6. Adding a triangle to a visibility subdivision: current visibility
subdivision (1), addition of an intersecting (2) and of an overlapping (3)
triangle.

The aggressive visibility algorithm is run (step 0) then the aggressive
visible set is extended iteratively to the exact set (steps 1-4). At each
iteration, the visibility subdivision is updated, first with the aggressive
visible set and subsequently with the newly found visible triangles
(step 1). The other triangles are tested against the visibility subdivision,
some are proven to be hidden, and the rest are deemed undecided
(2). Additional sampling locations are defined where the undecided
triangles might be visible (3). The undecided triangles are rendered over
these sampling locations to reveal additional visible triangles (4). The
iteration ends when no undecided triangles remain. A sampling location
created at step 3 is guaranteed to find a new visible triangle: either the
undecided triangle that generated it or a closer triangle. Therefore each
iteration reduces the undecided set and the algorithm converges.

4.2 Algorithm

The exact visibility algorithm appears in Algorithm 2. The inputs are
those of the aggressive algorithm plus the aggressive visible set.

(Line 1) Initialize the visible set V' to the aggressive visible set Vj
and place the other triangles in the undecided set U. The visibility
subdivision VS is initialized to empty.

(Line 2) Construct an initial visibility subdivision V' from the ag-
gressive visible set Vj by adding the triangles one at a time. The con-
struction is illustrated in Figure 6. The initial visibility subdivision has
three edges that bound the red triangle (1). When an intersecting (green)
triangle is added (2), the visibility subdivision is updated to define two
regions where the red triangle is visible, vovgvsvgv,, and vyvgvy, and
one region where the green triangle is visible, v3v7vgvqvgvsve. If the
new triangle is contained in a single region and is in front of that trian-
gle (3), the region acquires a hole and the new triangle creates a new
region. In the example, the region where the red triangle is visible is
bounded by two edge loops, vov;v, and v3vsvy, and the region where
the green triangle is visible has one edge loop, v3v4vs. Subdivision
construction is described in Section 4.3.

(Lines 3-14) Iterate until there are no more undecided triangles.
Each iteration first clears the sets of sampling locations S stored at
each pixel p in G (line 4), as a sampling location is not useful beyond
the iteration when it was created and found its visible triangle. Then
the undecided triangles are processed one at a time (lines 5-9). If
an undecided triangle ¢ is hidden by the visibility subdivision VS, ¢
is removed from further consideration (line 7). Otherwise, sampling

Fig. 7. (1) Six sampling locations (dots) created for undecided triangle ¢
at first iteration, (2) triangles s, u, and v visible at those sampling locations,
and (3) eight sampling locations (dots) created for 7 at second iteration.



locations are created for each region r of VS where ¢ is visible (line 9).
The visibility test is described in Section 4.3.

(Lines 9-14) If a triangle ¢ is not hidden by V'S, generate sampling
locations at the visible parts. The sampling locations are inside # near
the endpoints of the edges that ¢ would create if it were added to V'S. In
Figure 7 (1), ¢ is hidden in regions r3 and r4, but not in ry and r,, and
six sampling locations are created. The remaining undecided triangles
are rendered over the new sampling locations (line 10). The newly
found visible triangles are added to the visible set, and are used to
update the visibility subdivision (lines 11-14).

Visibility is determined over several iterations. A sampling location
g generated for an undecided triangle r might be covered by another
undecided triangle that is closer than ¢ at ¢. If all sampling locations
generated for an undecided triangle ¢ are won by other undecided
triangles, the visibility of # will not be determined at the current iteration.
In Figure 7, the six sampling locations generated for ¢ at the first
iteration are won by s, u, and v (2), so ¢ remains undecided. The
updated visibility subdivision does not hide ¢, so another eight sampling
locations are generated for ¢ (3).

The algorithm is guaranteed to converge because every iteration
creates a sampling location at which an undecided triangle is visible,
thereby shrinking the undecided set. The algorithm is fast for several
reasons. (1) The expensive construction of the visibility subdivision is
shielded from the full dataset complexity and only has to run on the
visible set. (2) The first iteration finds almost all the visible triangles
and rules out almost all the hidden triangles because the aggressive
visible set is almost complete. (3) A triangle that fails to be decided at
the current iteration is sampled with at least three sampling locations
close to the contour of the part of  that is visible in the current visibility
subdivision. It is unlikely that ¢ be visible, yet hidden at all of these
sampling locations.

4.3 Visibility subdivision construction

The visibility subdivision is encoded using the half-edge subdivision
representation [12, Chapter 2]. The edges contain pointers to the trian-
gles that are visible to their left. Edges are added, split, and removed as
described in the textbook. A triangle is added to the visibility subdivi-
sion with Algorithm 3. The algorithm updates the vertices and edges of
the subdivision. The faces are not needed for enumerating the visible
set. When they are needed, for example for computing the quality of
the aggressive visible set, they are computed by a standard algorithm
after the visibility subdivision is complete.

(Line 1) Project the input 3D triangle # to 2D triangle ¢’ with vertices
(voviv2).

(Line 2) Find the set E of visibility subdivision edges that intersect
the edges of ¢'. In Figure 6, E = {vgv1,v{v2,vpv3} in part (2) and E is
empty in part (3).

