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Fig. 1. Results of our from-point visibility algorithms on three datasets with 4, 55, and 500 million triangles (from top to bottom). The left
column shows the reference images where our algorithms were run. The middle and the right columns show frames rendered from our
aggressive and exact visible sets. Despite the large zoom factors (i.e., 7x, 17x, and 10x), the frames from the aggressive set have
only a small percentage ¢ of incorrect pixels. The frames from the exact set are identical to the ones one would obtain from the entire
dataset. Despite the complex occlusion patterns in these examples, our exact algorithm converged in three iterations.

Abstract—This paper presents two from-point visibility algorithms, one aggressive and one exact. The aggressive algorithm computes
efficiently a nearly complete visible set, with the guarantee of finding all triangles of a front surface, no matter how small their image
footprint. The exact algorithm starts from the aggressive visible set and finds the remaining visible triangles efficiently and robustly.
The algorithms are based on the idea of generalizing the set of sampling locations defined by the pixels of an image. Starting from a
conventional image with one sampling location at each pixel’'s center, the aggressive algorithm adds sampling locations to make sure
that a triangle is sampled at all the pixels it touches. Thereby, the aggressive algorithm finds all triangles that are completely visible at
a pixel they touch, such as the triangles of a front surface, regardless of geometric level of detail, distance from viewpoint, or view
direction. The exact algorithm builds an initial visibility subdivision from the aggressive visible set, which it then uses to find most of
the hidden triangles. The triangles whose visibility status is yet to be determined are processed iteratively, with the help of additional
sampling locations. Since the initial visible set is almost complete, and since each additional sampling location finds a new visible

triangle by construction, the algorithm converges quickly, in at most four iterations for datasets with tens of millions of triangles.

Index Terms—from-point visibility, aggressive visibility, exact visibility, triangle visibility, particle visibility, image generalization.

1 INTRODUCTION

Visibility is a fundamental problem in visualization that remains open
despite decades of research. Given a 3D dataset and a set of viewpoints,
the visibility problem asks which of the dataset’s geometric primitives
are visible from at least one of the given viewpoints. Visibility algo-
rithms typically work with triangles, which are building blocks of more
complex geometric primitives. A triangle ¢ is visible from a viewpoint
v if there is a point p in ¢ to which there is line of sight from v, i.e., the
line segment vp does not intersect any other triangle in the dataset. As
the number of triangles in the visible set is typically a small fraction of
the total number of triangles in the dataset, visibility is a powerful tool
for reducing dataset complexity.

One approach for solving visibility is to probe for visible triangles
along rays that originate from the given set of viewpoints. Such sample-
based visibility algorithms are called aggressive, in the sense that they
find some but not all visible triangles. Fundamentally, a sample-based
visibility algorithm cannot verify that a triangle is hidden, as that would
require an infinite number of rays to verify that there is no line of
sight to any of the triangle points. Therefore, a sample-based visibility
algorithm cannot know whether the set it found is complete, because
it cannot verify that the triangles that are not in the set are indeed
hidden. A potential advantage of such sample-based algorithms is
efficiency, as they could find all visible triangles at the cost of one



ray per visible triangle, but deciding which rays to use is challenging.
Aggressive visibility algorithms strive to minimize the number of rays
while maximizing the number of visible triangles found.

Another approach to visibility is to analyze continuously the space of
visualization rays originating from the given viewpoints, subdividing it
into regions where a single triangle is visible. Such continuous visibility
algorithms can provide the exact visible set, containing all visible
triangles. One challenge is that continuous visibility algorithms are
computationally expensive, as the dataset complexity is compounded by
the dimensionality of the space of visualization rays. Another challenge
is that continuous visibility algorithms are prone to robustness problems,
meaning that even tiny rounding errors can cause large errors in the
visibility set that they output.

From-point visibility is the problem of finding all triangles that are
visible from a single viewpoint. The problem is important for comput-
ing accurate, trustworthy visualizations of complex datasets by taking
into account the contributions of all triangles visible at each pixel, and
not just those selected haphazardly by palliative conventional antialias-
ing schemes such as 4x4 supersampling. Other applications include
bandwidth and latency reduction in remote visualization, avoiding light
leaks in hard shadow computation, simulating sound propagation accu-
rately, and serving as a building block for solving higher-order visibility
problems, such as from-region visibility.

Although it deals with the simplest possible set of viewpoints—that of
a single viewpoint—from-point visibility does not yet have an efficient
and robust solution. A promising aggressive approach for from-point
visibility is to render the dataset from the given viewpoint into an
image that records one visible triangle per pixel. The advantage is
efficiency, as visibility is probed along a large number of rays at a small
computational cost, in feed forward fashion, by projection followed by
rasterization, which has a small amortized per ray cost. The challenge
is that, in the case of complex datasets, many visible triangles have a
small image footprint and they are not found by any of the pixels of the
image. Improving the aggressive visible set by uniformly increasing
the resolution of the image is prohibitively expensive. Continuous
from-point visibility algorithms have to build a subdivision of the 2D
space of rays originating at the viewpoint, which is computationally
expensive if they have to process all triangles of a complex dataset.

In this paper we present two from-point visibility algorithms, one ag-
gressive and one exact. Our aggressive algorithm computes efficiently
a nearly complete visible set, with the guarantee of finding all triangles
of a front surface, regardless how small their image footprint. Our exact
algorithm starts from the aggressive visible set and finds the remaining
visible triangles efficiently and robustly. The algorithms are based on
the idea of generalizing the set of sampling locations defined by the
pixels of an image. Our aggressive algorithm starts from a conventional
image with sampling locations at pixel centers, and adds sampling
locations to make sure that each triangle is sampled at all the pixels
that it touches. If a triangle 7 is completely visible at a pixel p, ¢ is
guaranteed to be found by its sampling location in p. Since the set of
triangles that are completely visible at one pixel subsumes the set of
completely visible triangles, our aggressive algorithm finds all triangles
of a front surface, regardless of geometric level of detail, distance from
viewpoint, or view direction.

Our exact algorithm builds an initial visibility subdivision from the
aggressive visible set, which it then uses to find most of the hidden
triangles. The triangles whose visibility status is yet to be determined
are processed iteratively, by generating additional sampling locations
where these triangles are not hidden by the current visibility subdivision.
The additional sampling locations find new visible triangles which are
added to the visibility subdivision. Since the initial visible set is almost
complete, and since, by construction, each additional sampling location
finds a new visible triangle, the algorithm converges quickly. Only
visible triangles are added to the visibility subdivision, which makes
our exact algorithm output sensitive.

The robustness requirement is that the visibility subdivision be cor-
rect. The subdivision is a polygonal partition of the image plane, with
one visible triangle per polygon. Correctness is challenging because
the polygonal regions are computed by evaluating millions of predi-

cates, i.e., numerical expressions on whose sign the algorithm execution
branches. A single incorrect predicate, due to floating point rounding
error, can corrupt the entire subdivision because of global dependen-
cies. We achieve robustness using the Exact Geometric Computation
(EGC) [33] strategy of implementing predicates that are correct de-
spite numerical error. EGC evaluates a predicate using floating point
arithmetic, it tests if rounding error might cause an error, and if so
it reevaluates the predicate using rational arithmetic. The strategy is
efficient because the expensive rational arithmetic evaluation is limited
to the small fraction of predicates where it is needed.

Figure 1 illustrates our from-point visibility algorithms. The ag-
gressive visible set is nearly complete, as shown by the small errors
obtained even in frames with a large zoom factor (middle column).
The few incorrect pixels are at surface boundaries, so the frames are
comparable to the truth frames obtained from the exact set. Another
measure of the completeness of the aggressive set is the percentage
of the reference image where visibility is solved correctly, which is
99.98%, 99.93%, and 99.96% for the three datasets, from top to bottom.
Our exact visibility algorithm extends the aggressive set to the exact
set in a small number of iterations. We also refer the reader to the
accompanying video. We will distribute our exact algorithm via the
public domain, to be included in applications and to serve as reference
for bench-marking heuristic visibility algorithms.

