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Abstract—We propose CoRE, a 360◦ video streaming approach
that reduces bandwidth requirements compared to transferring
the entire 360◦ video. CoRE uses non-linear sampling in both
the spatial and temporal domains to achieve robustness to view
direction prediction error and to transient wireless network band-
width fluctuation. Each CoRE frame samples the environment in
all directions, with full resolution over the predicted field of view
and gradually decreasing resolution at the periphery, so that
missing pixels are avoided, irrespective of the view prediction
error magnitude. A CoRE video chunk has a main part at full
frame rate, and an extension part at a gradually decreasing frame
rate, which avoids stalls while waiting for a delayed transfer. We
evaluate a prototype implementation of CoRE through trace-
based experiments and a user study, and find that, compared to
tiling with low-resolution padding, CoRE reduces data transfer
amounts, stalls, and H.264 decoding overhead, increases frame
rates, and eliminates missing pixels.

I. INTRODUCTION

360◦ videos allow users to vividly experience complex
environments. The user can actively change view direction,
which affords a greater sense of presence in the environment
compared to passively watching a conventional video that
chooses the view direction for the user.

Challenges. A 360◦ video has to store a large number of
pixels to capture the environment in all directions. To reduce
bandwidth requirements over wireless links, only the part of
the 360◦ video that the user actually sees is transferred. For
example, for a user Field of View (FoV) of 90◦ × 90◦, the user
only sees about one eighth of a 360◦ × 180◦ equirectangular
frame. In this case, 360◦ video streaming has to predict the
user view direction [17].

A second challenge for wireless 360◦ video streaming is
the fluctuation of network bandwidth, caused by handovers be-
tween radio towers, or by sparse radio coverage [1], [23]. For
example, a mobile device on a high speed train can experience
connectivity failures of 2 to 15s, every 150s [22]. As cellular
carriers strive for higher bandwidth, the initially sparse cover-
age of 5G radio [19] will exacerbate bandwidth fluctuation and
make bandwidth prediction difficult. Bandwidth fluctuation
can be masked in conventional video streaming by prefetching
and rate adaptation [2], [27]. However, prefetching in 360◦

video streaming is constrained by how far ahead one can
reliably predict the user view direction. Delayed prefetching
causes playback stalls and loss of viewership [10].
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Fig. 1: CoRE 360◦ video concept.

State of the Art. Most 360◦ video streaming systems [8], [17]
partition the input video uniformly into rectangular tiles, and
transfer the tiles that overlap with the predicted user FoV, plus
a safety margin, possibly at a lower resolution. For example, in
a 4 × 6 tiling of an equirectangular video, a tile covers about
60◦×45◦, so a 90◦×90◦ FoV requires at least 2×2 tiles, which
corresponds to a transfer size reduction of at most 24/4 = 6.
A safety margin of only 10◦ brings the FoV to 110◦×110◦, for
a transfer size reduction of 24/(3 × 3) = 2.66. Using lower
resolution tiles at the periphery of the FoV reduces transfer
size, but introduces abrupt resolution changes.

To increase view prediction accuracy, 360◦ video streaming
systems reduce the duration of the video chunk from 4s [9] to
1s [8], [17]. This implies delayed prefetching and more likely
stalls. Further, a shorter chunk yields more files, e.g., 36 files
for 4s of 3 × 3 1s tiles. This decreases compression effec-
tiveness as the codec cannot exploit data redundancy across
spatial and temporal tile borders, and increases decompression
cost at the client. This can be alleviated with variable-sized
disjoint [6] or overlapping [29] tiles, which allow partitioning
with uniform complexity [6], and allow managing storage
requirements at the server [29], while capping the overall
number of tiles, albeit to about 30 tiles. Most state-of-the-art
systems [6], [8], [17] require a GPU, which drains batteries
and precludes thin clients.
Proposed Approach. We propose CoRE (Compressed Rota-
ted Equirectangular) 360◦ video streaming, designed to satisfy
five main requirements:

(1) Robustness to view prediction error: no missing pixels,
regardless of view prediction error size.

(2) Robustness to transient bandwidth fluctuation: minimize
stalls when the next chunk is delayed.

(3) Single file: reconstruct each frame from one video file.
(4) Compatibility with current streaming: leverage standard

codecs and protocols, e.g., H.264 and DASH [9].
(5) Computational efficiency: have low computational cost

to support clients with no GPU.



CoRE is based on a 360◦ video parameterization designed
for streaming. Spatially, a CoRE frame covers all view di-
rections, so there are no missing pixels, regardless of view
prediction error magnitude. A CoRE frame has a central
region at full resolution, and a peripheral region at gradually
decreasing resolution (Figure 1). The central region is aligned
with the user view direction, so output frame pixels inside
the predicted FoV are computed from full resolution data.
Pixels outside the predicted FoV are computed from the lower
resolution peripheral region. The peripheral region’s non-
linear resolution provides higher quality for smaller prediction
errors, which are more frequent. The CoRE frame resolution
continuity avoids abrupt quality changes.

Temporally, a CoRE chunk has a main part at full frame
rate (from t0 to t1 in Figure 1), followed by an extension
part at a gradually decreasing frame rate (from t1 to te).
In the absence of bandwidth fluctuation, the output video is
reconstructed using the main part, at full frame rate. If the next
chunk is delayed, stalls are avoided for up to te − t1 seconds
by reconstructing the output video from the extension part.
The extension’s non-linear frame rate handles the more likely
short delays without significant frame rate decreases. When the
extension is used, the scene captured by the video is updated
less frequently, but the system remains fully responsive to user
view direction changes, without the visual degradation implied
by conventional bit rate reduction. The user can rotate the
view direction with no latency, with the only disadvantage
that dynamic scene objects are updated 10 and not 30 times a
second.