(Line 3-6) If E is empty, add the edges of ¢’ to VS (Line 6) if there
is no triangle s in V'S that covers ¢’ (Lines 4-5). In Figure 6 (3), the

Algorithm 3 The addition of one triangle to the visibility subdivision

Input: current visibility subdivision VS, triangle to be added ¢, view-
point o, reference image G
Output: updated visibility subdivision V.S
1: t'(vg,v1,v2) = Project(t,0,G)
2: E=VSnt
3: if E=0 then

4 s = FindCoveringTriangle(V S,t")

5: if (s = 0) V (' in front of s) then

6: VS =VSU{vgvi,viva,vavo}

7: else

8: S=0

9: for all edges e € E do
10: for all edges f in {vov|,viva,v2vp} do S = SU Split(e, f)
11: Remove hidden edges from §

12: VS=VSuS
13: return VS

covering triangle is s = vgv{ v, and ¢’ is in front of s, so its edges are
added to the visibility subdivision.

(Lines 8-10) If E is not empty, compute a set S of edges obtained by
splitting the intersecting edges of V.S and ¢’ (Lines 9-10). In Figure 6
(2), S = {vove, V6v7, VIV1, VIVg, V§Vo, VoVa, VgVs, V5V, V3V7, V7Vs,
VgV4, V4V9, V9Vs, V5Ve, V6V3}.

(Line 11) Remove the hidden edges from S. These are vgv7 and vgvg
in Figure 6 (2).

(Line 12) Add S to the visibility subdivision.

For the example in Figure 6 (2), there are three regions: vyvgvsvgva,
vivgvy, and v3vgvs; in (3), there are two regions: vgviv, with hole
v3vsvyg, and v3v4vs without holes.

The hidden edge test in line 11 has two cases. A subedge of a
subdivision edge is hidden if it is behind z. A subedge of #’ is hidden
if it is behind the triangle that is visible to the left of the subdivision
edges that contain its endpoints. For example, vsvg is compared to the
red triangle, vgv3 is compared to the background, and neither is hidden.

The hidden triangle test in line 6 of Algorithm 2 employs the second
case of the hidden edge test. A triangle is hidden when its three edges
are hidden. An edge is hidden unless it is in front of the triangle to the
left of a subdivision edge that it intersects. A triangle that intersects no
subdivision edges is declared hidden, which is correct because the test
is applied solely to triangles outside the aggressive visible set, which
cannot be completely visible.

4.4 Complexity

The complexity of the exact visibility algorithm (Algorithm 2) is pro-
portional to the number of calls to AddTriangle (line 14) and to the is
hidden” test (line 6). AddTriangle is called once per visible triangle.
The number of calls is hidden” tests equals the total number of unde-
cided triangles in all the iterations of the algorithm. In practice, this
sum is close to the number of triangles outside the aggressive visible
set because almost every other triangle is classified as hidden or visible
in the first iteration. Adding these bounds shows that the total number
of calls roughly equals the number of triangles in the dataset.

The cost of a call to AddTriangle or of a “is hidden” test is domi-
nated by the cost of finding the subdivision edge loops that intersect a
projected triangle. The rest of the call takes linear time in the number
of edges that are found. We implement edge finding with a quadtree
that stores the bounding boxes of the subdivision edges. Quadtrees
perform well although other algorithms have better worst-case com-
plexity [12, Chapter 10]. Far fewer edges intersect the triangles than
their bounding boxes, but finding these edges directly is impractical.
Just finding the edges that have an endpoint in a triangle takes /n time
for n edges, as discussed in Section 3.3. Finding the rest is even harder.

4.5 Robustness

The key to the robust implementation of computational geometry al-
gorithms is correct predicate evaluation. Floating point evaluation is
fast, but rounding error can yield incorrect signs, which can cause large
errors or even program crashes. Sign errors are most likely for degen-
erate predicates whose true sign is zero. Predicates can be evaluated
correctly using arbitrary precision integer arithmetic, but this is slow.
Moreover, degenerate predicates complicate predicate evaluation by
introducing a third case at every branch.

We implement the exact visibility algorithm robustly using the ACP
(Adaptive Controlled Perturbation) robustness technique. ACP is a
state of the art form of Exact Computational Geometry that is faster
and more general than prior work [33].

ACP consists of an input perturbation prior to running the algorithm
and of a predicate evaluation algorithm. The input perturbation adds to
each vertex coordinate a random number uniformly selected in [—8, 8],
with § = 1078, This perturbation is negligible in terms of visibility,
prevents degenerate predicates with high probability, and changes the
value of most predicates by O(§).

The algorithm for visibility subdivision construction and update
(lines 2 and 14 in Algorithm 2) employs two predicates. The first predi-
cate is LT(a, b, ¢) for 2D points a,b,c. It equals —1 or 1 when the path
abc is aright or left turn, and is degenerate when the points are collinear.



