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Fast Intra-Frame Video Splicing for Occlusion
Removal in Diminished Reality

Chengyuan Lin and Voicu Popescu

Abstract—In Augmented Reality some real world objects impede the visualization of the real world scene. Diminished reality aims to
remove such occluders. A popular approach is to acquire the geometry of the occluded scene, and then to render it from the user’s
viewpoint, effectively erasing the occluder. The approach is ill-suited for scenes with intricate and dynamic geometry, which cannot be
acquired quickly, completely, and with only minimal equipment. This paper proposes a method to erase an occluder in a primary video
by splicing in pixels from a secondary video. For each frame, the method finds the region in the secondary frame that corresponds to
the occluder shadow, and integrates it seamlessly into the primary frame. The result is a continuous multiperspective frame, which
shows most of the scene from the primary viewpoint, except for the part hidden by the occluder, which is shown from the secondary
viewpoint. A high quality multiperspective transparency effect is achieved for complex scenes, without the high cost of 3D acquisition.

Index Terms—Occluder removal, Video splicing, Multiperspective visualization, Diminished reality, Augmented reality.
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Fig. 1. Results preview. The output frame is obtained by erasing the occluder from the primary frame using pixels from the secondary frame. The
result is a quality transparency effect, with good continuity at the occluder contour. Our method supports intricate dynamic scenes, and the frame
rate is 75fps or better for an output resolution of 1,920 × 1,080.
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1 INTRODUCTION

AUGMENTED reality improves a user’s view of the real
world by adding graphical annotations. However, im-

proving the user’s view sometimes calls for removing objects
from the user’s view. Such diminished reality visualizations
are used to eliminate distracting clutter, to preview possible
changes to a real world scene without actually modifying
it, and to let the user see hidden parts of the scene quickly,
from the current location. Removing an occluder from the
user’s view of the real world requires finding the footprint
of the occluder, finding a visual description of what the user
should see in the absence of the occluder, and transferring it
to the occluder footprint. One approach is 3D scene acquisi-
tion. Once the geometry of the scene is known, the scene
can be rendered from the user’s viewpoint, without the
occluder. This works well, for example, when one wants to
remove an object from a corner of a room, whose color and
geometry are easy to acquire or synthesize. A challenging
case for this approach is when the parts of the scene hidden
by the occluder have intricate and dynamic appearance and
geometry, which cannot be acquired comprehensively in
real time, and with minimal equipment.

In this paper we propose a method to remove an oc-
cluder in a primary video, acquired from the user viewpoint,
using pixels from a secondary video, acquired from a trans-
lated viewpoint. The secondary frame pixels are integrated
seamlessly into the primary frame, with good continuity
across the occluder contour. The result is a multiperspective
frame, which shows most of the scene from the user view-
point, except for the part hidden by the occluder, which
is shown from the secondary viewpoint. The effect is a
good approximation of the transparency effect needed to
remove the occluder, which comes without the high cost 3D
geometry acquisition.

We have tested our method with good results on a
variety of challenging scenes, with intricate and dynamic
geometry (see Figure 1 and accompanying video). We have
compared our method to ground truth and to state of
the art occluder inpainting techniques, both qualitatively,
through visual inspection, and quantitatively, through two
traditional per-pixel similarity metrics and two perceptual
image similarity metrics. The comparison reveals that our
results are closer to ground truth than those of the prior art
methods. Furthermore, since we only compute correspon-
dences between frames along the occluder contour, and we
do not engage in full 3D reconstruction, our method is fast,
running at over 75 Hz in a CPU implementation.

2 PRIOR WORK

The removal of objects that hinder the user’s viewing of a
region of interest is a typical diminished reality problem
[1]. By covering up a real object with the image of the
background it occludes, one can make the object virtually
invisible by creating a “see-through” effect [2]. The effect is
implemented in three main steps: acquisition of the occluder
background, modification of the acquired background to
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fit the occluder footprint, and compositing of the modified
background into the user’s view.

The background can be captured by the user in advance
in the form of a dataset of images [3] or a detailed 3D model
[4], [5]. When the hidden background objects are known,
such as a specific person’s face, a pre-captured dataset
with angle-dependent images is sufficient [6]. An internet
photo collection can also be used to delete a person in a
video sequence, especially when the scene is a frequently
photographed sightseeing spot [7]. Another approach is to
search for the best matching disoccluded view of the target
in an earlier frame [8], [9]. For a moving camera, SLAM was
used to reconstruct the background progressively [10], [11].
These methods fail when the current background configu-
ration has not been observed in any of the earlier frames.
Both the pre-acquisition and the temporal resampling meth-
ods cannot handle highly dynamic scenes, such as a busy
intersection.

A dynamic scene has to be acquired in parallel, from
additional viewpoints. Using multiple cameras installed all
around the scene, unstructured light fields can be acquired
and used to render occluded rays [12]. Surveillance cameras
have been used to see through walls [13], [14]. Multiple
users, each with their own hand-held camera, can cap-
ture the background for each other but the approach was
only demonstrated for planar backgrounds with markers
[15]. The background was also acquired with a remote-
controlled robot equipped with a camera [16]. Like these
prior methods, we acquire the background information with
a secondary camera, but without background geometry
assumptions or markers.