In summary, our paper makes the following contributions:

» The first aggressive visibility algorithm with a quality guarantee.
 The first output sensitive exact from-point visibility algorithm.
* The first robust implementation of exact from-point visibility.

2 PRIOR WORK

Visibility algorithms are classified based on the visible sets that they
compute. Conservative algorithms overestimate visibility, so no visible
triangle is omitted. The benefit is an accurate image, but the number
of hidden triangles in the output can be substantial [8,11]. Aggressive
algorithms underestimate the set of visible triangles, which leads to
image errors. The goal of aggressive visibility research is to reduce
and control the error [26,32]. Exact algorithms find only and all visible
triangles, which avoids the cost of rendering unnecessary triangles as
well as any image error.

Aggressive Visibility. We distinguish between probing visibility by
casting individual rays and by rendering entire images. Algorithms
in the first category use heuristics to shoot rays that are likely to find
visible triangles, and subsequent sampling is guided by what the initial
rays find [3,23,32]. The advantage is the flexibility to cast precisely
the rays deemed necessary, which limits sampling redundancy, and
allows supporting effects such as lens distortion, foveation, or depth of
field [19]. However, it is difficult to place error bounds on the results,
and, as we show in the results section, our aggressive visible set has a
quality advantage over guided visibility sampling [3,23].

Algorithms in the second category leverage the fact that the amor-
tized cost of rays in an image is lower than that of individual rays. Our
algorithms fall in this category. An image only captures samples visible
from its viewpoint. One option is to use images from additional view-
points [25], which are highly redundant, or to eliminate redundancy as
a pre-process [24,29]. The challenge of these approaches is to decide
which images are needed for a sufficient sampling of the visibility pa-
rameter space. The usual strategy is to sample uniformly as densely as
possible, and thus the visibility error is not bounded. Multiperspective
images capture in a single shot more than what is visible from a single
viewpoint through innovation at the camera model level [9, 34], but
there is no visible set quality guarantee.

Specialized visibility algorithms have been developed for many
contexts. The algorithms are typically aggressive, focusing on finding
the visible triangles of highest relevance in the particular context. The
semi-analytical visibility algorithm [16], developed for motion blur,
samples the image with lines as opposed to points, an idea borrowed
from temporal antialiasing [21]. Visibility is analyzed continuously
over time for each line sample. The algorithm is aggressive because
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the analysis is restricted to a uniform grid of image lines. Line samples
are a brute force approach for improving uniform point sampling. The
line parameter adds an expensive second dimension to the 1D motion
blur visibility problem. The uniform line sample pattern is heuristic, so
even after solving the higher-dimension visibility problem, there is still
no guarantee for the quality of the solution. We propose deterministic
point sampling that guarantees a quality visible set without increasing
the visibility problem dimensionality.

Recent work analyzes visibility in the camera offset space defined
by viewpoint translations [18]; the visible set is exact at pixel centers
under camera translations, which means that visible triangles that are
not visible at a pixel center are missed; in order to capture additional
visible triangles, such as those visible under camera rotations, additional
sampling locations are added heuristically. Our aggressive algorithm
guarantees quality by generalizing the set of sampling locations on the
image plane, beyond the predefined set of pixel centers.

Exact Visibility. Early work focuses on from-point visibility for
antialiasing. The solution was to compute a visibility subdivision
for each pixel, defined by the triangle fragments visible at each pixel
[5,6,31]. The solution is inefficient because fragments of hidden
triangles are added and then removed from the visibility subdivision.
We compute the visibility subdivision exclusively from visible triangles,
which amounts to an efficient way of computing an accurate image that
takes into account the contributions of all visible triangles, no matter
how small their footprint. Pixel-free from-point visibility algorithms
are also inefficient because they compute occluded intersections [15];
typical running times are O((n+ k)logn) or O(nlogn+k+t) for n
triangles with k edge intersections and ¢ triangle intersections on the
image plane. Output sensitive algorithms are restricted to special input
[22,30]. From-point visibility was implemented on the GPU [2], but
with a running time quadratic in the number of triangles.

Beam tracing [17] analyzes from-point visibility continuously by
using conical or frustum-like beams. The unsampled gaps between rays
are avoided, but beam-triangle intersection is costly. Beam-tracing has
also been used for shadow [1,7] and sound [27] rendering, using acceler-
ation schemes based on adaptive beam splitting. Beam tracing has been
recently revisited for its ability to integrate visibility, which supports
the differentiable rendering used for example in inverse graphics [36];
the complexity of the polygonal regions of the visibility subdivision
of the beam is capped at four vertices, but that increases the number
of regions; most importantly, the visibility subdivisions are computed
from all triangles, unnecessarily adding and then removing the contri-
butions of triangles that are only visible with respect to the triangles
considered so far, and that ultimately turn out to be hidden. We bypass
the need for beams, replacing them with the smallest number of rays
needed to capture the visible triangles over a solid angle; we do not
trace rays, but rather evaluate visibility along them by projection onto
their sampling locations; finally, we compute the visibility subdivision
exclusively from visible triangles.

Conservative Visibility algorithms are exact algorithms that run on
a visibility problem that was conservatively simplified, e.g. through
extended projections [12], or occluder erosion [10]. Our aggressive
algorithm produces a visible set that is almost complete, so adding
the triangles that are not hidden by the aggressive set yields a good
conservative visible set. Per-frame occlusion culling improves render-
ing performance by batch discarding triangles that are hidden in the
current output frame [4]. Triangles are grouped inside containers with
simple geometry, the containers are rendered on a partial z-buffer of
the output frame obtained from known big blockers, and the triangles
of hidden containers are discarded. Occlusion culling methods can also
be aggressive by fusing blockers heuristically [35].

Irregular Framebuffers. We advocate abandoning the uniform sam-
pling of conventional images in favor of adding sampling locations
deterministically to guarantee that all visible triangles are found. The
benefits of irregular framebuffers have been noted before in contexts
that include: pixel-accurate shadow mapping [20], where the shadow
map estimates light visibility precisely at the point samples captured
by the output image; point-based rendering [28], where projected refer-
ence image samples are not clamped to the output image pixel grid but

Fig. 2. Image of a finely tessellated sphere (left) and frame rendered
from the visible triangles found by the image, using the same viewpoint,
but a slightly different view direction (right). The frame shows that the
visible set is far from complete.

rather located precisely within the output image pixel using a pair of
offsets; and focus plus context visualization where focus regions are
sampled at a higher rate [14].

3 GUARANTEED-QUALITY AGGRESSIVE VISIBILITY

An image is an appealing tool for computing visibility. Rendering an
image amounts to probing dataset visibility efficiently with millions of
rays, one for each pixel. However, the visible set found by an image
can be incomplete because triangles can have small footprints due to
high dataset complexity, to large distances to the eye, or to grazing
viewing angles. Fig. 2 shows that a conventional image misses most
visible triangles of the front surface of a finely tessellated sphere. A
slightly different view direction reveals the many gaps in the aggressive
visible set. A single sampling location per pixel, e.g., at the center
of the pixel, captures only one of the many visible triangles whose
projections overlap with the pixel (Fig. 3, left). Alleviating the problem
by increasing image resolution is inefficient, as some triangles will be
sampled multiple times, and only palliative, as no matter the resolution,
the image cannot guarantee finding all triangles.