The predicate expression is (¢ —b) X (a—b) with u X v = uxvy — uyvy.
The 2D points are the projections of dataset vertices, hence are rational
expressions in the 3D vertex coordinates and in the camera param-
eters. The predicate is used to implement two geometric tests. A
point p is inside a counterclockwise triangle abc if LT(a,b,p) =1,
LT(b,c,p) =1, and LT(c,a, p) = 1. Line segments ab and cd intersect
if LT(a,b,c) = —LT(a,b,d) and LT(c,d,a) = —LT(c,d,b). The sec-
ond predicate determines the order of 3D points a and b along a ray
with direction vector u. The predicate expression is (a — b) - u with
UV = UxVy + UyVy +UzV;.

ACP evaluates predicates with double precision floating point inter-
val arithmetic, which provides an interval that contains the true value
of the predicate. The sign is determined unless the interval contains
zero. Ambiguity is rare because the interval width is on the order of
the floating point rounding unit 1.1 x 1016, whereas the exact value
is O(6). We resolve ambiguous cases by increasing the precision of
the interval arithmetic, and thus shrinking the interval. We start with
a precision of 212 bits and increase it in increments of 53 bits until
zero is excluded. The extended precision arithmetic uses the MPFR
library [17].

Perturbation prevents degeneracy due to input in special position,
such as three collinear triangle vertices. However, it cannot prevent
degeneracy due to algebraic relations among derived quantities. Sup-
pose an input triangle abc intersects an input edge uv at p. Let i, 7,
and p be the projections of u, v, and p. The predicate LT(4, 7, p) is
degenerate for all inputs. We call this type of degeneracy an identity.
The most complicated identity in the exact visibility algorithm is three
2D edges that intersect at a point because they are the projections of
the intersection edges of three triangles that intersect at a point.

ACP provides the first practical technique for detecting identities.
The technique applies to all types of degeneracy, input and identity,
and works with our without input perturbation. ACP evaluates an
ambiguous predicate modulo several prime numbers and declares the
predicate degenerate if all the residues are zero. ACP monitors the
probability of a false degeneracy due to this probabilistic algorithm, so
the user can increase the number of primes if the risk grows too large.
Once an identity is detected, it is handled with special-case logic.

The robust implementation of the exact visibility algorithm ensures
a correct output at a moderate computational cost. Visible triangles are
never omitted from the visible set, hidden triangles are never included,
and the program never crashes.

5 SPHERICAL PARTICLES

We have described our visibility algorithms for datasets modeled with
triangles. The algorithms support any geometric primitive that can be
tessellated. For example, the spherical particles used in a smoothed
particle hydrodynamics (SPH) simulation can be tessellated and the
resulting triangle meshes can be processed with our algorithms. How-
ever, for some applications it suffices to determine visibility at particle
level, which saves the cost of computing partial particle visibility. We
have extended our aggressive algorithm to support spherical particles
directly. We greatly reduces the number of geometric primitives consid-
ered by the algorithm, as even a coarse regular octahedron tessellation
implies eight triangles for every particle. Also, a coarse tessellation
reduces the accuracy of the visible set.

Fig. 8. Left: reference view on which our aggressive from-point particle
visibility algorithm was run. Right: frame rendered from the visible
particles; the zoom factor is 4x and there are 0.09% incorrect pixels

Fig. 9. Reference views on which our algorithms were run (left) and
sample output frames from aggressive visible set (right).

The aggressive algorithm has to ensure that all particles are sampled.
Algorithm 1 requires three changes. First, the algorithm has to deter-
mine the grid pixels that are covered by the projection of the particle,
as needed for each of the three rendering passes (lines 2, 5, and 12).
This is done with a conservative circular approximation of the ellip-
tic projection of the particle centered at the particle center projection.
Second, the algorithm has to tell whether a sampling location is inside
the projection of the particle, as needed for each of the three rendering
passes (lines 2, 6, 12). This is done exactly in 3D by checking whether
the distance from the particle center to the sampling location ray is less
than the particle radius. Third, the algorithm has to find the centroid
of a particle fragment, which is the projection of the particle center if
the center projects inside the pixel, or else the average of the intersec-
tion points between the pixel frame and the circular approximation of
the particle projection. Our aggressive from-point particle visibility
algorithm, produces high-quality frames, even for zoomed-in views
(Figure 8).

6 RESULTS

We have tested our algorithms on several datasets and viewpoints (Ta-
ble 1, Figure 9, Figure 1). The datasets are modeled with triangles
except for Water and Fusion, which are modeled with spherical parti-
cles. The Impact dataset was generated by a finite element simulation
that modeled the dataset with beam, thin shell, thick shell, and hexa-
hedral elements, which were then triangulated for visualization. The
Water model was simulated with the Arbitrary Lagrangian Eulerian
method and visualized with a triangle mesh. The resolution of the
input images to our visibility algorithms is the same as the resolution of
the output frames: 720 x 1280. For the Manhattan midtown view, we
computed visibility in all directions, using a cubemap with a resolution
of 6 x 1024 x 1024, and averaged the results over its faces.

6.1 Quality

The quality of the visible set computed by our aggressive algorithm
is given in rows 4 to 8 of Table 1. Row 4 gives the percentage of



Table 1. Experiment datasets (rows 1-3), aggressive algorithm quality (4-8), efficiency (9-10), and running time (11-12), and exact algorithm efficiency

(13-15), and running time (16).

