
A Partially-Sorted Concentric Layout for Efficient
Label Localization in Augmented Reality

Zijing Zhou, Lili Wang, and Voicu Popescu

Fig. 1: Real world brain (top) and airplane (bottom) models labeled by an AR application. Finding a label can be accelerated by
alphabetical sorting, but simply sorting all labels results in leader line intersections (a and e). A single-circle layout that avoids
intersections cannot sort the labels (b and f). Our method computes a concentric label layout that avoids intersections while sorting
the labels on each circle (c and g). An optional label presorting step reduces the number of circles to two (d and h).

Abstract—A common approach for Augmented Reality labeling is to display the label text on a flag planted into the real world element
at a 3D anchor point. When there are more than just a few labels, the efficiency of the interface decreases as the user has to search
for a given label sequentially. The search can be accelerated by sorting the labels alphabetically, but sorting all labels results in long
and intersecting leader lines from the anchor points to the labels. This paper proposes a partially-sorted concentric label layout that
leverages the search efficiency of sorting while avoiding the label display problems of long or intersecting leader lines. The labels are
partitioned into a small number of sorted sequences displayed on circles of increasing radii. Since the labels on a circle are sorted, the
user can quickly search each circle. A tight upper bound derived from circular permutation theory limits the number of circles and
thereby the complexity of the label layout. For example, 12 labels require at most three circles. When the application allows it, the
labels are presorted to further reduce the number of circles in the layout. The layout was tested in a user study where it significantly
reduced the label searching time compared to a conventional single-circle layout.

Index Terms—Augmented Reality, Label layout, Fast label finding.

1 INTRODUCTION

Augmented Reality (AR) is a powerful interface that allows overlaying
graphical annotations directly onto the real world scene. The annota-
tions appear into the field of view of the user, and, as the user changes

• Lili Wang is with State Key Laboratory of Virtual Reality Technology and
Systems, Beihang University, Beijing, China; Peng Cheng Laboratory,
Shengzhen, China; and Beijing Advanced Innovation Center for Biomedical
Engineering, Beihang University, Beijing, China. Lili Wang is the
corresponding author. E-mail: wanglily@buaa.edu.cn.

• Zijing Zhou is with State Key Laboratory of Virtual Reality Technology and
Systems, School of Computer Science and Engineering, Beihang University,
Beijing, China. E-mail: 418845530@qq.com. Voicu Popescu is with Purdue
University, U.S. E-mail: popescu@purdue.edu.

their view, the annotations remain anchored to the real world elements
that they describe. A popular type of AR annotation is a text label
displayed on a virtual flag, with the flagpole acting as a leader line,
anchored to the real world element described by the label. For example,
AR labels can name the parts of a complex mechanical assembly, or
of an anatomical physical model. Displaying the label using a flag
provides sufficient screen real estate for the label text. It avoids that
the label occludes the element it describes, and it indicates the element
accurately and unambiguously. As the user changes view, the labels are
continually rearranged to keep them close to the element they describe,
to avoid leader line intersections and collisions between labels.

Consider the scenario of an anatomy class where each student has
their own anatomical model to follow along the description of the
instructor. As the instructor mentions various anatomy elements, each
student has to quickly locate the anatomy element on their model. An
AR application should help students do so even without the knowledge

of the order in which the instructor is going to mention the various
elements. Similarly, when a technician is called upon to service an old
mechanical assembly based on a textual description they hold in their
left hand and with the help of an AR application deployed on a tablet
they hold in their right hand, the technician should be able to locate
the parts mentioned in the text quickly. Locating a specific label can
be time consuming if the user has to examine the labels sequentially,
one at the time. Using conventional search mechanisms developed for
keyboard-based human-computer interfaces, which trigger searching by
pressing specific key combinations, introduces unwanted focus shifts,
which diminish the fundamental benefit of an AR interface.

In this paper we present a method for displaying AR labels in a way
that allows the user to locate a specific label efficiently. Our intuition is
that if the labels are sorted alphabetically, the user can locate a specific
label efficiently by skipping over some of the other labels and con-
verging more quickly on the label of interest. However, simply sorting
all the labels is not feasible as it violates the important label display
constraints of proximity to the element described, of avoiding colli-
sions between labels, and of avoiding intersections between leader lines.
Instead, our method computes a partial sorting of the set of labels by
partitioning the set into a small number of sorted sequences that respect
the label display constraints. The labels are displayed on concentric
circles surrounding the real world entity, with one sorted sequence per
circle, which allows the user to search each circle efficiently.