3.1

We improve the quality of the visible set found by an image by enhanc-
ing the image with additional sampling locations where visibility is
probed. The goal is to minimize the number of additional sampling
locations and to maximize the number of triangles found. Furthermore,
the additional sampling locations should guarantee finding all triangles
of a front surface, no matter how small their image footprint.

Sampling locations are added in greedy fashion with a pass over the
dataset triangles, to make sure that all triangle fragments are sampled.
We define a triangle fragment as the intersection between the image
plane projection of a triangle and a pixel that the projection touches.
If a triangle fragment does not contain any of the sampling locations
already defined at the pixel, the list of sampling locations at the pixel
is extended with the fragment center. The resulting set of sampling
locations samples all triangle fragments (Fig. 3, left). The dataset is
then rendered over the sampling locations to obtain the visible set.

Our approach guarantees finding all triangles with a completely
visible fragment, which includes all completely visible triangles such
as those of a front surface. Consider a fragment of a triangle of a front
face. The first pass of the algorithm guarantees that the fragment con-
tains a sampling location, and, since the triangle is completely visible,
the triangle will win the visibility test at the sampling location, which
guarantees finding the triangle. Our approach is efficient. Whereas the
conventional approach of uniformly increasing the image resolution
adds sampling locations blindly, in the hope of finding more triangles,
our approach adds a sampling location only when it encounters a frag-
ment that is not sampled by any of the existing sampling locations, and
the new sampling location is guaranteed to sample the fragment by
construction. Our approach increases the image resolution locally, as
needed to sample the visibility of dataset regions with higher complex-
ity. Our approach finds all the triangles of the front face of the sphere
in Fig. 2 at the cost of one sampling location per fragment.

Approach

3.2 Algorithm

Our aggressive from-point visibility algorithm (Algorithm 1) takes
as input the dataset geometry D, the point for which to estimate the
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Fig. 3. (Left) Finding all front-surface triangles. The triangles (blue lines)
projecting at a pixel (black lines) are shown in wireframe. A sampling
location at the pixel center (dot) captures only one of the many visible
triangles. Our aggressive algorithm adds sampling locations (crosses) to
sample all triangle fragments at the pixel. (Right) Aggressive visibility
and extension to exact visibility. The aggressive algorithm processes
triangles a—d, in that order, finding the visible triangles q, b, c. Triangle d
is missed because d does not have a completely visible fragment, and
because its only partially visible fragment (in pixel 2), is sampled where
d is hidden by b. The exact algorithm finds that the fragment of d in pixel
2 is not hidden by the earlier triangles a—c, and adds a sampling location
in the visible part of the fragment (gray).

visibility o, and a uniform 2D grid of pixels G. G corresponds to the
reference image where visibility is computed.

Algorithm 1 Aggressive from-point visibility

Input: dataset triangles D, viewpoint o, grid of pixels G
Output: aggressive set of visible triangles Vj

1: for all pixels p € G do p.S = {Center(p)}

2: Render D from o over G // PASS 1

3: for all triangles t € D do // PASS 2

4 t' = Project(t,0,G)

5 for all pixels p € ¢’ do

6: if s € p.S such that s € ¢’ then

7.

8

fragment f =¢'Np
sampling location s = Centroid(f)

9: to = p.center.triangle
10: if 7 is closer to o than 7 at s then
11: p.S=pSuU{s}

12: Render D from o over G // PASS 3

13: for all sampling locations s of all pixels in G do
14: Vo = Vo U {s.triangle}

15: return V)

(Line 1) Each pixel of G stores a set of sampling locations S, which
initially contains only the pixel center. In addition to its 2D coordinates,
a sampling location also stores the depth to the closest triangle sampled
so far, and that triangle’s index, which are used to find the triangle
visible at that sampling location.

(Line 2) The algorithm takes three passes over the dataset. The first
pass is a conventional rendering over the pixel grid with one sampling
location at each pixel center. The motivation for this first pass is
efficiency. The first pass finds nearby triangles with a large footprint,
which hide a large number of triangles. These triangles are used in

the second pass to avoid creating unnecessary sampling locations, i.e.
sampling locations that cannot provide additional visibility information.

In Figure 3 (right), the first pass finds triangle a as visible at the centers
of pixels 0 and 1, and ¢ at the centers of pixels 2 and 3.

(Lines 3—11) The second pass adds sampling locations to ensure that
all triangle fragments are sampled. For each pixel p covered by the
projection ¢’ of a triangle ¢ (line 5), the algorithm checks whether p
already has a sampling location s that samples ¢ (line 6). Since s must
be inside p, this is equivalent to checking whether p has a sampling
location inside the fragment f of ¢ at p. If not, f is computed and a
sampling location s is created at its centroid (lines 7-8). s is added to
the set of sampling locations of p, unless ¢ is hidden at s by the triangle

Fig. 4. Visibility subdivision for top-left image in Figure 1.

to found by the first pass as visible at the center of p (lines 9-11). The
test in line 10 prevents a futile attempt to probe the visibility of r with
a sampling location where it is already known that #( is closer than
t. The test implements occlusion culling efficiently by precluding the
generation of sampling locations for any triangle completely hidden by
the visible triangles found at the first pass.

In Figure 3 (right), a generates one additional sampling location in
pixel 3 (cross), and b generates one in each of the four pixels. Triangle
d generates no sampling locations, as the fragments of d in pixels 1
and 2 already contain sampling locations that were added for b. The
fragment of d in pixel O does not contain a sampling location because d
is hidden at the centroid of its fragment by a, which was found at step
1. A sampling location at the centroid of the fragment of d in pixel 0
would be wasteful as it would only reconfirm that a is visible, with no
chance of elucidating the visibility status of d.

(Line 12) The third pass renders the dataset triangles over the sam-
pling locations defined by the second pass. For this, each triangle is
projected onto the pixel grid G; for each pixel touched by the trian-
gle projection, the triangle is z-buffered over all the pixel’s sampling
locations that are inside the triangle projection.

(Lines 13—15) The closest triangles recorded by each sampling loca-
tion after the third pass are collected to form the visible set.

4 EFFICIENT AND ROBUST EXACT VISIBILITY

Exact from-point visibility algorithms have to partition the 2D space of
rays through the viewpoint into regions from which a single triangle
is visible. This visibility subdivision can be specified as a polygonal
subdivision of a continuous image plane (Figure 4). One challenge is
efficiency. Whereas it is well understood how to build the visibility
subdivision incrementally, one triangle at a time, it is inefficient to
do so by considering all triangles in the dataset, including the hidden
ones. It is unnecessary to update the visibility subdivision for a hidden
triangle #, as the updates will be undone once the triangles hiding ¢ are
processed. Since in a complex dataset the overwhelming majority of
triangles are hidden, updating the visibility subdivision unnecessarily
for all hidden triangles results in a significant amount of wasted com-
putation. Another challenge is robustness. We have seen that the key
to a robust implementation is correct predicate evaluation. Floating
point evaluation is fast, but rounding error can yield an incorrect sign,
which can cause a large error in the visibility subdivision or even a
program crash. Sign errors are most likely for degenerate predicates
whose true sign is zero. Predicates can be evaluated correctly using
arbitrary precision integer arithmetic, but this is slow. A second ro-
bustness problem is that degenerate predicates complicate the visibility
subdivision algorithm by introducing a third case at every branch.

41 Approach

For our exact from-point visibility algorithm to be efficient, we con-
struct the visibility subdivision exclusively from visible triangles. For
this we introduce a hybrid approach to exact visibility computation that
combines sample-based with continuous visibility analysis (Figure 5).

The aggressive visibility algorithm is run first (step 0). Then the
aggressive visible set is extended iteratively to the exact set (steps



Online Submission ID:

v

0. Find 1. Update 2. Find 3. Define 4. Find
Aggressive ] Visibility [ Hidden H» Sampling 9 Visible
Set Subdivision Triangles Locations Triangles

Fig. 5. lterative from-point visibility approach combining sample-based
(green) and continuous (blue) visibility analysis.