Manhattan_ Grass - Forest - Impact — Isosurface Water Fusion
downtown midtown low high outside inside

1. Visual reference Fig 1.1 Video Fig 1.2 Fig 9.1 Fig9.2 Fig9.3 Fig9.4 Fig 1.3 Fig 8 Fig 9.5
2. Dataset triangles 3.96M 3.96M 54.9M 54.9M 47.4M 2.08M 2.08M 497M 2.1 500K
3. Visible set triangles 1.9% 2.3% 0.4% 14% 9.5% 7.0% 1.0% 3.0% 5.0% 9.0%
4. Vis. set completeness 89.0% 92.9% 83.3% 79.3% 72.3% 82.9% 79.4% 90.1% 97.8% 95.6%
5. Vis. subd. completeness 99.98% 99.99% 99.82% 98.19% 98.42% 99.94% 99.94% 99.66% - -
6. Average zoom factor 3.4x 3.4x 3.4x 3.4x 3.4x 4.8x 3.9x 3.4x 3.4x 2.4x
7. Average pixel error 0.03% 0.05% 0.11% 2.64% 2.11% 0.03% 0.01% 0.27% 0.09% 0.04%
8. Maximum pixel error 0.08% 0.17% 0.20% 3.71% 3.04% 0.12% 0.03% 0.61% 0.13% 0.07%
9. Average SL / pixel 1.7 1.4 6.7 37.1 28.4 2.0 1.3 209 2.0 3.7
10. Maximum SL / pixel 65 832 1507 736 1383 108 28 1670 27 29
11. Running time CPU [s] 1.7 0.4 6.1 9.5 12.2 1.4 0.5 464 34 1.2
12. Running time CUDA [s] 0.4 0.1 1.1 1.4 1.6 0.5 0.3 - - -
13. Visible tris (il) 96.6% 95.7% 89.1% 81.2% 73.0% 96.1% 98.6% 94.7% - -
14. Decided tris (i1) 99.7% 98.5% 99.8% 90.4% 86.2% 98.3% 99.9% 95.3% - -
15. Iterations to convergence 2 2 3 3 3 4 3 3 - -
16. Running time CPU [s] 25 27 160 12871 9000 90 15 146 - -

visible triangles found. For an accurate estimate of the quality of the
visible set, we provide the visibility subdivision completeness (row
5), defined as the percentage of the reference image area where the
aggressive algorithm computes visibility correctly. Given a reference
image point p, visibility is computed correctly at p if the triangle visible
at p is part of the aggressive set. We compute the visibility subdivision
completeness by comparing the visibility subdivisions built from the
aggressive and the exact visible sets. The completeness is 98.2% and
98.4% for Grass high and Forest, which have tiny triangles and high
depth complexity, and 99.7% or better in all the other cases.

We verify the quality of our aggressive visibility algorithm in a
second way by rendering sequences of thousands of frames from the
aggressive visible sets. The frames are rendered from the reference
viewpoint with view direction and zoom factor changes. Row 6 gives
the average zoom factor over the sequence. Rows 7 and 8 give the
average and maximum percentages of incorrect pixels per frame over
the sequence. A pixel is incorrect if it is not set by the same triangle
that sets it when the frame is rendered from the entire dataset. The
errors are small even though the sequences include zooming in. The
maximum zoom factors for Manhattan, Grass, and Forest are 7x, 17x,
and 10x. As our aggressive algorithm guarantees finding all triangles of
a front surface, the few incorrect pixels occur between surfaces where
they are less noticeable. The aggressive algorithm avoids holes in a
visible surface efficiently in a purely sample-based fashion without
computing triangle mesh continuity. For example, our aggressive set
might omit a grass blade that is barely visible at the silhouette of a front
grass blade, but it will never leave an objectionable hole in the middle
of the front grass blade (Figure 10). We also refer the reader to the
video that visualizes the error over a sequence of frames.

Our exact algorithm finds all visible triangles, from which accurate

Fig. 10. Error pixels highlighted in red for a frame with a 17x zoom factor,
rendered from our aggressive set (Figure 1, row 2 & col. 2).

frames are rendered. Compared to rendering the entire dataset, finding
the exact set brings not only the efficiency advantage of not rendering
hidden triangles, but also the quality advantage of avoiding aliasing
artifacts no matter how high the dataset complexity. Indeed, the visi-
bility subdivision computed by the exact algorithm allows aggregating
an output pixel color correctly from the contributions of al/ triangles
visible at the pixel, appropriately weighted by their fractional pixel
coverage [6]. By comparison, even when the dataset is rendered with
high levels of conventional antialiasing, objectionable artifacts remain
(Figure 11). We also refer the reader to the supplemental material that
includes the exact and conventional 4x4 supersampled frames from
Figure 11.

6.2 Efficiency

The efficiency of the aggressive algorithm is summarized in rows 9 and
10 of Table 1. The number of sampling locations per pixel depends
on the average image footprint of the triangles and on the presence of
large blockers, so it is small for datasets like Manhattan, and larger
for datasets like Isosurface. The optimal set of sampling locations has
exactly one sampling location per visible triangle. The set of sampling
locations constructed by our algorithm misses some visible triangles
and has some useless members. Our algorithm can create useless
sampling locations in several scenarios: (1) a visible triangle covers
several pixels and a sampling location is created at each pixel; (2) a
sampling location is constructed for each of several hidden triangles,
and all find the same visible triangle; (3) two overlapping triangles are
sampled with two sampling locations, as opposed to with one sampling
location at the region of overlap. For Grass high, there are 9.7M
visible triangles, so there should be at least 9.7M / (1280 x 720) = 10.5
sampling locations per pixel. Our algorithm completes 98.2% of the
visibility subdivision with 37.1 sampling locations per pixel. For Forest,
the algorithm completes 98.4% of the visibility subdivision with 28.4
sampling locations per pixel, compared to the optimal number of 7.1.