The CoRE non-linear spatial and temporal sampling buys
insurance against degradation caused by view prediction error
and by stalls. The insurance premium is the transfer of addi-
tional data in the periphery region and the extension part. The
sampling scheme provides the flexibility needed to minimize
the additional transfer and maximize output quality, based on
the application, the scene, and the network conditions.

CoRE chunks are compressed with a standard low-level
video codec, e.g., H.264, and transferred to the client with a
standard video streaming protocol, e.g., DASH. The server pre-
computes chunks for a uniform discretization of all possible
view directions, which trades off storage for scalability with
the number of clients, conforming to the DASH paradigm. A
single CoRE frame covers the entire FoV, which maximizes
video compression efficiency, and minimizes client video
decoding costs. Finally, CoRE optimizes the mapping from
the output frame to the CoRE frame, achieving 30fps on a
tablet in a purely serial CPU implementation, whereas most
prior systems can only work with a GPU. This opens the door
to 360◦ video streaming on the thinnest of clients.

We have evaluated CoRE on several 360◦ videos, user view
direction traces, and wireless network traces, compared it to
five baseline tiling variants, and conducted a user study. Our
results indicate that CoRE significantly reduced the amount
of data transferred, stalls, and H.264 decoding overhead,
eliminated missing pixels and abrupt resolution changes, and
increased frame rates, compared to tiling with padding.

II. CORE STREAMING

Figure 2 shows the architecture of the CoRE 360◦ video
streaming system. The 360◦ video content is encoded offline
(1-2) into CoRE chunks (§II-A) for a discretization of all
possible view directions. Then, while streaming online, at a
time determined adaptively (§II-E), the client requests a CoRE
chunk from the server (6-9) based on the predicted view (5),
which is based on the current user view (4), captured by the
View User Interface (3). The client decodes the CoRE chunk
(A, §II-C) using the current user view (B) to compute the
current output frame (C).
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Fig. 2: CoRE architecture.

A. CoRE Encoding

A CoRE chunk is a video cube that covers a central region at
full resolution and peripheral regions at decreasing spatial and
temporal resolutions (Figure 1). A CoRE chunk is constructed
with algorithm 1. The input video V ∗ is encoded with a
standard video codec, such as H.264. Any omnidirectional
parameterization is supported, such as equirectangular, cube
map, fisheye, or other spherical projections; all that is needed
is a function that projects a direction onto the input 360◦

video frame, as discussed below. w×h is chosen to match the
output client frame resolution, but not to exceed the resolution
available in the input video V ∗. we, ∆te, and ne, balance the
robustness/overhead trade-off.

Algorithm 1: CoRE Chunk Encoding
Input: input 360◦ video V ∗, predicted user view direction dp,

user FoV ∆φ×∆θ, CoRE chunk starting time t0, main
duration ∆t, central region resolution w × h, peripheral
region lateral thickness we, extension duration ∆te, and
number of extension frames ne.

Output: CoRE video chunk V ∗
CoRE .

1 (V, ω) = LowLevelDecode(V ∗, t0, t0 + ∆t+ ∆te)
2 for i = 0 to ω∆t do
3 VCoRE [i] = CoREFrameEncd(V [i], dp,∆φ,∆θ, w, h, we)
4 (a0, a1, a2) = SetupFrameRateDecrease(ω,∆te, ne)
5 for j = 1 to ne do
6 tj = a0j

2 + a1j + a2; k = bω(∆t+ tj)c
7 VCoRE [i++] =

CoREFrameEncd(V [k], dp,∆φ,∆θ, w, h, we)
8 return V ∗

CoRE = LowLevelEncode(VCoRE)

The algorithm extracts (from the input video) the frames
within the main and extension time intervals (line 1). The



algorithm computes the ω∆t frames of the main part, where
ω is the frame rate of the input video (lines 2-3). Each CoRE
frame is computed from one input video frame, as described
in §II-B. The main part has a constant frame rate, ω.

The extension part frames are placed on the timeline farther
and farther apart (Figure 1). Let the timeline position of frame
j of the extension be t(j), with respect to the beginning of
of the extension. Then t(j) has to satisfy three conditions
(Equation 1): the first frame has to be placed at the beginning
of the extension, the last frame has to be placed at the end
of the extension, and the frame rate at the beginning of the
extension part has to match that of the main part, i.e., ω.

t(0) = 0, t(ne) = ∆te, t
′(0) = 1/ω (1)

Satisfying three conditions requires three coefficients, so the
simplest expression for t(j) is a quadratic (Equation 2).

t(j) = a0j
2 + a1j + a2, t

′(j) = 2a0j + a1 (2)

The coefficients ai are found (Equation 3, line 4) by solving
the system of linear equations defined by Equations 1 and 2.
The lowest frame rate over the extension part of the CoRE
chunk occurs at the end of the extension, and it is equal to
1/t′(ne). The average frame rate over the extension is ne/∆te.

a0 = (ω∆te − ne)/(ωn2e), a1 = 1/ω, a2 = 0 (3)

The algorithm computes each extension frame j from its
corresponding input video frame k (lines 5-7). k is found by
computing the extension timeline position tj of frame j and
then by finding the input frame at time point ∆t + tj (line
6). Finally, the CoRE chunk is encoded with a codec (e.g.,
H.264) to reduce file size by data compression (line 8).

B. CoRE Frame Encoding

A CoRE frame is computed as follows (Figure 3 a-d). The
input equirectangular frame (a) is rotated (b) to center the
predicted user FoV (black). Then, the peripheral region is
compressed. The resulting CoRE frame is shown at scale in
c, and magnified in d, with the central region shown in red.