In Fig. 1, simply sorting all labels (a and e) yields leader line inter-
sections, as the sorting of the anchor points around the center of the
brain and airplane models does not match the alphabetical sorting of
the labels. A single circle layout that avoids intersections has to give
up on sorting the labels (b and f). Our method partitions the set of
labels into a few sorted sequences, each displayed on a circle (c, d, g,
h). The circle line thickness decreases from the first to the last label in
the sequence; this allows the user to locate quickly the first label of the
sequence, e.g., ”IFG” for the smallest circle in image c, from where to
start the search on the circle. The labels on a circle are sorted either
clockwise (green) or counterclockwise (red), as having the two options
allows for longer sequences and fewer circles. Our method works either
with a given label ordering, e.g., the alphabetical order of the label
text strings, or with a custom ordering of the label sequences that it
precomputes to maximize sequence length and minimize the number
of circles. In Fig. 1 the optimized numbering reduces the number of
circles from three to two (c and g versus d and h).

Our method leverages the advantage of sorted labels while keeping
the labels close to the real world element they describe, and while
avoiding leader line intersections. For our method to be effective, the
number of circles in the layout should be as small as possible. A recent
mathematics research result that extends the classical Erdős–Szekeres
theorem from linear to circular permutations [17] provides a tight upper
bound on the number of circles needed by our layout. For example,
three circles are always sufficient for 12 labels, four circles are always
sufficient for 18 labels, and five circles are always sufficient for 24
labels. Whereas these are upper bounds, the actual number of circles is
often smaller, e.g., two circles for the 12 labels in Fig. 1, d.

We have tested our partially-sorted concentric layout for AR label
display in a user study where (N = 34) participants had to locate labels
as quickly as possible. The study had three conditions: the conventional
approach of displaying the labels unsorted on a single circle, as the
control condition (CC), our method without the optional presorting, as
a first experimental condition (EC1), and our method with the optional
presorting, as a second experimental condition (EC2). The study shows
that for both variants of our method (EC1 and EC2) participants found
labels significantly faster than for the single-circle condition (CC).
Furthermore, the optional presorting reduced the label finding time
significantly for our method (EC2) over not using the presorting (EC1).
Both experimental conditions had significantly lower task load scores
(RTLX [24]) than the control condition, as well as significantly higher
scores in our usability questionnaire.

In summary, the contributions of our paper are as follows: (1) a
partially-sorted AR external label layout with bounded complexity; (2)
an optional label pre-sorting step that further reduces the average layout

complexity; (3) a user study (N = 34) where our layout has been shown
to allow finding AR labels faster than a conventional one-circle layout.

2 PREVIOUS WORK

Label layout is a challenging problem. A frequent use case is for medi-
cal visualizations, as inventoried by Oeltze-Jafra and Preim [37]. Marks
et al. [35] investigated the computational complexity of cartographic
label placement, i.e., the problem of laying out labels to describe points
of interest on a 2D map. They have shown that finding an admissible
label placement, i.e., finding a layout that avoids that labels overlap
with other labels or with points of interest, and that places the labels
within a given distance of their point of interest is NP-complete. Fur-
thermore, they have shown that finding an optimal label layout, which
minimizes overlap and distance from label to point of interest can only
be done in polynomial time if and only if P = NP. Consequently, in
the context of real-time label placement, as that of an interactive AR
application, optimal label placements cannot be guaranteed and the
goal is to quickly achieve a suitable placement.

Existing label layout methods can be classified into two main cat-
egories according to the where the labels are placed. Internal label
layout methods place the annotations directly on the object they de-
scribe (Sect. 2.1). External label layout methods place the annotations
around the object, connecting the annotations to anchor points through
leader lines (Sect. 2.2). Hybrid methods use both internal and external
labels (Sect. 2.3). We also review prior work on guiding the user’s
attention (Sect. 2.1), and we end the discussion of prior work with an
overview of the approaches for evaluating label layouts (Sect. 2.5).