The efficiency of the exact algorithm is summarized in rows 13
to 15 of Table 1. Row 13 gives the completeness of the visible set
after the first iteration (i1). The algorithm iterates until there are no
more undecided triangles. Most work is done by the first iteration,
which decides most triangles in the initial undecided set (row 14). The
algorithm converges in at most four iterations (row 15).

6.3 Running time

We have developed multicore CPU and CUDA GPU implementations
of the aggressive algorithm. The CPU running times are measured
on an Intel i7-7700 CPU at 3.60GHz with 32GB memory, except that
Isosurface is too large hence is tested on a machine with 24 2.27GHz
Intel X7560 cores. The CUDA running times are measured on an
NVIDIA GeForce RTX 3060 Laptop GPU with 6GB of VRAM. The



Fig. 11. (a) Difference between conventional 4x4 antialiasing and accu-
rate antialiasing using the exact visible set computed using our from-point
visibility algorithm, for the reference Grass image in Figure 1; 45.5% of
the pixels of the conventional image have an incorrect color value; the
average and maximum per pixel color channel errors are 2.96 and 117.65
on the [0, 255] scale. (b) and (c) Magnified detail of conventional an-
tialiasing (left) and our accurate antialiasing (right). Even at the 4x4
supersampling level, conventional antialiasing does not sample the com-
plex dataset adequately: the thin grass blades are interrupted (c, red),
blurry (blue), and noisy (yellow).

running times are given in rows 11 and 12 of Table 1. The Water and
Fusion times are not comparable to the others because these models are
particle based.

The CUDA implementation proceeds in 8 stages. Stage 1 projects
the vertices onto the image plane, using one thread per vertex. Stage 2
counts the triangles that intersect each pixel, using one thread per
triangle. Stage 3 allocates each pixel arrays of triangles indices and of
sampling locations, both of length equal to the number of triangles that
intersect it, using one thread per pixel. Stage 4 assigns triangles to each
pixel, using one thread per triangle. Stage 5 projects the triangles of
each pixel onto the pixel center and records the visible one, using one
thread per pixel. Stage 6 constructs the sampling locations for each
pixel, using 256 threads per pixel. Stage 7 projects the triangles of each
pixel onto the sampling locations of the pixel and records the visible
triangle at each sampling location, using 256 threads per pixel. Stage 8
collects the visible triangles from the sampling locations, using one
thread per triangle. Stage 7 is the slowest and stage 6 is second slowest;
together they take 90% of the running time.

The running time does not increase quadratically with the number
of sampling locations per pixel, as predicted by the complexity analy-
sis in Section 3.3. For the CPU implementation, the time per million
triangles is between 0.1s and 0.7s, and is uncorrelated with the num-
ber of sampling locations per pixel. For example, Grass high has 37
locations on average versus 7 for Grass low, yet is only 50% slower.
The absence of an empirical quadratic dependency on the number of
sampling locations per pixel was also confirmed indirectly by the lack
of speedup observed when storing sampling locations in a quadtree. We

explain this by the fact that the lists of sampling locations are relatively
short, and constant factors dominate. The million triangle times for the
CUDA implementation are between 0.02s and 0.24s, and decrease as
the input size increases.

The running times for the exact visibility algorithm are measured on
one core of the 24-core machine (row 16 of Table 1). They exclude the
running time of the aggressive algorithm that provides the initial visible
set. Not adding hidden triangles to the visibility subdivision during its
incremental construction makes the exact visibility algorithm practical.
It is slowest for Grass High, which requires many small updates to
the initial visibility subdivision due to dataset fragmentation and high
depth complexity. The nearly half a billion triangles of Isosurface are
processed in less than 3min because the front surface hides almost ev-
erything else. However, the exact algorithm exceeds the memory of our
computer, so for Isosurface we tested a non robust implementation that
uses all 24 cores. Building the visibility subdivision for the Manhattan
dataset from all the triangles takes four times as long, which confirms
the benefit of restricting the visibility construction to visible triangles.

6.4 Comparison to Prior Art

We compare our aggressive algorithm to two prior approaches.

6.4.1  Comparison to uniform sampling

The first approach aggregates the visible set by uniformly sampling the
space of visualization rays with conventional images. We compare our
algorithm to computing visibility with a conventional image with reso-
lutions ranging from the resolution of the grid used by our algorithms
to 256 x 256 times the grid resolution (Table 2). For each row, the table
highlights the uniform sampling level values that bracket the aggressive
algorithm value, e.g. 1 and 4 bracket 1.7 for Manhattan row 1. The
aggressive algorithm generates more complete visible sets and visibility
subdivisions than uniform sampling for the same number of sampling
locations per pixel. To match the aggressive visibility set, uniform
sampling requires between 64 and 256 samples per pixel in the most
favorable test (Grass and Forest), and between 1024 and 4096 samples
per pixel in the least favorable test (Isosurface); to match subdivision
completeness, it requires between 16 (Grass) and 4096 (Manhattan and
Isosurface) samples per pixel.