Fig. 3: CoRE frame construction stages (a-d), and output frame
(e) decoded from CoRE frame (d).

A CoRE frame is computed from an input 360◦ frame
F according to algorithm 2. The vertical thickness of the
peripheral region he is computed using the number of pixels
per degree defined by the input parameter we (line 1). For

Algorithm 2: CoRE Frame Encoding
Input: 360◦ video frame F , predicted user view direction dp,

user FoV ∆φ×∆θ, central region resolution w × h,
and peripheral region lateral thickness we.

Output: CoRE frame FCoRE

1 he = we(180o −∆θ)/(360o −∆φ)
2 u0 = w(360o/∆φ− 1)/2; v0 = h(180o/∆θ − 1)/2
3 R.x = dp;R.y = dp × (0, 1, 0);R.z = R.x×R.y
4 for v = 0 to h+ 2he do
5 for u = 0 to w + 2we do
6 if (u, v) ∈ [we, we + w]× [he, he + h] then
7 (ue, ve) = (u, v)− (we, he) + (u0, v0)
8 else
9 (ue, ve) = Expand(u, v)

10 de = Unproject(ue, ve)
11 dr = RT dTe
12 (ui, vi) = Project(dr)
13 FCoRE(u, v) = LookUp(F, ui, vi)
14 return FCoRE
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Fig. 4: Expansion of CoRE peripheral region.

example, for a 90◦ × 90◦ user FoV, the vertical thickness
of the peripheral region is we/3. The coordinates (u0, v0)
of the top left corner of the central region in the expanded
equirectangular frame are computed as half of the total width
and height of the expanded frame (line 2). In our 90◦ × 90◦

FoV example, for a w of 1,000, the total width of the expanded
frame is 1, 000(360◦/90◦) = 4, 000, and u0 is 1,500. The
local coordinate system of the user FoV is constructed from
the predicted view direction (line 3).

The CoRE frame is computed one pixel at the time (lines
4-13). If the current pixel (u, v) is inside the core region, its
coordinates in the expanded equirectangular frame are com-
puted by adding an offset that takes into account the different
peripheral region thickness (line 7). If the current pixel is in
the peripheral region (line 9), its expanded coordinates are
computed as described below.

The direction de to the center of the current pixel (u, v) is
computed by unprojecting the equirectangular frame 2D point
(ue, ve) to a 3D point de on the unit sphere (line 10). de is
rotated back to the world coordinate system to obtain dr (line
11). Finally, dr is projected to the input 360◦ frame F (line
12), where color is looked up (line 13). For example, if F is
equirectangular, the projection computes the latitude/longitude
values of a point given on the unit sphere.

Figure 4 illustrates the expansion of a point pc inside the top
part of the compressed peripheral region (shaded) to expanded
equirectangular frame point pe. The expansion proceeds as
follows. Find points p and q at the intersection of segments
q1q0 and r1r0 with the horizontal line through pc. Find point
ac such that q2ac/acr2 = qpc/pcr. Find points ae and b
by intersecting acpc with q1r1 and q0r0, respectively. The



expanded location pe of pc belongs to aeb. pe is placed on aeb
by computing the vertical coordinate ve of pe. ve is a function
ve(vc), which has to satisfy three conditions (Equation 4).

ve(he) = v0, ve(0) = 0, v′e(he) = 1 (4)

The first two conditions define the expansion for the inner
and outer edges of the peripheral region (e.g., the coordinate
of b changes from he to v0, and the coordinate of ac remains
0 when expanded to ae). The third condition ensures that
the CoRE sampling rate is continuous from the central to
the peripheral region. A quadratic accommodates all three
conditions (Equation 5).

ve(vc) = a0v
2
c + a1vc + a2, v

′
e(vc) = 2a0vc + a1 (5)

The coefficients, computed using Equation 4, are shown in
Equation 6. Along segment bac, the expansion starts slowly,
with no scaling close to b, and then picks up, to push ac all
the way to ae. The worst sampling rate is at the outer edge
of the CoRE frame, where a one pixel step corresponds to a
2v0/he − 1 pixel step in the expanded frame. The other three
parts of the peripheral region are expanded similarly.

a0 = (he − v0)/h2e, a1 = 2v0/he − 1, a2 = 0 (6)

C. CoRE Frame Decoding

The client computes output frames from the CoRE chunk.
The chunk is first low-level decoded to extract the CoRE
frames. Then each output frame is computed from its cor-
responding CoRE frame. The main part of the CoRE chunk is
played back. Then, if the next chunk is delayed, the extension
part is played back, using Equations 2 and 3 to find the index
j of the CoRE frame to be used for a given output frame.

An output frame Fout is computed by decoding the CoRE
frame FCoRE with algorithm 3. Matrix Cf denotes the current
user view. Each pixel (u, v) of Fout is computed by finding
it’s corresponding pixel (uc, vc) in FCoRE (lines 1-7). The
mapping unprojects the current pixel (u, v) to a 3D direction d
(line 3), d is rotated to dr in the CoRE coordinate system (line
4), dr is projected onto the equirectangular frame at (ue, ve)
(line 5), and (ue, ve) is moved to CoRE coordinates (uc, vc) by
compressing the peripheral region (line 6). The compression
is the inverse of the expansion described in §II-B. Pixel (u, v)
is set by bilinear interpolation of FCoRE at (uc, vc) (line 7).

Figure 3e shows an output frame decoded from the CoRE
frame (d). Due to view prediction error, the actual FoV extends
beyond the predicted view (black line in e) and the CoRE
central region (red line in e). The output frame (e) has full
resolution where core region pixels are used (left and below
red line), and smoothly decreasing resolution where peripheral
region pixels are used (right and above red line).