2.1 Internal label layouts

Ropinski et al. [41] proposed an internal labeling method that shapes
and orients the label according to the shape of the feature it describes.
Kouřil et al. [30] partitioned the scene hierarchically into several levels
of detail, each with its own set of labels, and displayed the labels of the
level of detail corresponding to the current user view zoom level. Han
et al. [23] proposed a method that only labels the features inside a user’s
circular lens, and, when collisions occur, the method switches from an
internal to an external label layout that simply highlights the relevant
labels in a list displayed at the periphery of the image. In interactive
3D graphics applications, such as AR, the alignment of the user view
with the scene changes, so internal label layouts that are constrained by
the scene geometry often result in ambiguity, and external label layouts
should be preferred [15].

2.2 External label layouts

Compared with internal labels, external labels have more applications
in complex scenes. For example, Balata et al. [4] proposed using
external tags to improve the efficiency and accuracy of selecting within
a dense set of small objects. For a comprehensive review of external
label layout methods we refer the reader to a recent survey [9].

One approach for external label placement is the boundary label
layout, which defines an area in the user view and places the labels on
the boundary of the area. Bekos et al. [8] fixed the position of the labels
to the right of a rectangular area, and anchor points are adjusted within
the feature to which they are attached to relax the leader line routes; the
goal is to minimize the total length of the leader lines while ensuring
that the leader lines do not intersect. In subsequent work [7], they
studied boundary labeling with octilinear leader lines, i.e., piecewise
linear lines made from horizontal, vertical, and diagonal segments.
More recently, Bekos et al. extended their work to scenarios where
multiple anchor points are connected to the same label [6]. Gemsa et
al. [20] proposed a boundary labeling method applied to panoramas,
in which the labels are laid out in multiple lines on the upper border
that typically corresponds to a less interesting part of the scene, such
as the sky. Kindermann et al. [29] avoid the multiple lines by placing
labels both on the upper and lateral boundaries. Boundary labeling
is more suitable for two-dimensional scenes such as maps. For three-
dimensional augmented reality scenes, placing the label around the
object is a better option for label layout.

Another approach, suitable for outside-looking-in visualization sce-
narios where a single object is inspected with a view that encompasses
it, is to use the silhouette line of the object to place the labels. Hartmann
et al. [26] proposed a method for arranging labels at the periphery of
an object using forces defined by a dynamic potential field. In subse-
quent work [2], they proposed different label arrangement methods,
including based on a spring system, a computational infrastructure that
our works also relies upon. Shibata et al. [44] proposed label layout
as a view management approach that would tweak the position of the
labels to improve the current view in terms of reducing overlap and
intersections, an approach that was sufficiently flexible to adapt to the
low computational power of early generation mobile devices.

The typical greedy solution to the NP-hard problem of label place-
ment does not pay special attention to the order of placement. Therefore,
the labels placed early occupy the best positions, and it becomes in-
creasingly more difficult to place subsequent labels. Stein et al. [45]
proposed an improved greedy algorithm that relies on a heuristic to find
the labels that are more difficult to place and to place them early, which
leads to better approximate solutions.

Grasset et al. [22] proposed an image-based method that recognizes
important areas in the image to automatically generate constraints for
labels. Tatzgern et al. [48] create compact label layouts for AR by
avoiding redundant labels when multiple instances of the same feature
are visible. The method is prone to intersection of leader lines when
the viewpoint moves. In subsequent work [47], they proposed several
geometric constraints to optimize the label position, avoiding leader
line intersections. Later they improved readability through clustering
to reduce the density of information on the screen [49]. The method
of Orlosky et al. [38] detects important image regions which should
not be obscured by the labels, such as the faces and hands of computer
animation characters. Čmolı́k et al. [13] optimizes the labeling problem
on models with perspective effects. This method takes into account the
visual overlap and opacity of objects.