We measured the running times of uniform supersampling and of
our aggressive algorithm on the GPU, using the conventional GPU
pipeline and our CUDA implementation, respectively. The exception
is Isosurface which is too large for the laptop GPU, so we ran our
aggressive algorithm on the 24-core CPU implementation, and uniform
supersampling on a server with two 3.47GHz Intel Xeon CPUs, 48GB
of RAM, and four 6GB NVIDIA GeForce GTX 1060 GPUs. The
aggressive algorithm is faster than uniform sampling that achieves
comparable visible set and visibility subdivision completions, i.e., the
shaded cells in rows 4 are to the left of the shaded cells in rows 2 and
3. The aggressive algorithm is slower than uniform supersampling
with a comparable number of samples per pixel for Manhattan, it has
similar performance for Grass, and then is faster for Forest, which
requires large supersampling factors, i.e., between 4x4 and 8x8. The
CPU running time on Isosurface is comparable to the GPU time for the
samplings that bracket its output quality.

6.4.2 Comparison to state-of-the-art sample-based visibility

The second prior art approach to which we compare our algorithms is
Guided Visibility Sampling (GVS), an aggressive from region visibility
algorithm that samples heuristically the space of visualization rays
that originate from a rectangle or a box [42]. Early rays generated
stochastically guide the generation of subsequent rays based on two
heuristics: adaptive border sampling, which looks for new visible
triangles adjacent to visible triangles that were already found, and
reverse sampling, which looks for visible triangles in unsampled but
accessible space defined by depth discontinuities. The iterative search
for visible triangles is terminated heuristically based on a predetermined
ray budget or on a minimum threshold for the rate of visible triangle
discovery. GVS was recently updated to GV S++, which has improved
heuristics and performance optimizations, and which takes advantage



Table 2. Comparison to uniform supersampling. The grey shaded cells indicate the supersampling levels whose values bracket the aggressive

algorithm value (green shaded cells).

Manhattan downtown Aggr. 1x1 2x2 4x4 8x 8 16 x 16 32 x32 64 x 64 128 x 128 256 x 256
1. SL / pixel 1.7 1 4 16 64 256 1024 4096 16384 65536
2. Visible triangles [%] 89.0 35.2 49.6 64.5 77.9 87.8 93.6 96.6 98.1 98.9
3. Vis. sub. compl. [%] 99.98 97.4 99.6 99.9 99.9 99.9 99.9 ~100 ~100 ~100
4. Time [s] 0.4 0.06 0.2 0.88 32 12 30 122 400 1100

Grass low Aggr. 1x1 2x2 4x4 8x 8 16 x 16 32x32 64 x 64 128 x 128 256 x 256
1. SL / pixel 6.7 1 4 16 64 256 1024 4096 16384 65536
2. Visible triangles [ %] 83.3 31.0 47.5 63.6 77.2 87.0 93.0 96.3 98.1 99.0
3. Vis. sub. compl. [%] 99.82 96.3 99.0 99.7 99.9 99.9 99.9 99.9 99.9 ~100
4. Time [s] 1.1 0.17 0.61 22 79 25 98 380 1134 4055
Forest Agegr. 1x1 2x2 4x4 8x 8 16 x 16 32 x 32 64 x 64 128 x 128 256 x 256
1. SL / pixel 28.4 1 4 16 64 256 1024 4096 16384 65536
2. Visible triangles [ %] 72.3 6.90 20.1 422 64.3 80.1 89.4 94.6 97.2 98.6
3. Vis. sub. compl. [%] 98.42 60.3 80.3 94.1 97.8 98.8 99.3 99.9 99.9 ~100
4. Time [s] 1.6 0.18 0.63 22 8.1 31 110 391 1132 4222
Isosurface Aggr. 1x1 2x2 4x4 8x 8 16 x 16 32 x32 64 x 64 128 x 128 256 x 256
1. SL / pixel 193 1 4 16 64 256 1024 4096 16384 65536
2. Visible triangles [ %] 91.2 2.46 9.84 335 62.9 80.6 89.3 93.2 94.8 96.2
3. Vis. sub. compl. [%] 99.5 5.23 20.75 64.0 93.1 98.7 99.3 99.5 99.7 99.9
4. Time [s] 464.4 334 34.6 35.8 36.4 145.6 582.4 2329 9318 37273

of the Vulkan graphics API and of RTX ray tracing [29]. Since GVS++
is a from-region visibility algorithm, and since our algorithms solve
from-point visibility, we make the comparison possible in two ways:
(1) by forcing GVS++ to start rays from a single point, and (2) by
running our aggressive algorithm multiple times, from viewpoints that
sample a given view region.

GVS++ runs out of memory for all datasets except for Manhattan.
We have used the default GVS++ settings recommended by its authors,
and we have also experimented with parameter settings as described
below. We note that while GVS++ has seven or more parameters that
the application developer has to set, our aggressive algorithm has a
single parameter, i.e., the resolution of the pixel grid where the visible
triangles are found, with a default value equal to the resolution of the
output image.