1-4). At each iteration, the visibility subdivision is updated based
on the newly found visible triangles (step 1). For the first iteration,
an initial visibility subdivision is built from the aggressive visible
set. Then the triangles yet to be decided as visible or hidden are
tested against the updated visibility subdivision in search of additional
hidden triangles (2). Since all completely visible triangles have already
been found by the aggressive algorithm, a triangle cannot be visible
without its projection intersecting an edge of the visibility subdivision.
Therefore a triangle is hidden if its projection does not intersect any
subdivision edge, or if it is hidden at all such intersections. At the first
iteration, all dataset triangles not in the aggressive set are undecided.
Since the aggressive set is almost complete, the visibility subdivision
is almost complete, so the first iteration finds most hidden triangles.
Additional sampling locations are defined where an undecided triangle
is not hidden by the current visibility subdivision (3). The undecided
triangles are rendered over the additional sampling locations to reveal
additional visible triangles (4). The iterative process stops if after
step 2 no undecided triangles remain. A sampling location created at
step 3 is guaranteed to find a new visible triangle because it is inside
an undecided triangle and outside the current visibility subdivision.
Therefore each iteration reduces the undecided set and the algorithm is
guaranteed to converge.

4.2 Algorithm

The set of triangles found by the aggressive algorithm contains only
but not all visible triangles. Most dataset triangles not in the aggressive
visible set are likely to be hidden, but none is confirmed to be hidden.
We have developed an exact from-point visibility algorithm that lever-
ages the aggressive visible set to find the remaining visible triangles,
confirming that all other triangles are hidden (Algorithm 2).

Algorithm 2 Exact from-point visibility

Input: dataset triangles D, viewpoint o, reference image G, aggressive
visible set V
Output: exact set of visible triangles V
1: V=V, U=D—-V
2: VS = ConstructVisibilitySubvision(Vy,0,G)
3: while U # 0 do

4 for all pixels pe Gdo p.S=0

5 for all triangles t € U do

6: if ¢ is hidden by VS then

7: U=U—{t}

8: else

9: AddSamplingLocations(t,G)
10: Render U from o over G
11: for all sampling locations s of all pixels in G do
12: t =s.triangle,V =V U{t},U =U — {t}
13: VS = AddTriangle(VS,t)

14: return V

(Line 1) Initialize the visible set V to the aggressive visible set Vj
and place the other triangles in the undecided set U.

(Line 2) Construct an initial visibility subdivision VS from the aggres-
sive visible set Vj by projecting triangles from o onto the rectangular
frame of G. VS is a subdivision of the image frame into polygonal
regions where a single triangle is visible. The region boundaries are
the visible segments of the projected triangle edges. VS is constructed

a
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Fig. 6. Incremental construction of visibility subdivision.

Fig. 7. (1) Six sampling locations (dots) created for undecided triangle ¢
at first iteration, (2) triangles s, u, and v visible at those sampling locations,
and (3) eight sampling locations (dots) created for 7 at second iteration.

incrementally by adding one visible triangle at a time. Consider the
dataset with three triangles a, b, ¢ from Figure 6 (1). After a and b are
added, VI has two regions, one for a and one for b (2). VS is updated
with triangle ¢ in two steps. First, VS is intersected with ¢, which
shrinks the region for a to a concave hexagon, and creates two regions
for ¢ (3). Second, the two regions for ¢ are merged (4).

(Lines 3-13) Iterate until there are no more undecided triangles.
Each iteration first clears the sets of sampling locations S stored at
each pixel p in G (line 4), as a sampling location is not useful beyond
the iteration when it was created and found its visible triangle. Then
the undecided triangles are processed one at a time (lines 5-9). If
an undecided triangle ¢ is hidden by the visibility subdivision VS, ¢
is removed from further consideration (line 7). If ¢ is not hidden by
VS, sampling locations are created for each region r of VIS where 7 is
visible (line 9). For a region r and a triangle ¢, the algorithm creates
sampling locations at the vertices of  that project in r, at the vertices of
r inside the projection of ¢, and at the intersection points of the edges
of r with the projected edges of ¢. The sampling locations are created
inside 7, albeit close to its edges or vertices. In Figure 7 (1), ¢ is hidden
in regions r3 and ry4, but not in r; and r,, and six sampling locations
are created. After the undecided triangles are processed, the remaining
undecided triangles are rendered over the new sampling locations (line
10). The newly found visible triangles are added to the visible set, and
are used to update the visibility subdivision (lines 11-13).

Dataset visibility is determined over several iterations. A sampling
location g generated for an undecided triangle  might be covered by
another undecided triangle that is closer than 7 at g. If all sampling
locations generated for an undecided triangle ¢ are won by other unde-
cided triangles, the visibility of # will not be determined at the current
iteration. In Figure 7, none of the six sampling locations generated for
triangle ¢ at the first iteration are won by ¢—they are won by triangles
s,u,v (2). Therefore, t remains undecided after the first iteration. The
updated visibility subdivision does not hide 7, so another eight sampling
locations are generated for ¢ (3).

The algorithm is guaranteed to converge because every iteration
creates a sampling location at which an undecided triangle is visible,
thereby shrinking the undecided set.

The algorithm is fast for several reasons.

(1) The initial construction and subsequent updates of the visibility



subdivision only process visible triangles, which saves the unnecessary
cost of adding a hidden triangle to the visibility subdivision just to
remove it later as the triangles that hide it are discovered. In other words,
the expensive construction of the visibility subdivision is shielded from
the full dataset complexity and only has to run on the visible set which
is a small fraction of the total number of triangles.

(2) Almost all triangles are decided by the first iteration, so little
effort is wasted on failed classification attempts. Since the starting
aggressive visible set is almost complete, the visibility subdivision is
almost complete, so the first iteration finds almost all hidden triangles,
and few triangles remain to be decided through additional iterations.

(3) A triangle that fails to be decided at the current iteration is
sampled in a way that increases the likelihood that it will be classified
at the next iteration. An undecided triangle ¢ is sampled with at least
three sampling locations close to the contour of the part of ¢ that is
not hidden by the current visibility subdivision. It is unlikely that ¢ be
visible, yet hidden at all of these sampling locations. These sampling
locations either reveal that ¢ is visible, or they reveal visible triangles
that complete the visibility subdivision over ¢, which allows the next
iteration to determine that ¢ is hidden.

4.3 Robustness

The ACP robustness technique consists of an input perturbation prior
to running the algorithm and of a predicate evaluation algorithm. The
input perturbation adds to each vertex coordinate a random number
uniformly selected in [—&, 8], with § = 1078, This perturbation is
negligible in terms of visibility, prevents degenerate predicates with
high probability, and changes the value of most predicates by O(J).

The algorithm for visibility subdivision construction and update
(lines 2 and 13 in Algorithm 2) employs two predicates. The first
predicate is LT (a, b, c) for 2D points a,b,c. It equals —1 or 1 when the
path abc is a right or left turn, and is degenerate when the points
are collinear. The predicate expression is (¢ — b) x (a —b) with
u XV = uvy —uyvy. The 2D points are the projections of dataset
vertices, hence are rational expressions in the 3D vertex coordinates
and in the camera parameters. The predicate is used to implement two
geometric tests. A point p is inside a triangle abc if LT (a,b,p) = 1,
LT(b,c,p) =1, and LT (c,a,p) = 1. Line segments ab and cd intersect
if LT (a,b,c) = —LT(a,b,d) and LT (c,d,a) = —LT(c,d,b). The sec-
ond predicate determines the order of 3D points a and b along a ray
with direction vector u. The predicate expression is (a — b) - u with
U~V = UxVy + UyVy + UzVz.