Once acquired, the background needs to be transferred
to the primary camera viewpoint. By assuming the scene
only consists of large planes, homography matrices have
been used to warp the background to the user view [17].
Homographies have also been used to transfer the best
matching background image from an internet image collec-
tion to the user view [7]. Another approach is to extract
the 3D geometry of the background. Using stereo vision,
the background has been approximated with a set of small
planes [1], or with a depth map [18]. The pixels missing
due to disocclusion errors have to be filled in, e.g., through
texture synthesis [19], [20]. The background geometry has
also been acquired with the help of RGB-D cameras [21].
Reconstructing an accurate model of a complex 3D scene in
real time remains an open research question, and inaccurate
geometry leads to output image artifacts, such as holes and
tears. We bypass 3D geometry acquisition by computing a
two stage bijective mapping that avoids disocclusion errors.

Inpaiting approaches approximate the occluded back-
ground from the surrounding, visible parts of the back-
ground [22]. Patched-based inpainting methods search it-
eratively in the neighborhood for best fitting patches [23],
[24]. Prior information about the occluded part of the scene
is useful for achieving a higher quality inpainting, such as
of occluded human faces [25], [26]. Deep-learning has also
been used to find matching patches at greater distances
in the frame, with improved global consistency [27], [28],
[29]. These methods have the advantage of not requiring a
second video source, but they depend on the uniformity and
predictability of the disoccluded background. As such, these
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Fig. 2. System pipeline.

methods are typically used to remove the annoying visual
presence of the occluder, and not to provide a detailed and
accurate description of the scene visible once the occluder
is removed. Their goal is to erase the occluder well enough
as to not draw the user’s attention to the disoccluded part
of the image; on the other hand, our method has the more
challenging goal of allowing the user to focus precisely on
the part of the scene that has been disoccluded.

3 APPROACH

We first give an overview of our occlusion removal pipeline.

3.1 Pipeline Overview
Given a primary input video stream, acquired from the
user’s viewpoint, and a secondary input video stream, ac-
quired from a translated viewpoint, our method removes
an occluder from the primary video using pixels from
the secondary video, according to the pipeline shown in
Figure 2. First, an initialization stage defines the occluder
contour in the first frame of each video, and computes an
approximate mapping between these two first frames. Then,
pairs of primary and secondary video frames are processed
in four stages: the contour of the occluder is updated in
each of the two frames; an initial mapping between the
pair of frames is computed as a rotation, by minimizing
color differences outside the occluder; the initial mapping is
locally refined at the occluder contour to enable splicing in
the pixels from the secondary frame with good continuity to
the surrounding primary frame pixels; finally, the occluder
is removed from the primary frame by looking up its pixels
in the secondary frame, using a concatenation of the global
and local mappings.

3.2 Contour adjustment
Our pipeline relies several times on a contour adjustment
algorithm, which we describe first. We define a contour as a
pair of polylines that model the inner and outer boundaries
of an object visible in an image. The inner contour is on the
object and the outer contour is on the surrounding back-
ground. The inner and outer contours are needed to restrict
color comparisons to the occluder or to its surrounding
background. The two contours have the same number of
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Fig. 3. Adjustment of approximate contour C∗
2 to C2 in image I2, given

the corresponding contour C1 in image I1 (Algorithm 1). The algorithm
searches for a better position for each inner contour vertex q∗2 over its
neighborhood S; a good position q2 yields a high color similarity between
I2 at q2 and I1 at q1; q1 is the inner contour vertex of C1 corresponding
to q∗2 . Once q∗2 is adjusted, the corresponding outer contour vertex p∗2 is
adjusted to p2 with the same offset.

Algorithm 1 Contour adjustment (also see Figure 3)
Input: Image I1, contour C1 in I1, image I2, contour C∗2 in
I2
Output: Adjusted contour C2

1: for each vertex pair (p∗2, q
∗
2 ) in C∗2 do

2: smax = −∞
3: for each pixel center q in neighborhood S of q∗2 do
4: Q1 = I1 patch centered at q1
5: Q2 = I2 patch centered at q
6: sq = sim(Q1, Q2) + λe−|q−q

∗
2 |

2/(2σ2)

7: if sq > smax then
8: q2 = q, smax = sq
9: end if

10: end for
11: p2 = p∗2 + q2 − q∗2
12: end for
13: RemoveSelfIntersections(C2)

2D vertices, the segments of a contour do not intersect, each
contour has disk topology, and contours do not have to be
convex.

Our contour adjustment (Algorithm 1) takes as input a
first image I1, a known contour C1 in I1, a second image I2,
and an estimate C∗2 of C1 in I2. The algorithm output is a
contour C2 in I2 obtained by adjusting C∗2 . The algorithm
adjusts C∗2 by moving one pair of vertices (p∗2, q

∗
2 ) at the

same time, where p∗2 and q∗2 are corresponding vertices
on the inner and outer contours (line 1). We describe the
algorithm for the case when the adjustment proceeds along
the inner contour (Figure 3). Adjustment along the outer
contour is similar.

The algorithm adjusts the position of q∗2 by searching its
neighborhood S for a better location (lines 3–10). For each
candidate location q, the algorithm computes color similar-
ity between I2 at q and I1 at q1. Color similarity is evaluated
over square image patches Q1 and Q2 (lines 4–6). The inner
contour vertex q2 is adjusted every time image similarity
improves (lines 7–8). Once the entire neighborhood of q∗2
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has been searched, the contour vertex p2 is adjusted by the
same offset q2 − q∗2 as q∗2 (line 11). Once the inner and outer
contours have been adjusted, C2 is returned after any self
intersection is removed (line 13). Our algorithm checks and
removes self-intersections by traversing the outer contour;
if two outer contour segments (pi2, p

i+1
2 ) and (pj2, p

j+1
2 ) in-

tersect, where i < j, all outer contour vertices from pi+1
2

to pj2 are removed, together with their corresponding inner
contour vertices.