D. CoRE Frame Decoding Optimization

We optimize the mapping from the output frame to the
CoRE frame as follows. Referring back to algorithm 3, the
camera matrix Cf is pre-rotated by multiplication with R
(M = RCf ). Then dr is computed incrementally at the cost of

Algorithm 3: CoRE Frame Decoding
Input: CoRE video frame FCoRE , central region resolution

w × h, peripheral region lateral and vertical thickness
we and he, rotation matrix R from world to CoRE local
coordinate system, current user view camera matrix Cf ,
and output frame resolution wf × hf .

Output: frame Fout displayed by client for user.
1 for v = 0 to hf do
2 for u = 0 to wf do
3 d = Cf (u, v, 1)T

4 dr = Rd
5 (ue, ve) = Project(dr)
6 (uc, vc) = Compress(ue, ve)
7 Fout(u, v) = LookUp(FCoRE , uc, vc)
8 return Fout

three floating point adds, i.e. dr(u, v) = dr(u − 1, v) + Mi2,
where Mi2 is the third column of M . The equirectangular
projection (line 5) normalizes dr, finds the latitude ve, which
depends only on dr.y, and finds the longitude ue, which
depends only on dr.x and dr.z. The latitude and longitude are
found in pre-computed 1D and 2D look up tables, respectively.
The compression (line 6) is also looked up in a pre-computed
2D table. Consequently, the cost of computing an output frame
pixel is 3 adds, one 3D vector normalization, 3 table look-ups,
and a bilinear interpolation.

E. Adaptive Prefetching

We adaptively determine the time to prefetch each CoRE
file, inspired by the TCP Retransmission Timeout (RTO)
computation algorithm [14]. We update the prefetching time,
which we subtract from the end time of the current chunk, as:
Smoothed download time = (1 − α) × Smoothed download
time +α× Last download time; Download time variation =
(1−β) × Download time variation +β× (Smoothed download
time − Last download time); and Prefetching time = γ×
Smoothed download time +ρ× Download time variation.

We experimented with different values of α, β, γ, and ρ.
We varied α and β between 0 and 1 in increments of 0.1, and
γ and ρ from 0.5 to 2 in increments of 0.5. We also compared
with using fixed prefetching times of 1s, 2s, 3s, or 4s before the
end of the current chunck. We found that adaptive prefetching
with α = 0.9, β = 0.9, γ = 0.5 and ρ = 1 worked best. We
therefore use these values in all our experiments in this paper.

III. CORE STREAMING ANALYSIS

In this section, we analyze the CoRE cost/benefit trade-offs.
Robustness to view prediction error. A CoRE frame is a
360◦ frame, so there are no missing pixels, regardless of the
magnitude of the view prediction error. However, the larger
the view prediction error, the farther from the central region
the CoRE frame is sampled, and the lower the image quality.
Given a pixel (u, v) in the output frame that is looked up in the
CoRE frame at (uc, vc), we quantify image quality at (u, v)
as the sampling rate at (uc, vc). The sampling rate q(vc) is the
inverse of the sampling step along the compression direction,
i.e., q(vc) = v′e(vc)

−1 = 1/v′e(vc).
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Fig. 5: CoRE sampling rate vs. periphery coordinate (a) and thickness (b), and vs. view prediction error (c).

Assume the central region has an FoV of ∆φ × ∆θ =
90◦× 90◦, and a resolution of w×h = 1, 000× 1, 000. If the
lateral thickness of the peripheral region is we = 300, based
on lines 1-2 of algorithm 2, the vertical thickness is he = 100,
and the thicknesses of the expanded peripheral region are
u0 = 1, 500 and v0 = 500. Figure 5a shows the dependence of
the expanded vertical coordinate ve, of the sampling step v′e,
and of the sampling rate v′−1e , on the CoRE vertical coordinate
vc, over the peripheral region (e.g., from ae to b in Figure 4).
ve has a large initial velocity and decelerates uniformly until
the boundary between the peripheral and central regions, after
which it changes one-to-one with vc. The sampling step v′e
starts out at v′e(0) = 9 and decreases linearly to become
v′e(100) = 1 at the boundary. The sampling rate v′−1e starts
out as 1/9 and increases to 1 at the boundary. The average
sampling step (rate) is v0/u0 = 5 (1/5 = 0.2).

The cost/benefit trade-off is controlled through the thick-
ness of the peripheral region we, which also determines he.
Figure 5b shows the minimum quality qmin, defined as the
sampling rate v′e(0)−1 at the border of the CoRE frame, the
CoRE overhead ca, defined as the area of the peripheral region
over the area of the entire CoRE frame, and the CoRE size
reduction ra, defined as the area of the expanded frame over
the area of the CoRE frame. qmin corresponds to the largest
possible view prediction error, i.e., when the user looks in the
direction opposite to the one predicted. For a thin border with
he = 100pix, qmin is 1/9, the peripheral region is 48% of the
CoRE frame (ca = 0.48), and the CoRE frame is over 4 times
smaller than a conventional 360◦ frame (ra = 4.16). A border
of he = 200pix raises qmin to 0.25, at the cost ca = 0.67,
while still achieving a reduction ra = 2.6.

We now analyze the dependence of the sampling rate on the
magnitude of view prediction error. For our example, the 270◦

of horizontal FoV outside of the central region are distributed
evenly left and right, hence the largest possible horizontal view
prediction error (εh) is 135◦. Similarly, the largest possible
vertical view prediction error (εv) is 45◦. In Figure 5c, the
CoRE0 configuration has he = 100, ca = 0.48, and ra =
4.16. The sampling rate is above 0.25 for horizontal (vertical)
view direction prediction errors of up to 15◦ (5◦), and above
0.2 for errors up to 45◦ (15◦). The CoRE1 configuration has
he = 200, ca = 0.67, and ra = 2.6, and the sampling rate is
above 0.4 for errors up to 45◦ (15◦).