2.3 Hybrid internal/external label layout
Researchers have also attempted to leverage the benefits and avoid the
challenges of the internal and external label layouts by proposing hybrid
label placements. Bell et al. [10] proposed a label layout optimization
method for AR that places labels internally for as long as possible and
reverts to an external placement for labels that cannot be placed inter-
nally. Götzelmann et al. [21] proposed annotation boxes as a third type
of label, in addition to internal and external labels; annotation boxes
do not have leader lines and are anchored solely by proximity, which
simplifies constraints. Löffler et al. [33] propose polynomial algorithms
that maximize the number of internal labels in hybrid layouts. Čmolı́k
et al. [14] have recently proposed a real-time mixed labeling algorithm
that provides the application the flexibility of tuning the partitioning
of labels between the internal and external subsets on a continuum.
The algorithm avoids overlap between internal labels. The issue of
external label leader line intersection is bypassed by requiring all lines
be horizontal. The layouts are evaluated with the help of professional
illustrators, and label finding times are not a focus.

2.4 Approaches for guiding the user’s attention
Label layout approaches can also be classified based on the approach
taken to guide the user’s attention towards the label of interest.

One approach is to rely on color coding, which brings an additional
dimension for sorting labels. Fekete et al. reduces the ambiguity of
dense labels by using label box borders that match the color of the
part of the object to which they correspond [19]. The use of color to
make more salient the information conveyed by images is of course
part of the classical visualization toolbox [11], with color aiding to
convey both quantitative and qualitative aspects of the data shown to
the user. In AR, the use of complex color palettes is difficult when
true opacity is not supported, e.g., for see-through AR head-mounted
displays (HMDs). We rely on two colors, red and green, to convey the
order of the sorting of the labels on the circles of our layouts.

Another approach is to rely on gaze tracking to reduce the complexity
of selection in a 3D environment, by catering dynamically to the current

user’s view direction. The approach was used in VR [12], and more
recently in the context of AR games [31, 39]. The approach requires
eye tracking, which is not yet a standard feature of AR displays, and
it is useful when the user has a general idea of where to look for
the object/label of interest, without which the user is still required to
perform a sequential search of the scene. Eye tracking is particularly
useful in the context of a large number of labels, e.g. in the inside-
looking-out visualization scenario, where eye tracking helps first select
the object of interest. As such, eye tracking is complementary to our
work, which focuses on the outside-looking-in scenario, where it speeds
up the searching in the set of labels of an object of interest.

A third approach is to filter labels intelligently based on the cur-
rent user’s actions, such as reducing the labels to those pertinent to
the current level of detail [30]. This approach is also orthogonal and
complementary to our approach. Additional approaches such as using
multiple–juxtaposed or coordinated–views are possible, but these in-
formation visualization approaches are less suitable for AR interfaces
where the spatial layout of the real world scene is both hard to change
and important to convey as is, and where screen real estate is limited.

We take the approach of using leader lines to guide the user’s atten-
tion from the anchor point to the label text and vice versa, an approach
long used in AR [3]. Our contribution is to resolve the competing
interest between label sorting and anchor point location, achieving a
partial sorting that accelerates label finding.

2.5 Evaluation of label layout
With the proliferation of label layout approaches also came a series
of studies that do not propose new label layouts bur rather focus on
comparative evaluations of various prior art layout approaches, for
various metrics, and in various scenarios. Azuma et al. [3] evaluated
four label layout styles under augmented reality in terms of algorithm
efficiency, label overlap count, and user response time. Hartmann et
al. [27] classified the label layout styles and proposed several metrics
for label functional requirements and aesthetics. Madsen et al. [34]
conducted user experiments that compared the difference in terms of
view update frequency, between object space and image space label
rendering. Li et al. [32] tested users’ subjective preferences for label
layout styles generated according to different penalty functions. Barth
et al. [5] studied the readability and aesthetics of different types of
guide lines in boundary labeling.

Our method builds on prior work label placement efforts. Our
method opts for an external label placement, which has been shown
to be most suitable for an interactive AR application. We target the
outside-looking-in scenario where a complex 3D entity is seen in its
entirety from various external viewpoints surrounding the 3D entity.
Our method leverages partial sorting to accelerate finding a given label.
Our layouts are not optimal, but we provide a tight upper bound on
the complexity of the layout, in terms of the number of circles. Our
user study focuses on the objective metric of the time needed to a user
to locate a given label, as well as on subjective metrics such as self
reported task load and usability.