In line 6, the similarity between image patches Q1 and
Q2 is computed differently based on whether images I1 and
I2 are frames of the same video, i.e. both primary or both
secondary, or not, i.e. one primary and one secondary. When
I1 and I2 are from the same video, we compute similarity
using negative sum of squared per-pixel color differences:

simintra(Q1, Q2) = −
∑
p

(Q1[p]−Q2[p])2. (1)

When I1 and I2 are from different videos, we use a
cosine similarity [30], in order to compensate for any large
exposure and white balance differences between the two
videos. Cosine similarity is computed by treating each patch
as a vector, and by computing the cosine of the angle
between the two vectors:

siminter(Q1, Q2) =

∑
pQ1[p] ·Q2[p]√∑

pQ1[p]2
√∑

pQ2[p]2
. (2)

In addition to the color similarity value sim, the aggre-
gate similarity score sq (line 6) also includes a displacement
term λe−|δp|

2/(2σ2), which favors small contour adjustments
when sim values are similar. The displacement follows a
normal distribution N (0, σ), where σ controls the distri-
bution flatness. The weight λ achieves the right balance
between the cosine similarity term and the displacement
term. Both parameters σ and λ are set empirically and tuned
for each of the scenes. The displacement term aims to avoid
large adjustments for marginal color similarity improve-
ments, e.g. to avoid that a patch on an object edge slide
up and down the edge without meaningful color similarity
changes.

3.3 Video splicing for occlusion removal
Our pipeline implements Algorithm 2. The algorithm takes
as input the primary V1 and secondary V2 videos and
removes a user specified occluder from V1 using pixels from
V2.

Initialization. The algorithm first performs a once per
session initialization (lines 1–5). The user selects the oc-
cluder to be removed interactively by drawing in the first
frame V 0

1 of the primary video an approximate piecewise
linear outer boundary B0

1 of the occluder (line 1, red line in
Figure 4 left). An approximate boundary that overestimates
the occluder is sufficient, as the occluder will be removed
with safety margins. Whereas other applications of segmen-
tation have to recover an object contour with high-fidelity,
as needed to paste it inconspicuously into a destination
image, our application simply has to make sure that the
entire occluder is discarded.

Algorithm 2 Intra-frame video splicing for occlusion re-
moval
Input: Primary video V1, secondary video V2
Output: Disoccluded primary video Vd

// Initialization
1: B0

1 = UserInputContour(V 0
1 )

2: C1 = RefineContour(B0
1)

3: C∗2 = HomographyMapping(C1, V
0
1 , V

0
2 )

4: C2 = AdjustContour(C1, V
0
1 , C

∗
2 , V

0
2 )

5: R0
1 = I ; R0

2 = InitializeRotation(C1, V
0
1 , V

0
2 )

6: for each frame i do
// Contour tracking

7: C1 = AdjustContour(C1, V
i−1
1 , C1, V

i
1 )

8: C2 = AdjustContour(C2, V
i−1
2 , C2, V

i
2 )

// Global alignment
9: j = k × bi/kc

10: Ri1 = Rj1 × RotationMapping(C1, V
j
1 , V

i
1 , R

i−1
1 )

11: Ri2 = Rj2 × RotationMapping(C2, V
j
2 , V

i
2 , R

i−1
2 )

12: R = (Ri2)
−1 ×Ri1

// Local alignment
13: A1 = SalientContourPoints(C1)
14: A2 = AdjustContour2(A1, V

i
1 , R×A1, V

i
2 , R)

// Occlusion removal
15: V id = V i1
16: for each pixel p ∈ C1 do
17: p′ = LookUp(p,R,A1, A2, C2)
18: V id [p] = Blend(V i1 [p], V i2 [p′])
19: end for
20: end for

Fig. 4. Left: first frame of primary video, with user drawn outer contour
(red), and initial inner (white dots) and outer (white line) contours.
Right: first frame of secondary video, with contour lines transferred from
primary video (white), and adjusted (green).

The outer boundary B0
1 is refined to define the initial

contour C1 in frame V 0
1 (line 2), as follows: B0

1 is rasterized
to obtain a pixel mask M1; M1 is eroded to pixel mask M ′1;
the inner contour of C1 is defined as a subset of the outer
pixels of M ′1, i.e. pixels who have at least one of their eight
neighbors not part of M ′1 (white dots in Figure 4 left); every
inner contour vertex is moved outwards along its normal to
define its outer contour vertex pair (white line in Figure 4
left).

C1 is used to initialize the occluder contour C2 in the
secondary video. C1 is transferred to V 0

2 in two steps.
First, C1 is taken almost all the way to its correct location

in V 0
2 with a homography mapping from the C1 region

of V 0
1 to V 0

2 ; this provides an estimate C∗2 of the occluder
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Fig. 5. Initialization of rotation from the first frame of the secondary
video V 0

2 (top right) to the first frame of the primary video V 0
1 (top left).