(1) For a first set of experiments we restricted GVS++ to from-
point visibility by reducing the view region to a view point.

In terms of quality of the visibility solution, for the midtown view-
point, our aggressive algorithm completes the visibility subdivision
at the 99.9860% level with 8.7 million sampling locations. GVS++
completes the visibility subdivision at a similar level of 98.9857%, but
with 983 million rays. In other words, in this equal quality comparison,
our aggressive algorithm has a massive efficiency advantage, sampling
visibility with two order of magnitude fewer rays than GVS++. In
terms of number of visible triangles found, GVS++ finds 399,401 of
the 406,036 triangles in the exact visible set, whereas our aggressive
algorithm finds 374,172 of them. This confirms that the number of
visible triangles found does not accurately quantify the quality of the
visibility solution, as defined by the visibility subdivision completion.
Our exact from-point visibility algorithm allows for the computation of
the visibility subdivision completion, providing an important tool for
the evaluation of approximate visibility algorithms. GVS++ does not
converge on the exact visible set even after casting one billion rays.

In terms of running time, using the time utility, the CUDA imple-
mentation of our aggressive algorithm takes 0.8s real time (wall clock
time), and GVS++ takes 5s. Using NVIDIA’s Nsight GPU profiler, the
GPU time is 0.7s for ours and 4.7s for GVS++ (across 4 GPU contexts:
0.1s + 2.9s + 1.7s). GVS++ reports 0.8s which in our experiments does
not corroborate with total actual time nor with GPU time. We conclude
that our CUDA implementation of our aggressive algorithm is at least
as fast as GVS++.

Furthermore, the GVS++ implementation is not robust: the visible
set it finds also contains 3,232 triangles that are not visible. GVS++
does not provide the visibility subdivision, as needed for applications
of visibility such as antialiasing, and the visibility subdivision has to be
computed from the visible triangles in an additional step. Finally, com-

pared to our exact algorithm, GVS++ fails to find all visible triangles
and to complete the visibility subdivision even after casting nearly one
billion rays.

(2) For a second set of experiments we compared our approach
to GVS++ on from-region visibility. The region is modeled as a box,
which GVS++ takes directly as input. To compute from-region visibility
with our approach we ran our aggressive from-point algorithm on
viewpoints selected randomly inside the view box. The example in
Figure 12 uses the Manhattan dataset and a 30m view cube centered
at the midtown viewpoint, which our approach sampled with 10,000
viewpoints. For each viewpoint, the view direction is random and the
pixel grid resolution is 1000 1000. GVS++ shoots visibility rays from
within the box provided as input.

The top graph shows that our approach accumulates ~13 billion
sampling locations to find 499,277 visible triangles. With the default
parameters (the GVS++ default series in the graph), GVS++ stops
after querying visibility with 3.45 billion rays, finding 476,159 visible
triangles. We have also experimented with GVS++ parameter con-
figurations to make the termination condition as difficult to satisfy as
possible (the GVS++ max series in the graph). Specifically, the GVS++
max configuration terminates if no triangles have been found by 20
consecutive iterations, where each iteration shoots 100 million random
rays. The GVS++ max run terminates after querying visibility with 56
billion rays, and finds 487,083 visible triangles. The x axis of the graph
is truncated at 14 billion visibility queries for illustration clarity, as the
GVS++ max is essentially flat from 14 to 56 billion visibility queries.
Although GVS++ max makes 56 billion queries compared to the 13
billion of our method, the visible set found by GVS++ max is still 12
thousand triangles short of that found by our method. Neither of the
two GVS++ lines overtake the line for our method, which means that
our method finds visible triangles more efficiently no matter the visi-
bility query budget. The graph also shows the visible set accumulated
with a conventional framebuffer (Uniform sampling). The total number
of visibility queries is 10 billion, i.e, 10,000 views with 1000x 1000
pixels each, and the number of visible triangles is consistently and
substantially lower than for our method. Our method extends the set of
sampling locations from 10 to 13 billion to find another 60,148 visible
triangles.

The bottom graph shows the number of visible triangles found as a
function of time. GVS++ default terminates after 5.9s to find 476,159
visible triangles (point a on the graph), which is surpassed by our
method in 146s (point b). GVS++ max terminates after 109s to find
487,083 visible triangles (point ¢), which is surpassed by our method
in 374s (point d). For lower time budgets, in the 10s range, the default
configuration of GVS++ is more time efficient. For medium time
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Fig. 12. Efficiency comparisons between our approach and the prior art
approaches GVS++ and regular sampling, on from-region visibility.

budgets, in the 100s range, GVS++ max is more time efficient. For
time budgets of 400s and above, our approach has the time efficiency
advantage.

7 CONCLUSIONS AND FUTURE WORK

We have described a novel approach to from-point visibility based on
image generalization. The regular sampling grid of a conventional
image is enhanced with sampling locations defined by dataset geome-
try. A few additional sampling locations per pixel reveal most visible
triangles. We provide a visibility approximation that guarantees that no
completely visible triangle is omitted, no matter how small its footprint,
which guarantees front surface continuity. We couple sample-based
and continuous visibility analyses of the image plane to complete the
visible set efficiently. Our exact visibility algorithm is implemented
robustly. The exact visible set allows us to render accurate images
by taking into account all triangles visible at a pixel, overcoming the
aliasing artifacts that pervade visualizations of complex datasets even
when high levels of conventional antialiasing are used.