Robustness to link bandwidth fluctuation. The cost/benefit

trade-off is controlled through two parameters: the duration
∆te and the number of frames ne in the CoRE extension. ∆te
should be selected to avoid stalls for the longest anticipated
bandwidth degradation, e.g., handovers between cellular tow-
ers. A CoRE chunk can avoid stalls for up to ∆t+∆te, where
∆t is the duration of the main. ne should be selected based on
the overhead the system or application deems acceptable, and
based on the desired average ωavg and minimum ωmin frame
rates over the extension. We define the overhead ce as the ratio
between ne and the number of main part frames ω∆t, where
ω is the main part frame rate.
ωavg is linear in ne (i.e., ωavg = ne/∆te), as is ce (i.e., ce =

ne/(ω∆t)). ωmin is one over linear in ne (ωmin = t′(ne)
−1,

where t is defined by Equation 2 and Equation 3). For 30 extra
frames and a 6s extension, the frame rate decreases from 30fps
to 2.72fps, for an average frame rate of 5fps, and an overhead
of 25%. For a CoRE configuration with 60 extra frames, the
overhead increases to 50%, and the average and minimum
frame rates increase to 10fps and 6fps, respectively.

IV. EXPERIMENTAL EVALUATION

We first give our evaluation methodology, then our results.

A. Evaluation Methodology

We conduct trace-based experiments comparing C++ client
and server implementations of CoRE and tiling, running on
the CPU of an HP EliteBook 8470p laptop with Intel core
i5 3320M 2.6 GHz dual core processor and 8 GB of RAM.
Our C++ implementations consist of 5,000+ LoC. We also
conduct a user study using an Android client prototype on
a Samsung galaxy Tab S6 with Qualcomm snapdragon 855
Octa-core (1x2.84GHz + 3x2.41GHz + 4x1.78GHz) processor
and Android version 9. Our Android implementation reuses
our C++ code with JNI, with an additional 1,000+ Java LoC.

1) Streaming Approaches: We compare CoRE streaming
with the following tiling baseline algorithms for streaming a
stored video: (1) FoV only (fetch only the tiles overlapping
with the user field of view), (2) FoV+ 1QL (also fetch padding
tiles outside field of view, with all tiles of the same quality
level), (3) FoV+ 2QL (padding tiles have a lower quality level
than FoV tiles), (4) FoV 360 (fetch all tiles, with higher quality
FoV tiles), and (5) FoV+ 360 (fetch all tiles, with higher
quality FoV and padding tiles).

In our tiling implementations, we do not skip any of the
video frames when stalls occur; rather, we play back the entire



video, which may require a longer time to play back than the
video duration, due to stalls. We also stop head movement.
Hence, the results we report in terms of tiling frame quality
are advantageous to tiling. We also incorporate the decoding
optimizations that we developed for CoRE (§II-D) into the
tiling implementations for a fair comparison.

FoV+ 2QL, FoV 360, and FoV+ 360 follow the multi-
resolution approach taken by state-of-the-art 360◦ video
streaming systems [6], [8], [17]. Since we are unable to obtain
implementations of these systems, our comparison remains
at the algorithmic level, without the optimizations that these
systems employ. We note that CoRE is compatible with
several of these optimizations, as discussed in §VI. CoRE
merely mitigates the challenging problems of view direction
prediction and transient bandwidth fluctuation.

For tiling, unless otherwise specified, we use the following
parameters that are used in Flare [17]: (1) duration of each
video chunk is 1s, (2) user FoV is 90◦ × 48◦, (3) number
of tiles the video is partitioned into is 4×6, (4) amount of
padding is 20%, and (5) All high quality tiles have sampling
rate 1, and low quality tiles have sampling rate 0.5.

For CoRE, unless otherwise specified, we use the following
parameters: (1) user output frame resolution wf × hf is
960×512, (2) user FoV ∆φ×∆θ is 90◦× 48◦, (3) resolution
of the encoded high quality central region of CoRE w × h
is 1, 152 × 614, (4) resolution of the full CoRE frame with
high-quality center and peripheral region is 1, 688 × 1, 068,
(5) maximum sampling rate is 1 (central area) and minimum
sampling rate is 0.11 in a CoRE frame, (6) we request the
next CoRE adaptively within 1s-4s before the playback of the
main part of the current CoRE chunk will be completed, (7)
the real time duration of each CoRE is 10s: a 4s main part
plus a 6s extension part, and (8) the frame rate ω of the main
part is 30fps, and the extension part has ne = 30 frames.

2) Videos: We use six videos obtained from YouTube for
our experiments: (1) underwater diving (Diving), (2) elephants
drinking from a lake (Elephant), (3) panoramic view of New
York City (NY), (4) panoramic view of Paris (Paris), (5)
rhinoceroses (Rhino), and (6) a roller coaster ride (Roller).
All videos have approximately 4k (3,840×2,048) resolution.
We take approximately one minute of each video (but we use
two minutes for the user study), convert to .avi format, and
re-encode with Constant Rate Factor (CRF) 30. The resulting
file sizes are listed in Table I.