The rotation is visualized by blending V 0
1 with the rotated V 0

2 (bottom).
The rotation is recovered robustly (see alignment of distant parts of the
scene), despite the considerable disparity between the two frames (see
ghosting of near parts of the scene.

contour in V 0
2 (line 3). The homography assumes that the

occluder is a 3D plane, which is imaged by the two cameras
with known intrinsic parameters. The homography is com-
puted by detecting SURF features [31] inside the occluder
region C1 in V 0

1 , and over the entire frame V 0
2 . Each V 0

1

feature is matched to a V 0
2 feature with similar descriptor

using FLANN [32]. The homography is determined by
minimizing the reprojection error of corresponding features,
using a RANSAC approach [33], which provides robustness
to outlier feature correspondences. Figure 4 right shows the
outer and inner contours of C∗2 with white solid and dotted
lines, respectively; C∗2 does not capture the occluder quite
perfectly as the outer contour crosses into, and the inner
contour crosses out of the occluder.

Second, C∗2 is adjusted to C2, using our contour adjust-
ment Algorithm 1 (line 4). Since the frames provided to
Algorithm 1 belong to different videos, the cosine similarity
metric is used. Figure 4 right shows the adjusted contour C2

with green solid and dotted lines.
The algorithm maintains two arrays of 3D rotations, R1

andR2, one for each video.Ri1 rotates frame i of the primary
video to frame V 0

1 . Ri2 rotates frame i of the secondary
video to V 0

1 as well, that the first frame of the primary
video serves as a common reference. The last step of the
initialization sets R0

1 and R0
2 (line 5). R0

1 is the identity
matrix. R0

2 is computed by minimizing feature reprojection
error, as described in subsection 3.4. Figure 5 illustrates R0

2

by blending the rotated V 0
2 on top of V 0

1 .
After initialization, each pair of primary and secondary

video frames is processed with the four main stages of our
pipeline.

Contour tracking. Contours C1 and C2 are updated in
the current frames V i1 and V i2 , using the known contours
in the previous frames V i−11 and V i−12 (lines 7–8). We use
Algorithm 1 again: the frame with the known contour is
the previous frame, the frame where to adjust the contour

Fig. 6. Contour tracking: old (blue), and adjusted (red).

Fig. 7. Global alignment of two primary video frames (top). The frames
differ in view direction (see light post), and in time (see turning car). The
blended visualization (bottom) shows that the global alignment recovers
the rotation robustly (see alignment of distant scene), despite the motion
in the scene (e.g., turning car) and the disparity of near objects (e.g.,
occluder and handrail).

is the current frame, and the estimate of the contour in the
current frame is given by the contour in the previous frame.
This no-motion contour prediction is sufficient because of
the high frame rate of the videos compared to camera and
occluder motion and velocity, and it bypasses the expense
of computing a homography to provide the initial guess
[34]. The frames are part of the same video, so similarity
is computed using color difference. Figure 6 illustrates the
result of our contour tracking stage.

Global alignment. The algorithm has to compute a
mapping from the primary video frame V i1 to the secondary
video frame V i2 . For this, the algorithm first computes an
approximate mapping. The approximate mapping is found
by computing, for each video, the rotation of the current
frame i to an earlier frame j of that same video (lines 9–
11). Once the two rotations Ri1 and Ri2 are known, the
approximate mapping R from V i1 to V i2 is easily obtained
by leveraging the common reference V 0

1 of all rotations (line
12).

To find the rotation of the current frame i with respect
to its earlier frames, we use a more distant key frame j, and
not the previous frame i−1, as consecutive frames would be
too similar, and the alignment would drift. The key frames
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are spaced k frames apart. Unlike for initial rotation compu-
tation (subsection 3.4), here the rotation has to connect two
video frames acquired by the same camera, from a similar
viewpoint. Consequently, the global alignment can be com-
puted by directly minimizing color differences, bypassing
the slower feature detection and matching. However, global
alignment has to avoid the inconsistencies introduced by
parts of the scene near the camera, which create frame
disparity even for small camera translations, and by parts
of the scene that move, which appear at different locations
in the two frames. Our global alignment computation is
described in subsection 3.5. Figure 7 illustrates the accuracy
and robustness of our global alignment stage.

Local alignment. The mapping R between frames V i1
and V i2 will be used to replace the occluder pixels in frame
V i1 with pixels from V i2 . The mapping is approximate when
the occluded scene is near and it has to be refined. The
inaccuracy of the mapping is noticeable only at the occluder
contour C1, where the V i2 pixels are spliced into V i1 (Fig-
ure 9, left). The algorithm computes a local alignment that
alleviates color differences on each side of the occluder con-
tour (lines 13–14). First, the outer contour of C1 is sampled
to gather a set of points A1 with large color changes (line
13, and red dots in Figure 9, middle). These points are better
suited for computing the local alignment than the outer
contour vertices because they do not sample wastefully
regions of uniform color, and because they sample most
regions with large color changes.

The newly defined outer contour A1 is adjusted with an
algorithm similar to Algorithm 1, with two differences. The
first difference is that the adjustment now proceeds follow-
ing the outer contour, and not the inner one. Using Figure 3
again, adjustment based on the outer contour is not con-
cerned with the outer contour vertices and directly moves p′2
to its better position p2 that minimizes the color difference
between I2 at p2 and I1 at p1. The second difference is that
the adjustment now compares Q1 to a rotated image patch
Q2, and not an axis aligned one (line 6 in Algorithm 1). The
rotatedQ2 is computed using rotationR. This more accurate
comparison is now needed because the contour adjustment
for the local alignment crosses between videos, and axis
aligned patches do not match. Furthermore, adjustment is
performed at the output frame cut line between the two
video sources, so an inaccurate alignment would be readily
visible. Figure 9, middle, visualizes the displacement of the
points of A1 (red dots) to their correct locations A2 (green
dots). Figure 9, right, shows the continuity achieved at
contour boundary in the disoccluded frame using our local
alignment.