We evaluate predicates with double precision floating point interval
arithmetic, which provides an interval that contains the true value of
the predicate. The sign is determined unless the interval contains zero.
Ambiguity is rare because the interval width is on the order of the
floating point rounding unit 1.1 x 1071, whereas the exact value is
O(8). We resolve ambiguous cases by increasing the precision of
the interval arithmetic, and thus shrinking the interval. We start with
a precision of 212 bits and increase it in increments of 53 bits until
zero is excluded. The extended precision arithmetic uses the MPFR
library [13]. The overall efficiency is high because ambiguity is rare.

Perturbation prevents degeneracy due to input in special position,
such as three collinear triangle vertices. However, perturbation cannot
prevent degeneracy due to algebraic relations among derived quantities.
For example, suppose an input triangle abc intersects an input edge uv
at p. Let i1, ¥, and p be the projections of u, v, and p. The predicate
LT (2,9, p) is degenerate for all inputs. We call this type of degeneracy
an identity. We use structural information to detect identities. For
example, we label intersection points with their defining edges and
triangles. The most complicated case is three 2D edges that intersect
at a point because they are the projections of the intersection edges of
three triangles that intersect at a point. Once an identity is detected, it
is handled with special-case logic.

The robust implementation of the exact visibility algorithm ensures
a correct output at a moderate computational cost. Visible triangles are
never omitted from the visible set, hidden triangles are never included,
and the program never crashes.

Fig. 8. Left: reference view on which our aggressive from-point particle
visibility algorithm was run. Right: frame rendered from the visible
particles; the zoom factor is 4x and there are 0.09% incorrect pixels

5 SPHERICAL PARTICLES

We have described our visibility algorithms for datasets modeled with
triangles. The algorithms support any geometric primitive that can be
tessellated. For example, the spherical particles used in a smoothed
particle hydrodynamics (SPH) simulation can be tessellated and the
resulting triangle meshes can be processed with our algorithms. How-
ever, for some applications it might be sufficient to determine visibility
at particle level, which saves the cost of computing partial particle visi-
bility. For this, we have extended our aggressive algorithm to support
spherical particles directly. This reduces substantially the number of
geometric primitives considered by the algorithm, as even a coarse a
regular octahedron tessellation implies eight triangles for every particle.
Also, a coarse tessellation would reduce the accuracy of the visible set.

The aggressive algorithm now has to ensure that all particles are
sampled. In order to work with particles, Algorithm 1 requires three
changes. First, the algorithm has to determine the grid pixels that are
covered by the projection of the particle, as needed for each of the three
rendering passes (lines 2, 5, and 12). This is done with a conservative
circular approximation of the elliptic projection of the particle, centered
at the particle center projection. Second, the algorithm has to tell
whether a sampling location, i.e. a point on the image plane, is inside
the projection of the particle, as needed for each of the three rendering
passes (lines 2, 6, 12). This is done accurately, in 3D, by checking
whether the distance from the particle center to the sampling location
ray is less than the particle radius. Third, the algorithm has to find
the centroid of a particle fragment, which is the projection of the
particle center if the center projects inside the pixel, or else the average
of the intersection points between the pixel frame and the circular
approximation of the particle projection. Our aggressive from-point
particle visibility algorithm, produces high-quality frames, even for
zoomed-in views Figure 8.

6 RESULTS AND DISCUSSION

We have tested our algorithm on several datasets and viewpoints (Ta-
ble 1). All datasets are modeled with triangles except for Water and
Fusion, which are modeled with spherical particles. The Impact dataset
was generated by a finite element analysis (FEA) simulation that mod-
eled the dataset with beam, thin shell, thick shell, and hexahedral
elements, which were then triangulated for visualization; the liquid was
simulated with the Arbitrary Lagrangian Eulerian (ALE) method and
visualized with an isosurface triangle mesh. The Isosurface dataset is a
triangle mesh. The resolution of the image where our visibility algo-
rithms were run was the same as the resolution of the output frames, i.e.
720 x 1280. For the Manhattan midtown view we computed visibility
in all directions using a cubemap, with a resolution of 6 x 1024 x 1024.

6.1 Quality

The quality of the visibility solution computed by our aggressive algo-
rithm is given in rows 4 to 8 of Table 1. Row 4 gives the percentage of
visible triangles found. However, this metric is not an accurate estimate
of the quality of the visible set, as it does not take into account the
size of the visible part of a triangle-missing triangles whose visible
parts have areas of 10 or 1.0e-10 pixels are counted the same. For
an accurate estimate of the quality of the visible set, we provide the
visibility subdivision completeness (row 5), defined as the percentage
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Fig. 9. Reference view on which our algorithms were run (left) and
sample output frames from aggressive visible set (right).

of the reference image area where the aggressive algorithm computes
visibility correctly. Given a reference image point p, visibility is com-
puted correctly at p if the triangle visible at p is part of the aggressive
set. We compute the visibility subdivision completeness by compar-
ing the visibility subdivisions built from the aggressive and the exact
visible sets. The completeness is 97.55% and 98.14% for Grass high
and Forest, which have tiny triangles and high depth complexity, and
99.66% or better in all the other cases.

We verify the quality of our aggressive visibility algorithm in a
second way by rendering sequences of thousands of frames from the
aggressive visible sets. The frames are rendered from the reference
viewpoint with view direction and zoom factor changes. Row 6 gives
the average zoom factor over the sequence. Rows 7 and 8§ give the
average and maximum percentages of incorrect pixels per frame over
the sequence. A pixel is incorrect if it not set by the same triangle that
sets it when the frame is rendered from the entire dataset. The errors are
small even though the sequences include zooming in. The maximum
zoom factors for Manhattan, Grass, and Forest are 7x, 17x, and 10x.
As our aggressive algorithm guarantees finding all triangles of a front
surface, the few incorrect pixels occur between surfaces, where they
are less noticeable. The aggressive algorithm avoids holes in a visible
surface efficiently in a purely sample-based fashion, without computing
triangle mesh continuity. For example, our aggressive set might omit a
grass blade that is barely visible at the silhouette of a front grass blade,
but it will never leave an objectionable hole in the middle of the front
grass blade (Figure 10).

Our exact algorithm finds all visible triangles, from which accurate
frames are rendered. Compared to rendering the entire dataset, finding
the exact set brings not only the efficiency advantage of not rendering
hidden triangles, but also the quality advantage of avoiding aliasing
artifacts no matter how high the dataset complexity. Indeed, the visi-
bility subdivision computed by the exact algorithm allows aggregating
an output pixel color correctly from the contributions of all triangles
visible at the pixel, appropriately weighted by their fractional pixel cov-

At

Fig. 10. Error pixels highlighted in red for a frame with a 17x zoom factor,
rendered from our aggressive set (Figure 1, row 2 & col. 2).

Fig. 11. (a) Difference between conventional 4x4 antialiasing and accu-
rate antialiasing using the exact visible set computed using our from-point
visibility algorithm, for the reference Grass image in Figure 1; 45.5% of
the pixels of the conventional image have an incorrect color value; the
average and maximum per pixel color channel errors are 2.96 and 117.65
on the [0, 255] scale. Magnified detail of the conventional (b) and exact
(c) images, showing two thick grass blades (left and right) connected by a
thin grass blade (diagonally across); the conventional image exaggerates

large dataset features, e.g., the thick grass blades, and undersamples
fine dataset features, e.g., the thin grass blade.

erage [5]. By comparison, even when the dataset is rendered with high
levels of conventional antialiasing, severe artifacts remain (Figure 11).