TABLE I: Videos used in experiments
Video YouTubeID File Size (MB)

Original 4s 1s
chunks chunks

Diving 2OzlksZBTiA 69.5 69.6 75.15
Elephant 2bpICIClAIg 39.6 40.0 43.8
NY CIw8R8thnm8 46.7 48.5 55.3
Paris sJxiPiAaB4k 15.2 18.5 36.2
Rhino 7IWp875pCxQ 13.2 15.2 26.75
Roller 8lsB-P8nGSM 49.3 49.7 55.22

3) Head Movement: We use one-minute head movement
traces [4] based on the work from Corbillon et al. [3]. We list

the total number of traces for each video in Table II. Except for
§IV-B6, we use the current view direction information when
fetching. This represents no head movement prediction, and is
a challenging case for both tiling and CoRE.

TABLE II: Head movement traces used in experiments
Video Diving Elephant NY Paris Rhino Roller
Traces 60 38 57 58 25 59

4) Network Conditions: For our trace-based experiments,
we use bandwidth traces obtained from the Mahimahi project
repository [12], which were collected using the Saturator tool
by Winstein et al. [23]. We choose these traces because, to
the best of our knowledge, they have the highest precision,
i.e., millisecond level, among all publicly available traces.
The four traces we use are listed in Table III. Note that the
average bandwidth listed in the table is in KBps, for ease of
comparison with transfer amounts that are given in Bytes. The
average is computed over approximately the first 60 seconds,
since this is the length of the head movement traces [4].

TABLE III: Bandwidth traces used in experiments
Trace ID Avg Bandwidth (KBps)
TMobile-UMTS-driving.down 121
ATT-LTE-driving-2016.down 576
TMobile-LTE-driving.down 1593
Verizon-LTE-driving.down 1899

5) Performance Metrics: We compare CoRE to tiling in
terms of the quality/cost trade-off. Quality is measured via
three intra-frame (a-c) and two inter-frame (d-e) metrics, and
cost is measured via two metrics (f-g).

(a) Missing pixels: an output frame pixel that maps outside
the fraction of the 360◦ frame transferred from the server.

(b) Sampling rate: inverse of sampling step (§III), ×100,
over all pixels of all output frames.

(c) Abrupt changes in sampling rate: number of output
image pixels that have at least one neighboring pixel of a lower
quality level, defined for approaches that use more than one
discrete resolution level.

(d) Frame rate: total number of frames played divided by
the playback duration. For tiling baselines, we consider the
next frame ready if at least the FoV tiles are ready, even if
padding tiles are not yet ready.

(e) Stalls: a stall occurs when the output frame cannot be
updated because the playback time has reached the last time
step covered by the data received. For CoRE, a stall starts
when the last frame of the extension is used. For tiling, a stall
starts when the last frame of the current chunk is used; again,
we do not wait for the arrival of the padding tiles.

(f) Amount transferred: total amount of data transferred
over the entire experiment duration.

(g) Low-level decoding overhead: time and energy con-
sumed by the video codec for low-level decoding at the client.

Unlike our detailed quality metrics (a-c), a lump-sum metric
such as PSNR would not detect and quantify errors that
occur over a small number of pixels, such as sampling rate
discontinuities, or a few missing pixels, since it averages such



pixels with the other pixels in the frame. Furthermore, PSNR
depends on the content of each video; for example, PSNR only
penalizes low resolution if it is over a region with fine detail;
rating streaming approaches reliably with a metric like PSNR
requires testing over a large number of videos and user traces.

B. Trace-Based Experiment Results

We first evaluate CoRE and tiling with the AT&T network
trace listed in Table III. This trace exhibits bandwidth fluc-
tuation, especially from time 20 to 30 seconds, when there
is significant bandwidth degradation. Thus, it represents a
challenging case for both tiling and CoRE. We experiment
with the remaining three network traces in §IV-B5.

1) Missing Pixels and Quality Changes: Figure 6 shows
the percentage of frames missing at least one pixel (1MP) and
Figure 7 depicts the maximum percentage of missing pixels
(MMP) in any frame, when using the tiling variants that do
not send all the tiles of a frame, i.e., FoV, FoV+ 1QL, and
FoV+ 2QL. Since FoV+ 1QL and FoV+ 2QL use the same
set of tiles (albeit at different quality levels), we only show the
results for FoV+ 1QL. The error bars here and throughout the
rest of the paper represent 95% confidence intervals (computed
based on a normal distribution).

For FoV-only tiling in Figures 6 and 7, the Rhino video has
the lowest 1MP and MMP values: ∼40% of the frames played
have at least one pixel missing, and at least one frame misses
as much as 81% of its pixels. The NY video has the highest
1MP of 60.3% and MMP of 95%. As expected, padding
reduces the number of missing pixels, but does not eliminate
them. For FoV+ 1QL and FoV+ 2QL tiling, we see 14(6)%
1MP and 51(33)% MMP for NY (Rhino) video in Figures 6
and 7. Therefore, with FoV-only tiling, a user is expected to
notice missing pixels every two frames and will have at least
one frame missing many pixels. For FoV+ 1QL and FoV+
2QL tiling, the user will encounter missing pixels every five
to ten frames and will have at least one frame missing about
half its pixels. With CoRE, there are never any missing pixels.

We now quantify the changes in sampling rate for tiling
with two quality levels. Figure 8 shows the % of frames with
at least one pixel on the quality level change boundary (1AP,
blue bars), and the maximum number of boundary pixels in a
frame (multiplied by 100, labeled MAP and shown in red).
Nearly half the frames have pixels on the quality change
boundary, with as many as 1100 pixels in some frames. Abrupt
changes in quality levels adversely affect user experience [2].
For CoRE, sampling rate changes smoothly.