Occlusion removal. Finally, the algorithm removes the
occluder in the primary frame V i1 (lines 15–19). The disoc-
cluded frame V id starts out as a copy of V i1 (line 15), and
then pixels p inside the contour are looked up in V i2 . A pixel
p is first rotated to pr using R, and then pr is offset with a
weighted sum of offsets a2 −R× a1, for all a1 points in the
vicinity of p. We support several disocclusion visualization
modes, such as cutaway, where p′ completely replaces p,
and transparency, where p and p′ are blended together, with
and without showing the contour of the occluder.

Fig. 8. Weights used in global alignment from Figure 7. Moving objects,
such as the car and the pedestrians, and regions with high disparity,
such as the contour of the person near to the camera, are assigned low
weights, to reduce noise in the rotation computation.

3.4 Rotation Initialization

The videos V1 and V2 are acquired from different view-
points, so computing the rotation R0

2 of frame V 0
2 to V 0

1

is challenging, as it does not benefit from frame to frame
coherence. Indeed, the gap between V1 and V2 only has to
be bridged for the first frame of V2, as subsequent V 0

2 frames
only have to be registered to their previous frame, whose
rotation to V 0

1 is already known.
R0

2 is computed by finding SURF features [31] in V 0
1 ,

outside of C1, and in V 0
2 . V 0

1 features are matched to V 0
2

features using FLANN [32]. A pair of corresponding fea-
tures is given a weight commensurate to the confidence in
its correctness. The weight wij of a correspondence between
a feature f1i in frame V 0

1 and the most similar feature f2j in
frame V 0

2 is computed with:

wij = |f1i − f2k|/|f1i − f2j | (3)

where f2k is the feature second most similar to f1i, and
|fa − fb| is the difference between the descriptors of two
features fa and fb. The smallest possible weight is 1, when
f1i is equally similar to its best two matches, indicating
the possibility of an ambiguous correspondence. When the
second most similar feature f2k is considerably less similar
to f1i than f2j is, the correspondence is less likely to be
incorrect, hence the larger weight. The reprojection error
of corresponding features is minimized using a Gauss-
Newton non-linear optimization [35], while also leveraging
a RANSAC [33] approach to mitigate possible incorrect
correspondences. The selection of the best rotation out of
the multiple RANSAC tries is not done by merely choosing
the try with the highest number of inlier correspondences.
Instead, we choose the try with the highest sum of inlier
correspondence weights.

3.5 Global Alignment

The global alignment computes the rotation of the current
frame i to a previous key frame j, independently, for each
of the two videos. We globally align two frames with a
rotation because it provides a good approximation of the
mapping between the frames without the prerequisite of
scene geometry. We use the Gauss-Newton method [35] to
find the three rotational degrees of freedom that minimize
color difference.
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Fig. 9. Local mapping need (left), implementation (middle), and result
(right). Left: disoccluding using only the global mapping results in dis-
continuities where near objects cross the occluder contour, e.g. where
the sidewalk and handrail cross the red line in the left image. Middle:
the local mapping connects primary frame salient contour points (red
points) to their correspondence in the secondary frame (green points);
the local alignment offset is larger for near objects. Right: disocclusion
with continuity at occluder contour.

Given a current frame V i, a key frame V j , the camera
intrinsic matrix M , and a candidate rotation R from V i to
V i, the color residual rp at pixel p is given by:

rp(R) = V j [p]− V i[M−1(RM) · p] (4)

In Equation 4, p is first unprojected from Vi, then rotated,
and then projected to Vj . The stacked color residual vector
over the entire frame is ~r = (r1, . . . , rn)T , and the color
error E(R) is the `2 norm |~r| of the residual vector. We
use a left-compositional formulation. Starting with an initial
estimate R∗ given by the rotation of Vi−1 to Vj , we compute
an increment δR for each iteration:

δR = −(JTJ)−1JT~r(R), where J =
∂~r(ε⊕R)

∂ε
|ε=0 (5)

J is the derivative of the residual vector ~r with re-
spect to an increment ε, and JTJ is the Gauss-Newton
approximation of the Hessian matrix of E. We then update
the current rotation estimate by multiplying it with the
iteration’s increment:

R = δR⊕R (6)

In order to gain robustness with outliers caused by
moving objects, by the disparity of near objects, and by view
dependent effects (e.g. reflections), the minimization is done
in an iteratively reweighted fashion [36]. The weight of a
pixel p equals the inverse 1/rp of its residual. The weight
is capped to avoid infinite weights when a pixel residual
is very small. Figure 8 visualizes the pixel weights for
the global alignment from Figure 7. The weighted rotation
increment is:

δR = −(JTWJ)−1JTW~r(R), where W = diag(1/r1, . . . , 1/rn)
(7)

For speed, we perform this color residual minimization
with a coarse-to-fine approach, that works at different levels
of the image resolution pyramid. We start from the coarsest
level of 30 × 17, as our frames have a 16:9 aspect ratio,
and we stop at for levels deeper, i.e. at 480 × 270. The
minimization converges at each level in between 2 and 4
iterations.

TABLE 1
Average per-frame running times for the stages of our pipeline [ms],

and overall frame rate [fps].