6.2 Efficiency

The efficiency of the aggressive algorithm is summarized in rows 9
to 11 of Table 1. The number of sampling locations per pixel (rows
9 and 10) depends on the average image footprint of the triangles
and on the presence of large blockers, so it is small for datasets like
Manhattan, and larger for datasets like Isosurface. The optimal set of
sampling locations for a sample-based visibility algorithm has exactly
one sampling location per visible triangle. The set of sampling locations
constructed by our algorithm is missing some sampling locations, i.e.,
for the few visible triangles the algorithm does not find, and it also
has some unnecessary sampling locations, i.e., for visible triangles
that are found by multiple sampling locations. Our algorithm can
create unnecessary sampling locations in several scenarios: (1) a visible
triangle covers several pixels and a sampling location is created at each
pixel; (2) a sampling location is constructed for each of several hidden
triangles, and all find the same visible triangle; (3) two overlapping
triangles are sampled with two sampling locations, as opposed to with
one sampling location at the region of overlap. For Grass high, there
are 10.7M visible triangles (Table 1, row 2), so there should be at
least 10.7M / (1280 x 720) = 11.6 sampling locations per pixel; our
algorithm completes 97.55% of the visibility subdivision with 36.5
sampling locations per pixel. For Forest, the algorithm completes
98.14% of the visibility subdivision with 24.1 sampling locations per
pixel, compared to the optimal number of 7.3M / (1280 x 720) =7.9.
The running times of the aggressive algorithm (row 11) are for a
parallel implementation on a workstation with 24 2.27GHz X7560 Intel
cores. The algorithm was parallelized by tiling the reference image with
a uniform 2D grid, assigning dataset triangles to tiles based on triangle
footprint, and assigning the tiles to cores in round-robin fashion. The
algorithm is faster than 1M triangles per second for all datasets, and it



Table 1. Experiment datasets (rows 1-3), aggressive algorithm quality (4-8) and efficiency (9-11), and exact algorithm efficiency (12-15).

Manhattan- Grass - Forest - Impact — Isosurface Water Fusion
downtown midtown low high outside inside

1. Visual reference Fig 1.1 Video Fig 1.2 Fig 9.1 Fig9.2 Fig9.3 Fig 9.4 Fig 1.3 Fig 8 Fig 9.5
2. Dataset triangles 3.96M 3.96M 54.9M 54.9M 47.4M 2.08M 2.08M 497TM 2.17M 500K
3. Visible set triangles 2% 10% 0.5% 19% 15% 9% 1% 3% 5% 9%
4. Vis. set completeness 89.0% 89.1% 79.2% 71.5% 55.2% 80.1% 84.8% 90.1% 97.8% 95.6%
5. Vis. subd. completeness 99.98% 99.95% 99.93% 97.55% 98.14% 99.95% 99.99% 99.66% - -
6. Average zoom factor 3.4x 3.4x 3.4x 3.4x 3.4x 4.8x 3.9x 3.4x 3.4x 2.4x
7. Average pixel error 0.03% 0.05% 0.11% 2.64% 2.11% 0.03% 0.01% 0.27% 0.09% 0.04%
8. Maximum pixel error 0.08% 0.17% 0.20% 3.71% 3.04% 0.12% 0.03% 0.61% 0.13% 0.07%
9. Average SL / pixel 1.60 1.45 5.72 36.5 24.1 1.93 1.41 209 2.03 3.70
10. Maximum SL / pixel 57 703 1,490 742 1,245 106 27 1,670 27 29
11. Running time [s] 2.4 2.6 12 11 12 1.6 0.50 464 34 1.2
12. Visible tris (i1) 96.6% 95.7% 89.1% 81.2% 73.0% 96.1% 98.6% 94.7% - -
13. Decided tris (i1) 99.75% 98.51% 99.76% 90.38% 86.16% 98.33% 99.87% 95.32% - -
14. Iterations to convergence 2 - 3 3 3 4 3 3 - -
15. Running time [s] 5.8 - 22 294 1,078 9.7 4.1 146 - -

is slowest for the Isosurface. Our particle visibility algorithm runs at
about half a million particles per second.

The efficiency of the exact algorithm is summarized in rows 12 to 15
of Table 1. Row 12 gives the completeness of the visible set after the
first iteration. The algorithm iterates until there are no more undecided
triangles. Most work is done by the first iteration, which decides
most triangles in the initial undecided set (row 13). The algorithm
converges in at most four iterations (row 14). The exact algorithm was
parallelized like the aggressive algorithm. The running times (row 15)
exclude the running time of the aggressive algorithm that provided the
initial visible set. The exact algorithm is slowest for Forest, which
requires many small updates to the initial visibility subdivision due
dataset fragmentation and high depth complexity. The nearly half a
billion triangles of Isosurface are processed in less than 3min.

6.3 Comparison to Prior Art

We compare our algorithms to two prior art approaches.

The first approach aggregates the visible set by uniformly sampling
the space of visualization rays with conventional images. We compare
our algorithms to computing visibility with a conventional image with
resolutions ranging from the resolution of the grid used by our algo-
rithms, i.e. 1280 x 720 pixels, to 256 x 256 times the grid resolution,
i.e. 327,680 x 184,320 pixels (Table 2). For each row, the table high-
lights the uniform sampling level values that bracket the aggressive
algorithm value, e.g. 1 and 4 bracket 1.47 for row 1 for Manhattan.

The aggressive algorithm generates a more complete visible set and
a more complete visibility subdivision than uniform sampling, for the
same number of sampling locations per pixel (rows 1). For example,
for Manhattan, the uniform sampling levels that bracket the aggressive
algorithm in terms of sampling locations per pixel are 1 x 1 and 2 x 2,
which yield a less complete visible set and visibility subdivision. For
the same completeness of the visible set, uniform sampling has to
generate more sampling locations per pixel, see highlighted cells in
rows 2. For example, for Manhattan, uniform sampling has to generate
between 256 and 1024 sampling locations per pixel to match the visible
set completeness achieved by our aggressive algorithm with only 1.47
sampling locations per pixel. Similarly, for the same completeness of
the visibility subdivision as our aggressive algorithm, uniform sampling
has to generate more sampling locations per pixel (rows 3).

Rows 4 give the running times, where the uniform sampling running
times were measured on a GPU that worked on tiles of the ultra-high
resolution image. As expected, the GPU beats the 24 core paralleliza-
tion of the aggressive algorithm for the smaller datasets, computing a
visibility subdivision that is more complete than the aggressive algo-
rithm. However, the advantage diminishes as dataset size increases. For
Isosurface, given the same amount of time, the GPU computes a visibil-
ity solution that is less complete than that computed by the aggressive
algorithm on the CPU cores. As shown by the 1 x 1 uniform sampling
running times, it is of course faster to render an output frame from the

entire dataset than to compute visibility from a viewpoint. However,
the 1 x 1 running times are too slow for interactive visualization. On
the other hand, computing visibility brings a substantial reduction in
the number of primitives, see lines 2 and 3 in Table 1. A visualization
application can render from the same visible set hundreds of frames,
with short per frame times that allow the user to change view direction
and to zoom in interactively (see video accompanying our paper).

No matter how high the resolution of uniform sampling, the visibility
solution is not complete. Visible triangles are missed even when sam-
pling with over 65,000 samples per pixel. For example, for, Isosurface,
the exact algorithm computes in fewer than 20min the exact set that
eludes uniform sampling even after 10h of processing.

The second prior art approach to which we compare our algo-
rithms is Guided Visibility Sampling (GVS), an aggressive from region
visibility algorithm that samples heuristically the space of visualization
rays that originate from a rectangle or a box [32]. Early rays generated
stochastically guide the generation of subsequent rays based on two
heuristics: adaptive border sampling, which looks for new visible trian-
gles adjacent to visible triangles that were already found, and reverse
sampling, which looks for visible triangles in unsampled but acces-
sible space defined by depth discontinuities. The iterative search for
visible triangles is terminated heuristically based on a predetermined
ray budget or on a lower threshold for the rate of visible triangle dis-
covery. GVS was recently updated to GVS++, which has improved
heuristics and performance optimizations, and which takes advantage
of the Vulkan graphics API and of RTX ray tracing [23].