2) Transfer Amounts: Figure 9 compares the amount of
data transferred with tiling and CoRE. We observe that CoRE
transfers less data than the FoV+ tiling variants in most
cases, which saves network bandwidth and device energy. As
expected, FoV-only tiling transfers the least amount among the
tiling variants, followed by FoV+ 2QL, FoV+ 360, FoV+ 1QL,
and FoV+ 360. The transferred data depends on the number
of transferred tiles and the quality of the tiles. FoV 360 sends
more tiles than FoV+ 1QL, but the latter has more higher

quality tiles, making FoV+ 1QL more bandwidth-consuming
than FoV 360. As expected, FoV+ 360 transfers the most data.

3) Frame Rates and Stalls: The means and confidence
intervals of the frame rates and stalls for the six videos
are shown in Figure 10. It is apparent from the figure that
CoRE experiences little stalls and close to 30fps, while all
tiling methods suffer from high stall durations and low frame
rates. Among the tiling methods, FoV-only tiling transfers the
least, and hence achieves better performance in terms of both
average frame rate and stall duration. However, FoV-only tiling
suffers from missing pixels (§IV-B1).

4) Low-Level Video Decoding Overhead: Once the client
receives a video file from the server, the client has to de-
compress it with a standard video codec, e.g., H.264. The
cumulative overhead of this low-level video decoding increases
when a video is partitioned into smaller videos that are
decoded individually. Figure 11 shows the video decoding
overhead in terms of time and energy consumption. Timing
data was collected on our laptop, whereas energy consumption
was measured on our tablet by averaging the battery level drop
from full, over all traces (Table II). CoRE, which requires
decoding a single file every 4s, has a much smaller overhead
than tiling, which requires decoding about 50 files for the
FoV+ methods, and 6× 4× 4 = 96 for the 360 methods. We
conclude that CoRE provides significant decoding savings.

5) Impact of Network Conditions: We now use all network
traces given in Table III. Due to space limitations, we only dis-
cuss the results for the Diving video, but we have experimented
with the other videos, and find the results to be similar. We
observe that the average sampling rates for CoRE are 62.18%,
62.19%, 65.33% and 66.69% for the four network bandwidth
traces, respectively. Figure 12 compares the average frame rate
and stall durations of all tiling methods and CoRE. We observe
that CoRE outperforms all tiling variants.

We also experimented with different central and peripheral
region sizes (1152 × 614 and 1323 × 1053), and with different
extension lengths (6s and 9s). We find that enlarging the
central region while reducing the peripheral region, keeping
the CoRE frame dimensions the same, increases the average
sampling rate, at the cost of increasing the file size. Increasing
the extension part duration helps mask longer bandwidth
drops, again, at the cost of a larger file. Note that the extension
has only limited redundancy with the next chunk, due to the
different predicted views and the decreasing frame rate.

6) Impact of View Direction Misprediction: We vary the
view prediction accuracy from 100% to 60%. The prediction
accuracy is computed from the degree difference between
the predicted and actual user view directions. A prediction
accuracy of x% implies that the predicted view direction is
180×(100−x)

100 and 90×(100−x)
100 degrees of longitude and latitude

away from the user actual view direction.
We used the Verizon bandwidth trace (Table III) because its

high bandwidth reduces the network effect on performance.
We observe that sampling rate is correlated with prediction
accuracy, e.g., reducing prediction accuracy from 100% to
60%, reduces the sampling rate by 38%, 42%, and 43% for
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Fig. 12: Diving video with four network bandwidth traces.

the Diving, Rhino, and Roller videos. Our experiments that use
the current view direction without any prediction correspond
to approximately 80% prediction accuracy.

C. User Study

We use our CoRE Android client prototype on the Samsung
tablet described in §IV-A to conduct an IRB-approved user
study using CoRE and FoV+ 1QL tiling. We use approxi-
mately two minutes each of three videos, streamed by a server
running on the same laptop used in the above experiments. The
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Fig. 13: Results of the user study.

client tablet screen can be swiped to change the view direction
up, down, left, or right while watching the video. The tablet
and laptop are connected via a hotspot created by a phone
with AT&T 4G LTE service. The wireless network average
download speed is approximately 1.03 MB per second (again
we use Bytes for ease of comparison).

Thirty participants, ranging in age from 18 to 52, of both
genders, watched and rated six videos (the Diving, Rhino
and Roller videos in §IV-A2 with each of the two streaming
methods). The order of the six videos is shuffled for each
participant. We replay three swipe movement traces that we
captured (one for each of the three videos) to generate the six
videos that the participants rate. This has the benefit of giving
all participants the same experience [6].

Figure 13 shows the participant ratings in terms of three
problems: missing pixels, low frame rate (choppiness), and
blurriness (blockiness) on a scale of 1 (strongly disagree) to 5
(strongly agree). As seen in the figure, CoRE outperforms (has
lower average values than) tiling in terms of missing pixels
and low frame rate, but tiling outperforms CoRE in terms
of lower blurriness. The blurriness result is expected because
CoRE avoids missing pixels by reducing peripheral sampling
rates. For tiling, we are using the FoV+ 1QL tiling baseline,
which uses a single resolution.

We now test the hypothesis that the distributions of re-
sponses for CoRE and tiling were equal across the three
metrics. Given two populations P1 and P2, we evaluate the
null hypothesis: H0 : P1 = P2, and the alternate hypothesis,
H1 : P1 6= P2, where P1 and P2 represent the observations
for CoRE and tiling, respectively. Since the distributions are
normal, we use a t-test [7] with a p value threshold α = 0.05,
to validate the null hypothesis. We find that for (1) presence
of missing pixels (p < 0.001), (2) low frame rate (p < 0.001),
and (3) blurriness (p < 0.001), the differences are statistically
significant (Figure 13).