Stage
Contour
tracking

Global
alignment

Local
alignment

Occlusion
removal FPS

Snow 1.3 1.8 3.3 1.8 122
Terrace 1.1 1.8 4.8 5.5 76
Atrium 1.6 1.8 5.1 2.9 88
Clutter 1.9 1.8 4.5 4.6 79
Crossing 1.3 1.8 5.3 1.6 100
Intersection 1.4 1.8 3.4 2.1 114

4 RESULTS AND DISCUSSION

We have tested our occlusion removal method on several
scenes, including Snow, Terrace, Atrium, and Clutter (Fig-
ure 1, Crossing (video), and Intersection (Figure 12). All
scenes were abundantly dynamic, except for the Clutter
scene, which was stationary. Each scene was acquired with
two videos, captured with separate handheld phone and
tripod mounted tablet cameras, from different viewpoints,
matching the scenario described in the paper; the Clutter
scene was acquired with a single handheld camera that
revolved around the occluder, and the later frames were
used to disocclude the earlier frames. The input and output
videos have a 1,920 × 1,080 resolution. Our method worked
well with all scenes, alleviating occlusions by creating a con-
vincing transparency effect. We first report the running time
of our method (subsection 4.1), we discuss the quality of the
occlusion removal achieved by our method (subsection 4.2),
we compare our method to ground truth (subsection 4.3),
and we compare our method to state of the art occlusion
removal method (subsection 4.4).

4.1 Time

We ran our disocclusion method for each pair of videos on
an Intel i5-7600k workstation with a 3.8 GHz CPU clock. Our
implementation uses only the CPU (and not the GPU). The
videos were played back at the original frame rate (60 fps
for Snow and Terrace and 30 fps for the other scenes), and
our method comfortably processed the frames in real time,
with no precomputation.

Table 1 gives the average times for each of the four stages
of our pipeline, as well as the average frame rate, which is at
least 75 fps. Contour tracking performance depends on the
number of contour vertices, global alignment performance
depends on the number of pixels in the resolution pyramid
level used, local alignment performance depends on the
number of salient contour points, and occlusion removal de-
pends on the number of pixels in the occluder footprint. For
Snow, Atrium, Crossing and Intersection, the slowest stage is
the local alignment stage, which evaluates color differences
with rotated and not axis aligned patches (parameter R of
line 14 in Algorithm 2). In addition to the cost of the rotation
itself, comparing color between a rotated patch and an axis
aligned patch introduces a bilinear interpolation per color
comparison. For Terrace and Clutter, the occluder footprint
is larger than for the other scenes, and occlusion removal
takes slightly longer than local alignment. In all cases, our
performance is sufficient even for 60 Hz videos.
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Fig. 10. Disocclusion error caused by 3D occluder removal. The sec-
ondary frame with viewpoint O2 does not capture the green object
between B and D. Even if the secondary frame has perfect depth
per pixel, projecting the 3D samples of the secondary frame onto the
primary frame will leave a gap between the projection of B and the
projection of C. Our occluder removal method does not suffer from such
a disocclusion error, as the mapping it uses does not allow B and C to
separate in the primary frame.

4.2 Quality

Our method handles well a variety of scenes, replacing the
occluder pixels with pixels from the secondary video, with
good continuity, as can be seen in the figures throughout
the paper and in the accompanying video. The limitations
of our method are discussed in the next section. Our
method relies on a weak connection between the primary
and the secondary frames: the frames are connected by an
approximate mapping inside the occluder contour, and by
a more rigorous mapping along the occluder contour. The
weaker connection is faster to compute than the per-pixel
correspondences used in structure from motion. Moreover,
the weaker connection has the advantage of avoiding disoc-
clusion errors.

Our method bypasses the computational expense of
finding depth based on the disparity between the two video
feeds, yet it avoids disocclusion errors that would plague
such a depth-based approach.

Even if both videos are replaced with perfect RGBD
streams, disocclusion errors can occur when the occluder
is removed and the primary viewpoint gains line of sight to
a part of the scene not visible from the secondary viewpoint.
In Figure 10, the primary viewpoint is O1 and the secondary
viewpoint is O2. The secondary frame samples the green
object from the left until B, and then the blue object from C
towards the right. The primary frame is affected is affected
by the occluder FG. The primary frame sees the green object
from the left until A, then the occluder, and then the blue
object from E to the right. A depth-based, 3D occluder re-
moval method leverages the perfect depth available at each
secondary frame pixel to project the secondary frame pixels
to their correct location in the primary frame. However,
since the secondary frame does not sample the green object
between B and D, the 3D occluder removal method leaves
a gap, i.e. a disocclusion error, between B and C .

Our occluder removal method replaces the occluder
pixels FG in the primary frame with the secondary frame
pixels from A to E. Our local alignment makes sure that

Fig. 11. Illustration of multiperspective effect achieved by our disocclu-
sion method: primary and secondary view frames (top), ground truth
transparency effect (bottom left), and output of our multiperspective
occlusion removal algorithm (bottom right).

the primary and secondary frames are aligned at A and
E. Our method does not recreate the primary view for the
disoccluded part of the scene. Instead, the pixels used to
fill in the occluder shadow in the primary view come from
the secondary view which has a different viewpoint, i.e. a
different perspective on the disoccluded scene. This differ-
ent perspective is maintained because the global alignment
of our method is a homography and not a 3D warp. Our
method does not remove the viewpoint difference but rather
transitions from one viewpoint to another at the occluder
contour.