Our aggressive algorithm finds some partially visible triangles, but
makes no guarantee about them. Future work could strengthen the
quality guarantee by finding all the visible triangles that are partially
occluded by a front surface. This could largely be achieved by sampling
each triangle at its vertices. Future work should examine the trade-off
between the cost of the additional sampling locations and the increase
in visibility subdivision completeness.

The grid resolution of the aggressive algorithm influences the qual-
ity of the visible set and the efficiency of its computation. A higher
grid resolution implies smaller triangle fragments, which increases the
probability that a partially visible triangle has a completely visible
fragment, and thus that the triangle is found. Furthermore, a higher
grid resolution reduces the maximum number of sampling locations per
pixel, which has performance implications as described above. We set
the grid resolution to the intended output image resolution, based on the
consideration that the resulting approximate visible set should not make
errors larger than one output image pixel. Whereas this is a reasonable
approach, it remains heuristic. When coupled with a hierarchical data

structure for storing the sampling locations, coarser grid resolutions
are possible, all the way to the extreme case of not using a grid at all.
At the other end of the spectrum, very high resolution grids can limit
the number of sampling locations per pixel, but increase the number
of pixels. For example, reducing the grid resolution from 1280x720 to
640x360 changes the running times by a factor of 0.41 for Manhattan
downtown, of 1.74 for Grass low, of 1.16 for Grass high, of 1.2 for
Forest, of 0.47 for Impact outside, and of 0.36 for Impact reverse. There
is a speedup when the triangles are large and a slowdown when they
are small. The number of visible triangles decreases consistently with
factors of .96, .94, .92, .92, .96, and .98. In addition to the empirical
approach of trying multiple grid resolutions to optimize the visible set
accuracy versus running time, future work could compute the optimal
grid resolution for a given viewpoint based on the geometric properties
of the dataset, such as depth complexity and complexity uniformity.

We have used our robust exact from-point visibility algorithm to
estimate the quality of approximate visible sets, such as those produced
by our aggressive algorithm and GVS++, in terms of visibility sub-
division completeness and numerical robustness. Future work could
use our exact algorithm to investigate the quality of other approximate
visibility algorithms, including the numerical robustness of industrial
grade rasterizers and ray tracers. For example, one could investigate the
number of false positives when uniformly sampling a complex dataset
at high resolution with a conventional GPU rendering pass.

Another topic for future work is extending the exact visibility algo-
rithm to particle datasets, thereby avoiding the time and memory cost
of tesselation. The projection of a particle has curved edges, which
are harder to manipulate than line segments. The curves must be de-
composed into monotone segments and curve intersection points must
be isolated. These algebraic computations are impractical for large
datasets using current algorithms. So far we have considered a single
GPU and future work could examine speeding up visibility compu-
tation using multiple GPUs. Our method breaks up the from-region
visibility computation problem into many, small, and uniform-sized
sub-problems and therefore has the potential for speedup scalability
with the number of GPUs. GVS++ could leverage multiple GPUs
by voxelizing the view region, and future work should compare the
efficiency of parallel implementations of the two approaches.

Another direction of future work is to apply our visibility algorithms
to solve higher level problems in graphics and visualization. For exam-
ple, a hard shadow algorithm has to evaluate how much of an output
image pixel is visible from the point light source, which can be done
by reprojecting a pixel sample to the shadow map to query its visibility.
Our exact algorithm allows evaluating such queries accurately, whereas
using an incomplete (aggressive) visible set from the point light source
leads to an incorrect output pixel color that is too bright. Our current
work compares our algorithms to prior art analytically, in terms of
asymptotic computational load, and empirically, in terms of of actual
number of visibility queries and running time. As battery powered
computing platforms proliferate, such as laptops, tablets, phones, and
all-in-one VR headsets, future work should also compare approaches
in terms of power consumption.

A final direction of future work is to use the image generalization
paradigm to develop more general visibility algorithms. Our from-point
algorithms compute visibility for a 2D visualization ray space. We have
already shown that our algorithms can provide a good approximation
of visibility for the 4D ray space of from-rectangle visibility, by aggre-
gating visibility over a set of viewpoints sampling the view rectangle.
However, sampling the view rectangle is both redundant, as the visible
sets of nearby viewpoints have substantial overlap, and approximate,
as no view rectangle sampling resolution can guarantee finding all
visible triangles. We envision generalizing the zero-dimensional image
plane sampling locations used in from-point visibility to 1D and 2D
sampling locations that can capture the triangles visible from a segment
and a rectangle efficiently, accurately, and non-redundantly. The exact
visibility algorithm can be generalized to an interval of viewpoints
by constructing the initial subdivision and updating it at viewpoints
where structural changes occur, for example a triangle becomes visible
or vanishes. The ultimate goal is to develop 3D visibility sampling



locations, suitable for the 5D visualization ray space of from-rectangle
visibility of dynamic datasets.
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