For a first set of experiments we restricted GVS++ to from-point
visibility by reducing the view region to a view point. For the mid-
town viewpoint of the Manhattan dataset, GVS++ casts 983 million
rays to find 399,401 of the 406,036 triangles in the exact visible set,
whereas our aggressive algorithm finds 374,172 triangles with only
8.7 million sampling locations. More importantly, although it samples
visibility with two orders of magnitude fewer rays than GVS++, our al-
gorithm nearly completes the visibility subdivision at 99.9860%, which
is slightly better than the 98.9857% completeness for GVS++. Leverag-
ing graphics hardware (NVIDIA GeForce RTX 3060 Laptop GPU - 6
GB VRAM), GVS++ runs in 0.8s, whereas the CPU implementation of
our aggressive algorithm takes 2.6s. Compared to our exact algorithm,
GVS++ fails to find all visible triangles and to complete the visibility
subdivision even after casting nearly one billion rays. Furthermore,
the GVS++ implementation is not robust: the visible set it finds also
contains 3,232 triangles that are not visible. Finally, GVS++ does
not provide the visibility subdivision, as needed for applications of
visibility such as antialiasing, and the visibility subdivision has to be
computed from the visible triangles in an additional step.

For a second set of experiments we compared our approach to
GVS++ on from-region visibility. The region is modeled as a box,
which GVS++ takes directly as input. To compute from-region visi-
bility with our approach we ran our aggressive from-point algorithm
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Table 2. Comparison to uniform supersampling.

Manhattan Aggr. 1x1 2x2 4x4 8x 8 16 x 16 32 x 32 64 x 64 128 x 128 256 x 256 Exact

1. SL / pixel 1.47 1 4 16 64 256 1024 4,096 16,384 65,536 1.53
2. Visible triangles [%] 91.2 35.2 49.6 64.5 719 87.8 93.6 96.6 98.1 98.9 100
3. Vis. sub. compl. [%] 99.9 97.4 99.6 99.9 99.9 99.9 99.9 ~100 ~100 ~100 100
4. Time [s] 2.36 0.34 0.34 0.35 0.35 1.4 5.6 22.4 89.6 358.4 7.16
Grass Aggr. 1x1 2x2 4x4 8x 8 16 x 16 32x32 64 x 64 128 x 128 256 x 256 Exact

1. SL / pixel 52 1 4 16 64 256 1024 4,096 16,384 65,536 5.7
2. Visible triangles [ %] 83.5 31.0 475 63.6 772 87.0 93.0 96.3 98.1 99.0 100
3. Vis. sub. compl. [%] ~100 96.3 99.0 99.7 99.9 99.9 99.9 99.9 99.9 ~100 100
4. Time [s] 15.96 32 32 33 3.3 13.2 52.8 211.2 844.8 3,379 37.96
Forest Aggr. 1x1 2x2 4x4 8x 8 16 x 16 32x32 64 x 64 128 x 128 256 x 256 Exact

1. SL / pixel 22 1 4 16 64 256 1024 4,096 16,384 65,536 45
2. Visible triangles [ %] 69.1 6.90 20.1 422 64.3 80.1 89.4 94.6 97.2 98.6 100
3. Vis. sub. compl. [%] 98.2 60.3 80.3 94.1 97.8 98.8 99.3 99.9 99.9 ~100 100
4. Time [s] 12.43 33 3.3 3.4 3.4 13.6 54.4 217.6 870.4 3,481 1,020
Isosurface Aggr. 1x1 2x2 4x4 8x 8 16 x 16 32x32 64 x 64 128 x 128 256 x 256 Exact

1. SL / pixel 193 1 4 16 64 256 1024 4,096 16,384 65,536 213
2. Visible triangles [ %] 91.2 2.46 9.84 335 62.9 80.6 89.3 93.2 94.8 96.2 100
3. Vis. sub. compl. [%] 99.5 5.23 20.75 64.0 93.1 98.7 99.3 99.5 99.7 99.9 100
4. Time [s] 464.4 334 34.6 35.8 36.4 145.6 582.4 2,329 9,318 37,273 610.4
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Fig. 12. Comparison between our approach and the prior art approach
GVS++ on from-region visibility. Our approach converges more efficiently.

on viewpoints selected randomly inside the view box. The example in
Figure 12 uses the Manhattan dataset and a 30m view cube centered
at the midtown viewpoint. Our approach sampled the box with 2,666
viewpoints, accumulating 3.5 billion sampling locations to find 546,000
visible triangles. GVS++ handles the box in a single run, which gives
them a substantial running time advantage, but the visible set converges
more slowly, with GVS++ finding only 476,000 visible triangles after
evaluating a comparable number of visibility rays. GVS++ does not
run on our bigger datasets due to insufficient GPU memory.

6.4 Limitations

The implementation of our aggressive visibility algorithm has an asymp-
totic running time quadratic in the number of sampling locations per
pixel, as a new sampling location is created only after checking that
no current location is inside the fragment. We have not observed a
quadratic slowdown in our experiments, which means that the linear
term dominates for the relatively short lists of sampling locations at the
pixels of the grid. The running time per one million triangles varies
from 0.2s to 0.9s and is uncorrelated with the average or the maximum
number of sampling locations per pixel. In particular, the Isosurface has
average 209 and maximum 1,670, yet is only 15% slower than Impact
outside with average 1.9 and maximum 106. Should the quadratic slow-
down become a problem, it could be avoided by using a grid resolution
commensurate with the average triangle footprint, thereby bounding
the average number of sampling locations per pixel. Another option is
to subdivide pixels hierarchically, e.g. with a quadtree.

Another limitation of the current work is that exact visibility for
particle datasets can only be computed by tessellating the particles, to
be able to run our exact triangle visibility algorithm. Since tessellation

increases the number of primitives substantially, future work could
explore extending the exact algorithm to particles. The challenge is
that the projection of a particle has curved edges, so the visibility
subdivision is more expensive to build and update.

7 CONCLUSIONS AND FUTURE WORK

We have described a novel approach to from-point visibility based on
image generalization. The regular sampling grid of a conventional im-
age is enhanced as needed with sampling locations defined by dataset
geometry. A small number of additional sampling locations per pixel
are sufficient to reveal most visible triangles. We provide a visibility
approximation that guarantees that no completely visible triangle is
omitted, no matter how small its footprint, which guarantees front sur-
face continuity. We couple a sample-based and a continuous visibility
analysis of the image plane to complete the visible set efficiently, in a
remarkably small number of iterations. Our exact visibility algorithm is
implemented robustly. The exact visible set allows rendering accurate
images, by taking into account all triangles visible at a pixel, overcom-
ing the aliasing artifacts that pervade visualizations of complex datasets
even when high levels of conventional antialiasing is used.

Our visualization algorithms are currently implemented on CPU
cores. One direction of future work is to increase performance by lever-
aging the programmability of current graphics hardware. The challenge
is the variable number of sampling locations per pixel. Another option
is to devise hardware extensions that bring native support to rendering
over irregular framebuffers.