Figure 11 illustrates on a synthetic scene the multi-
perspective nature of the disocclusion effect achieved by
our method. In the primary view (top left), the yellow
rectangle occludes a cube with red, green, and blue faces.
In the secondary view (top right), the cube is seen from
a translated viewpoint, which reveals the blue and green
faces. The first view occluder contour is shown with black
in all images. on the background grid. Whereas the ground
truth transparency effect only shows the front (red) face
of the cube (bottom left), our visualization (bottom right)
shows the cube from the secondary perspective, revealing
its red, green, and blue faces. Our visualization changes
perspective continuously based on the local alignment step
which splices in the pixels from the secondary view.

4.3 Comparison to ground truth

We have also compared our method to ground truth trans-
parency over a real world video sequence. For this, we
recorded primary and secondary videos with the occluder
obstructing both views ( 12a), from which we extracted the
occluder from each video ( 12b); then we recorded primary
and secondary videos without the occluder ( 12c), which
serve as ground truth; then we inserted the extracted oc-
cluders in each video ( 12d), on which we run our algorithm.
Our algorithm produces results 12f that are comparable to
the ground truth ( 12e). A sliver of the occluder remains at
the bottom of our frame since the secondary view direction
is tilted up and it does not cover that part of the occluder.
Please also refer to the accompanying video.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12. Comparison of our disocclusion method to a ground truth
transparency effect: (a) primary and secondary frames with occluder,
(b) extracted occluder, (c) primary and secondary frames without oc-
cluder, (d) extracted occluder b inserted into frames c, (e) ground truth
transparency effect, (f) output of our algorithm.

4.4 Comparison to state of the art methods

We compare our results to those obtained with a commer-
cial image processing platform, i.e. by using the content-

TABLE 2
Quality of occluder removal quantified by comparison to ground truth,

for the images in Figure 13, using two per-pixel comparison metrics, i.e.
mean `1 error and PSNR, and two perceptual image comparison

metrics, i.e. LPIPS, which measures image dissimilarity, so the lower
the better, and SSIM, which measures image similarity, so the higher

the better.

`1 error (%) PSNR LPIPS SSIM

Our method 1.928 26.46 0.024 0.952
Content-Aware Fill [37] 2.565 23.15 0.100 0.810
Partial Convolution [27] 3.476 21.61 0.143 0.818
DeepFill v2 [39] 4.046 20.41 0.170 0.810
GLCIC [29] 4.775 20.75 0.219 0.785

aware fill tool of Adobe PhotoShop 2020 [37]. The tool is
based on earlier occluder removal techniques [24], [38],
updated based on image correction techniques based on
deep-learning [28]. The tool relies on a second image from
where to select pixels to inpaint the first image. In addition
to the primary and secondary view frames, we provide as
input the contour of the occluder in each frame. We also
compare our method to a state of the art inpainting method
based on partial convolution [27], and to two state of the
art inpainting methods that use deep learning with typical
convolution layers, namely DeepFill v2 [39] and Globally and
Locally Consistent Image Completion (GLCIC) [29]. All three
inpainting methods find occluder replacement pixels in the
input frame, and therefore they have the advantage that
they do not require acquiring the scene from a secondary
viewpoint.

Figure 13 shows the results obtained by the five methods
and the ground truth result, on the same frame. Our result
shows significantly fewer artifacts and better continuity. We
quantify the quality achieved by each method by comparing
the result of each method to ground truth. We quantify
the differences in terms of two per-pixel image comparison
metrics, i.e. the mean `1 error and the peak signal-to-noise
ratio (PSNR), as well as in terms of two perceptual image
comparison metrics: the Learned Perceptual Image Patch
Similarity (LPIPS) metric [40], and the Structural SIMilarity
(SSIM) index [41]. Table 2 summarizes the comparisons
which show that our result is closer to ground truth than
that of the two other methods, even with the residual
occluder sliver. Furthermore, the methods above were not
designed for real-time video processing; according to our
measurements, they require about one second of processing
time per frame, on the same machine used to time our
method. The authors of GLCIC report 0.5s on the GPU or
8.2s on the CPU for 1,024 × 1,024 images [29]. The authors
of DeepFill v2 report 0.2s on the GPU or 1.5s on the CPU for
512× 512 images [39]. We conclude that inpainting methods
are better suited for the offline filling-in of small-area image
holes, where they can extrapolate successfully from not too
distant neighboring regions, and are less suited for filling-in
in real time the large occluder footprint.

5 CONCLUSIONS. LIMITATIONS. FUTURE WORK

We have presented a method for removing an occluder from
a video, by transferring pixels from a second video that
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(a) Ground truth (b) Our method

(c) Content-Aware Fill [37] (d) Partial Convolution [27]

(e) DeepFill v2 [39] (f) GLCIC [29]

Fig. 13. Comparison to prior methods for occluder removal.

captures what the first video should show if the occluder
were not present.

The pixels from the second video are spliced in with
good continuity across the occluder contour. The method
is based on the insight that a convincing transparency effect
can be obtained without knowledge of 3D scene geometry.
The method computes a mapping from the first video to the
second video, which orients the second camera the same
way as the first camera, but which does not attempt to
translate the second camera viewpoint to the first viewpoint.
The result is a multiperspective visualization, where the
scene surrounding the occluder is shown from the first
viewpoint, and the scene behind the occluder is shown
from the second camera viewpoint. The two perspectives are
connected seamlessly, with a local mapping that achieves a
gradual transition from one viewpoint to the other.