3 PARTIALLY-SORTED CONCENTRIC LAYOUT

Our method assigns labels to concentric circles, making sure that the
labels of a same circle are sorted, which allows the user to quickly
check whether a given label is on a circle or not. For our partially-
sorted concentric label layout to be effective the number of circles has
to be as small as possible. Recently the Erdős–Szekeres theorem has
been extended from linear to cyclic permutations [17], which provides
an upper bound on the number of circles in our layout, as described in
Section 3.1. The remaining subsections give our overall iterative layout
computation algorithm (Section 3.2), the algorithm used to compute
a candidate label layout at each iteration (Section 3.3), the strategy
for obtaining layout temporal coherence (Section 3.4), and an optional
presorting of labels that further improves layout efficiency (Section 3.5).

3.1 Upper bound on the number of circles
The classical Erdős–Szekeres theorem [18] establishes that any se-
quence of length kl +1 has an increasing sorted subsequence of length

k+1 or a decreasing sorted subsequence of length l+1. The guarantee
of the presence of such a monotonic sequence is useful in deriving
a lower bound on the number of labels assigned to one circle, and,
consequently, in deriving an upper bound on the total number of circles.
Recently, the Erdős–Szekeres theorem has been extended to circular
sequences, by showing that a cyclic permutation of length kl +2 has
either an increasing cyclic sub-permutation of length k+2, or a decreas-
ing cyclic sub-permutation of length l + 2 [17]. Informally, a cyclic
sub-permutation is a permutation that can wrap around the original
sequence by jumping from the last to the first or the first to the last
element. This extension is useful in our context since the circles of
our layout can accommodate cyclic sorted sequences, and not just con-
ventional (linear) sorted sequences, relaxation that allows for finding
longer sorted subsequences for an overall smaller number of circles.
For example, for the sequence 7, 2, 4, 5, 3, the longest monotonic
linear subsequence is 2, 4, 5, whereas the longest monotonic cyclic
subsequence is 2, 4, 5, 7.

Using the extended Erdős–Szekeres theorem, given kl + 2 labels,
there exists a sorted cyclic subsequence of length max(k+2, l+2). The
worst case, i.e., the shortest such sorted cyclic subsequence, occurs
when k = l (Equation 1, where s is the number of labels).

s = kl +2 = k2 +2 (1)

Consequently,

k = b
√

s−2c (2)

for a shortest sorted cyclic subsequence of length lmin of

lmin = b
√

s−2c+2 (3)

Consequently, an iterative construction of the layout places at least
lmin labels at each iteration. The number of layout circles can be found
as the number of iterations needed to place all labels. Equation 4
gives the recursion that models the reduction in the number of labels s
achieved by each iteration. The termination condition is s≤ 1.

s = s−b
√

s−2c−2 (4)

Table 1 shows the maximum number of circles (row 2) needed to
accommodate s labels (row 1). Two circles are always sufficient to
accommodate 7 labels, and three circles are always sufficient for 12
labels. Whereas row 2 gives the maximum number of circles needed,
i.e., in the worst case scenario, row 3 gives the average number of
circles needed, computed over all possible permutations for s≤ 10, and
over ten million random permutations for s > 10. Row 3 confirms that
the expected number of circles is lower than the upper bound given by
row 2, e.g., 13 labels are likely to require only three circles, and not
four, and 25 labels are likely to require only four circles, and not six.

Table 1: Number of layout circles for a given number of labels.

Labels 3 4 7 8 12 13 18 19 24 25
Max.

circles 1 2 2 3 3 4 4 5 5 6

Avg.
circles 1 1.4 1.9 2.0 2.9 3.0 3.6 3.8 4.1 4.2

3.2 Label Layout Algorithm
We compute label layouts with an iterative process. At each iteration,
our algorithm creates a candidate label layout. The candidate layout is
constructed by sorting radii emanating from the center of the object and
ending at individual labels. The concurrency of these radii guarantees
that they do not intersect. These radii are used as helpers to define
leader lines. Since leader lines originate from different anchor points,
the non-intersection is not guaranteed. When such an intersection
occurs, corrective forces are computed and used in greedy fashion in
the subsequent iteration to eventually remove all intersections. We have

strong empirical evidence that the algorithm converges, i.e., it always
converged in fewer than 18 iterations, and on average in 5.4 iterations
in our experiments with multiple scenes and with up to 16 labels.