V. RELATED WORK

The work most closely related to ours is Flare [17], Ru-
biks [8], Pano [6], ClusTile [29], POI360 [26], 360prob-
DASH [25], Oculus360 [28], and streaming for 5G net-
works [19]. Flare [17] applies machine learning techniques
for view direction prediction. Since prediction is imperfect,
Flare sends additional tiles around the FoV, and develops
scheduling algorithms and system optimizations to increase the
output video quality. Rubiks [8] augments tiling with temporal
segmentation into layers, which balances the decoding time,
video quality and bandwidth consumption trade-off. Pano [6]
uses variable-sized tiles– an idea proposed in ClusTile [29].
In POI360 [26], each video frame is spatially segmented
into 96 tiles, scaled down based on their distances from
the FoV center. The quality level is constant within a tile.
360probDASH [25] determines the tiles to pre-fetch and their
quality level by solving a QoE-driven optimization problem.
Sun et al. [19] send encoded video in multiple tiers over
5G. CoRE is inspired by ideas in these papers, but takes
an alternative approach to tiling by gradually reducing the
resolution, gradually reducing the frame rate, and storing an
entire chunk in a single file. CoRE can incorporate several
optimizations from the above work, as we discuss in §VI.

Oculus streaming uses a non-linear remapping of the 360◦

video based on a modified cube projection that allocates more
pixels to the central region of the front face [28]. Unlike CoRE,
the Oculus frame is discontinuous at the central line where it
switches from the left-front-right to the top-back-bottom faces,
and the resolution is fixed to one of three possible levels,
lacking flexibility.

CoRE aims to increase robustness to transient bandwidth
fluctuation using a decreasing frame rate extension. A com-
plementary idea that can be integrated with CoRE is to predict
available bandwidth, and to use it to decide the bit rate of
the next chunks. Prior work on bit rate adaptation includes
MPC [27], BOLA [18], and Pensieve [13] for stored video, and
Jigsaw [1] and MPC-Live [20] for live video. These studies
use control theory, optimization, machine learning, or layered
encoding techniques to adapt the user quality of experience
to available bandwidth and available buffer space. Several
360◦ video streaming approaches [6], [8], [17] have adopted
MPC. Finally, non-linear sampling has long been studied in
visualization [5], [11], [15], [16], [24]. Variable frame rate
low-level encoding has been explored for videos where the
frame changes infrequently [21].

VI. DISCUSSION

Storage. The decreasing frame rate in the extension part of
the CoRE chunk implies an increasing dissimilarity between
consecutive frames and therefore less efficient compression
(e.g., for the Diving video, the average extension frame size
is 0.0265MB compared to 0.0156MB for the main part). Even
so, an extension covering 6s beyond the 4s of the main part
costs only about 30% of the total chunk size.

A CoRE chunk is constructed based on a predicted user
view direction. One approach is for the server to construct

the CoRE chunk on-demand, once it receives the predicted
view direction. This scales poorly with the number of clients.
Another approach, which we adopt, is to precompute and store
CoRE chunks that cover all possible view directions. We use
a 20◦ discretization of the horizontal and vertical directions:
there are 18 chunks for the equator, and the number tapers off
as latitude increases towards the poles, for a total of 105 CoRE
chunks. The server transfers the CoRE chunk with the view
direction that best matches the client request, using DASH.
This approach scales well with the number of clients, at the
cost of additional storage at the server. Storage can be reduced
by only storing CoRE chunks for interesting regions of the
video. For example, for the Roller video, only 15.6% of the
CoRE chunks were requested in all traces in Table II.
CPU vs. GPU. CoRE is designed to support clients with
no GPU: only a single video file has to be low-level de-
coded (§IV-B4), and the high-level CoRE decoding is op-
timized (§II-D). Tiling requires low-level decoding of tens
of video files which precludes a CPU-only implementation
(Figure 11a), hence the GPU focus of current work [6], [8],
[17]. Should a GPU be present, CoRE can benefit from it for
faster low-level decoding. On our Android device, low-level
decoding a CoRE chunk on the GPU is 9.7× faster than on
the CPU; for tiling, the GPU advantage over the CPU is only
3.5×, as the number of tiles exceeds the GPU’s number of
hardware decoders. In terms of energy consumption, the GPU
brings a 3× advantage over the CPU for CoRE, and 1.1× for
tiling. We conclude that CoRE outperforms tiling on the GPU
with an even larger margin than on the CPU.
Integration with other approaches. State-of-the-art 360◦

video streaming systems [6], [8], [17], [29] have proposed
powerful optimizations that increase performance. Several
of these optimizations can be incorporated into CoRE. For
example, although the non-linear sampling in CoRE provides
robustness to view prediction error, view trajectory predic-
tion techniques, e.g., those employed by Flare [17], can be
easily integrated with CoRE. Several of the Flare system
optimizations across the protocol stack can also be incor-
porated into CoRE, such as request cancellation. Optimized
low-level codecs as proposed in Rubiks [8] can also be used
by CoRE. Bandwidth prediction and bit rate adaptation ideas
from MPC [27], Flare [17], Rubiks [8], and Pano [6] can be
incorporated into CoRE to select the bit rate of subsequent
CoRE chunks to request from the server.

VII. CONCLUSIONS

We propose CoRE, an efficient approach for non-linear
sampling in both the spatial and temporal domains that can
increase the robustness of 360◦ video streaming to view
direction prediction error and transient bandwidth fluctuation.
Our experiments with a CoRE prototype demonstrate that
CoRE saves bandwidth, with no missing pixels, and few stalls.
CoRE does not require a GPU to achieve 30fps at the client. As
future work, we plan to explore similar image generalizations
for distributed applications that allow the client to not only
change view direction, but also viewpoint.
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