The method achieves good results on a variety of scenes
with intricate and dynamic geometry. We have shown that
our method can produce results comparable to ground truth
video obtained by recording the scene without occluder,

Fig. 14. Illustration of multiperspective effect achieved by our disocclu-
sion method: secondary view frame (left) primary view frame (middle)
and output of our algorithm (right). Both left and right face of the box is
visible in our output.

Fig. 15. Method limitation due to near object crossing the occluder con-
tour: perspective switch deformation (A) and extrapolation discontinuity
(B).

and better results than prior occluder removal approaches.
The method is fast, with a minimum frame rate of 75 fps.
At fundamental level, our method is fast because it only
searches for correspondences between the two video frames
along the occluder contour, and not for all the frame pixels.

Our method does not require that any of the cameras
be stationary — camera movement is accounted for by the
global alignment stage. This first, rough alignment aligns
well for the distant part of the scene, but it alone does
not produce continuity across the contour (Figure 9 mid-
dle). Continuity is achieved by our second step, i.e., local
alignment along the contour, which is a key distinguishing
feature with respect to prior methods.

Our method is interactive, allowing the user to specify
the object to be removed by sketching a rough contour in the
first frame, after which the contour is tracked automatically.
Our pipeline is readily compatible with prior art techniques
that can detect the “near” object from the first two frames
of the primary and secondary feeds, which can be used to
seed contour tracking automatically.

One limitation of our method pertains to near objects
that cross the occluder contour. A near object is imaged
from different directions by the two cameras, and therefore
it has a different appearance in the two frames, a difference
that cannot be alleviated by the global mapping rotation.
This poses no problems when the near object is completely
hidden behind the occluder (e.g. Figure 11). However, when
the object crosses the occluder contour, the object is distorted
by the multiperspective effect, as it starts out in one per-
spective and ends in the other, the same way the subject
is distorted in Picasso’s cubist portraits that connect two
views of the subject’s face in a single painting. In Figure 14,
the switch from the primary to the secondary perspective
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occurs over the cube, distorting the cube. In Figure 15, the
handrail crosses the occluder contour in region A, where it
switches from the primary perspective, outside the occluder,
to the secondary perspective, inside the occluder. The switch
is continuous, but the handrail is distorted as it is shown
with two perspectives.

Another problem posed by partially occluded near ob-
jects arises when the secondary frame does not see every-
thing the occluder hides in the primary frame. In such a
case, a piece of the object is missing from both frames,
and the local mapping cannot fill in the missing piece.
In Figure 15, the visualization appears discontinuous to a
human observer in region B, who knows that the scene has
one straight, uninterrupted handrail, and therefore expects
that the disoccluded hand rail be aligned with the handrail
reemerging to the left of the occluder. We call this an
extrapolation discontinuity.

The perspective switch deformation and the extrapola-
tion discontinuity problems are inherent to our method,
in the sense that they occur even though our algorithms
work as intended. The Atrium scene is a worst case scenario
for these problems as the long, straight handrail makes
them conspicuous. Future work could aim to reduce the
perspective switch deformation by widening the area over
which the switch between perspectives occurs; the extrap-
olation discontinuity could be reduced by leveraging or
even pursuing a high-level understanding of the scene that
maintains handrail continuity even though a handrail piece
is missing from both frames.

A third problem posed by near objects that cross the
occluder contour is that the local mapping fails occasionally
(Figure 16). For near objects, correcting the global mapping
requires large offsets, and the search is less robust. The
problem is exacerbated when the object moves quickly, and
when the object does not have much texture, as is the case
of the backpack and jacket in region C of Figure 16. Using
a small search neighborhood in the interest of performance
reduces local mapping robustness. Future work could ex-
amine increasing the robustness of the local mapping with
a strategy that leverages the image resolution pyramid to
search over large distances to gain robustness without a
significant performance trade-off.

Fig. 16. Method limitation due to near object crossing the occluder
contour: the local mapping achieves continuity across the occluder
contour for the pavement line (A), for the moving foot (B), but fails for
the backpack (C).

Another limitation of the current implementation is that
the visualization is not always perfectly stable. Presently, the
set of salient points used by the local mapping is computed

from scratch for every frame. Future implementations could
limit the number of points replaced at every frame, in
the interest of stability. Finally, the current implementation
computes the global alignment with respect to a fairly recent
key frame of the same video, and global alignment is com-
puted across videos only once, for the first pair of frames.
This works well for our sequences of 30 s, but for longer
sequences, global alignment drift could be a concern, which
will have to be addressed by occasionally recomputing the
global alignment between the current frames of the two
videos.

We have shown that our method runs fast enough on
a workstation, using only its CPU, to keep up with pre-
recorded videos. Future work should deploy our pipeline
to phones and tablets, leveraging their GPUs. Future work
could focus on absorbing into the local adjustment algo-
rithm the latency of transmitting the secondary video to
the user device where the disocclusion effect is computed.
Another possible direction of future work is to use multiple
secondary video streams to handle complex occlusions.

We describe a multiperspective framework for the con-
tinuous and non-redundant integration of multiple im-
ages, which, compared to traditional structure from motion,
comes at the lower cost of only having to establish O(w)—
and not O(wh)—correspondences between pairs of w × h
images. This framework might find other applications, in
augmented reality and beyond.
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