A second direction of future work is to use the image generalization
paradigm to develop more general visibility algorithms. Our from-
point algorithms compute visibility for a 2D visualization ray space.
We have already shown that our algorithms can provide a good approx-
imation of visibility for the 4D ray space of from-rectangle visibility,
by aggregating visibility over a set of viewpoints sampling the view
rectangle. However, sampling the view rectangle is both redundant,
as the visible sets of nearby viewpoints have substantial overlap, and
approximate, as no view rectangle sampling resolution can guarantee
finding all visible triangles. We envision generalizing the 0D image
plane sampling locations used in from-point visibility to 1D and 2D
sampling locations that can capture the triangles visible from a segment
and a rectangle efficiently, accurately, and non-redundantly. The exact
visibility algorithm can be generalized to an interval of viewpoints
by constructing the initial subdivision and updating it at viewpoints
where structural changes occur, for example a triangle becomes visible
or vanishes. The ultimate goal is to develop 3D visibility sampling
locations, suitable for the 5D visualization ray space of from-rectangle
visibility of dynamic datasets.



REFERENCES

(1]

(2]
(3]

[4

=

(51

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

O. Apostu, F. Mora, D. Ghazanfarpour, and L. Aveneau. Analytic ambient
occlusion using exact from-polygon visibility. Computers & Graphics,
36(6):727-739, 2012.

T. Auzinger, M. Wimmer, and S. Jescke. Analytic visibility on the gpu.
Computer Graphics Forum, 32(2pt4):409-418, 2013.

J. Bittner, O. Mattausch, P. Wonka, V. Havran, and M. Wimmer. Adap-
tive global visibility sampling. ACM Transactions on Graphics (TOG),
28(3):94, 2009.

J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer. Coherent hi-
erarchical culling: Hardware occlusion queries made useful. Computer
Graphics Forum, 23(3):615-624, 2004.

L. Carpenter. The a-buffer, an antialiased hidden surface method. ACM
SIGGRAPH Computer Graphics, 18(3):103-108, 1984.

E. Catmull. A hidden-surface algorithm with anti-aliasing. ACM SIG-
GRAPH Computer Graphics, 12(3):6-11, 1978.

A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, and D. Manocha. Ad-
frustum: Adaptive frustum tracing for interactive sound propagation. [EEE
Transactions on Visualization and Computer Graphics, 14(6):1707-1722,
2008.

D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A survey
of visibility for walkthrough applications. Visualization and Computer
Graphics, IEEE Transactions on, 9(3):412-431, 2003.

J. Cui, P. Rosen, V. Popescu, and C. Hoffmann. A curved ray camera for
handling occlusions through continuous multiperspective visualization.
Visualization and Computer Graphics, IEEE Transactions on, 16(6):1235—
1242, 2010.

X. Décoret, G. Debunne, and F. Sillion. Erosion based visibility prepro-
cessing. In Proceedings of the 14th Eurographics workshop on Rendering,
pp. 281-288. Eurographics Association, 2003.

F. Durand. 3D Visibility: analytical study and applications. PhD thesis,
Université Joseph Fourier, 2010.

F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative visibility
preprocessing using extended projections. In Proceedings of the 27th
annual conference on Computer graphics and interactive techniques, pp.
239-248. ACM Press/Addison-Wesley Publishing Co., 2000.

L. Fousse, G. Hanrot, V. Leféevre, P. Pélissier, and P. Zimmermann. MPFR:
A multiple precision binary floating point library with correct rounding.
ACM Transactions on Mathematical Software, 33:13, 2007.

G. W. Furnas. Generalized fisheye views. SIGCHI Bull., 17(4):16-23,
1986.

M. T. Goodrich. A polygonal approach to hidden-line and hidden-surface
elimination. CVGIP: Graphical Models and Image Processing, 54(1):1-
12, 1992.

C. J. Gribel, R. Barringer, and T. Akenine-Moller. High-quality spatio-
temporal rendering using semi-analytical visibility. ACM Transactions on
Graphics (TOG), 30(4):54, 2011.

P. S. Heckbert and P. Hanrahan. Beam tracing polygonal objects. ACM
SIGGRAPH Computer Graphics, 18(3):119-127, 1984.

J. Hladky, H.-P. Seidel, and M. Steinberger. The camera offset space:
Real-time potentially visible set computations for streaming rendering.
ACM Trans. Graph., 38(6), nov 2019. doi: 10.1145/3355089.3356530
W. Hunt, M. Mara, and A. Nankervis. Hierarchical visibility for virtual
reality. Proc. ACM Comput. Graph. Interact. Tech., 1(1), jul 2018. doi: 10.
1145/3203191

G. S. Johnson, J. Lee, C. A. Burns, and W. R. Mark. The irregular z-buffer:
Hardware acceleration for irregular data structures. ACM Transactions on
Graphics (TOG), 24(4):1462-1482, 2005.

T. R. Jones and R. N. Perry. Antialiasing with line samples. In Rendering
Techniques 2000, pp. 197-205. Springer, 2000.

M. J. Katz, M. H. Overmars, and M. Sharir. Efficient hidden surface
removal for objects with small union size. Computational Geometry,
2(4):223-234, 1992.

T. Koch and M. Wimmer. Guided visibility sampling++. Proc. ACM
Comput. Graph. Interact. Tech., 4(1), apr 2021. doi: 10.1145/3451266
N. Max and K. Ohsaki. Rendering trees from precomputed z-buffer views.
In Rendering Techniques’ 95, pp. 74-81. Springer, 1995.

L. McMillan and G. Bishop. Plenoptic modeling: An image-based render-
ing system. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pp. 39-46. ACM, 1995.

S. Nirenstein and E. H. Blake. Hardware accelerated visibility preprocess-
ing using adaptive sampling. Rendering Techniques, 2004:15th, 2004.

10

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

(36]

R. Overbeck, R. Ramamoorthi, and W. R. Mark. A real-time beam tracer
with application to exact soft shadows. In Proceedings of the 18th Euro-
graphics conference on Rendering Techniques, pp. 85-98. Eurographics
Association, 2007.

V. Popescu, J. Eyles, A. Lastra, J. Steinhurst, N. England, and L. Nyland.
The warpengine: An architecture for the post-polygonal age. In Proceed-
ings of the 27th annual conference on Computer graphics and interactive
techniques, pp. 433—442. ACM Press/Addison-Wesley Publishing Co.,
2000.

J. Shade, S. Gortler, L.-w. He, and R. Szeliski. Layered depth images. In
Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, pp. 231-242. ACM, 1998.

M. Sharir and M. H. Overmars. A simple output-sensitive algorithm for
hidden surface removal. ACM Transactions on Graphics (TOG), 11(1):1—
11, 1992.

K. Weiler and P. Atherton. Hidden surface removal using polygon area
sorting. ACM SIGGRAPH Computer Graphics, 11(2):214-222, 1977.

P. Wonka, M. Wimmer, K. Zhou, S. Maierhofer, G. Hesina, and
A. Reshetov. Guided visibility sampling. ACM Transactions on Graphics
(TOG), 25(3):494-502, 2006.

C. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke,
eds., Handbook of discrete and computational geometry, chap. 41, pp. 927—
952. CRC Press, Boca Raton, FL, second ed., 2004.

J. Yu and L. McMillan. General linear cameras. In Computer Vision-ECCV
2004, pp. 14-27. Springer, 2004.

H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III. Visibility culling
using hierarchical occlusion maps. In Proceedings of the 24th annual
conference on Computer graphics and interactive techniques, pp. 77-88.
ACM Press/Addison-Wesley Publishing Co., 1997.

Y. Zhou, L. Wu, R. Ramamoorthi, and L.-Q. Yan. Vectorization for fast,
analytic, and differentiable visibility. ACM Trans. Graph., 40(3), jul 2021.
doi: 10.1145/3452097



	Introduction
	Prior Work
	Guaranteed-Quality Aggressive Visibility
	Approach
	Algorithm

	Efficient and Robust Exact Visibility
	Approach
	Algorithm
	Robustness

	Spherical Particles
	Results and Discussion
	Quality
	Efficiency
	Comparison to Prior Art
	Limitations

	Conclusions and Future Work