Consider a 3D entity (e.g., an anatomical model, a mechanical as-
sembly) that is examined interactively by a user of an augmented reality
application from viewpoints surrounding the entity. Given the entity’s
3D geometry G and a set L of n labels , we compute for each user view
V a partially-sorted concentric label layout with Algorithm 1.

Algorithm 1 Partially-Sorted Concentric Label Layout

Input: 3D entity G, set of labels L, and user view V
Output: label layout L.{r,d}, layout plane Π, layout center C
1: Π← Plane(V.vd, C← Centroid(G))
2: r0← Circumscribe(G,V,Π)
3: for Li ∈ L do Pi← Project(Ai,V,Π)
4: F ←∅; iter = 0;
5: repeat
6: L.{r,d}← CandidateLabelLayout(L.{T,P},C,r0,F)
7: I← IntersectionDetection(L.{r,d})
8: F ← Adjustment(I)
9: iter++

10: until I == ∅∨ iter == MAXITERATIONS
11: return (L.{r,d},Π,C)

In Algorithm1, each label Li has associated a text string T , a 3D
anchor point A, a radius r of its layout circle, a direction d from the
object center to the label, a projection P of its anchor point, and a flag
a which indicates whether the label has already been placed on a circle.
T and A are provided as input for each label, and the layout is set by
computing r and d for each label.

The labels are laid out in a plane Π that passes through the centroid
C of the 3D entity G and has a normal aligned with the user view
direction V.vd, i.e., plane Π is parallel to the image plane (line 1). The
smallest label circle with radius r0 circumscribes the projection of 3D
entity G onto plane Π from the user view V (line 2). The label anchors
Ai are projected onto plane Π from V to Pi (line 3).

At each iteration iter, a candidate layout is computed by setting
the r and d fields of each label (line 6). The candidate label layout
algorithm is given in Algorithm 2. The candidate layout is examined
for leader line intersections (line 7), and a set of corrective forces F
is computed based on the intersections (line 8). A pair of corrective
forces is defined for each pair of labels with intersecting leader lines.
The two forces of the pair are tangent to the circle of the layout, with
directions that pull the labels towards each other, aiming for the labels
to switch place to undo the leader line intersection. The forces have
equal magnitude, which increases from iteration to iteration until the
leader line intersection is removed. The set of corrective forces is used
at the next iteration to update the layout (line 6).

Fig. 2 illustrates our algorithm on a set of labels (left); the first
iteration results in leader line intersections for labels H and D (middle),
which are addressed with a set of corrective forces, resulting in the final
two-circle partially-sorted concentric layout (right). A pair of corrective
forces is defined for each pair of labels with intersecting leader lines,
e.g., FDH and FHD in Fig. 2, middle. The iterative process stops when
the updated layout has no intersections, or when the maximum number
of iterations (MAXITERATIONS) has been reached (line 10). In
practice, we set MAXITERATIONS to 100, but the algorithm always
converged in fewer than 20 iterations.

Once the layout is computed, the labels are rendered, each on a
circle, with the labels on the same circle being sorted. The position
of a label Li is defined by the intersection between the circle of radius
ri and direction di. Clockwise sorted circles are drawn in green, and
counterclockwise in red (Fig. 2, right). The circle line thickness is
largest for the first label of the circle sequence, and it decreases with
subsequent labels, which allows the user to quickly find the starting
point for their search on each circle (e.g., labels A and B on the two
circles in Fig. 2, right). The leader is drawn from the label position to
the label anchor point.

Fig. 2: Label layout computation with Algorithm 1: labels to be placed (left), layout computed by the first iteration with intersection between
leader lines of labels D and H and corrective forces FDH and FHD (middle), and final layout computed after the fifth iteration (right).

3.3 Candidate Label Layout Algorithm
Each iteration computes an updated partially-sorted concentric layout
according to Algorithm 2, which is illustrated in Fig. 3.

Algorithm 2 Candidate Label Layout

Input: set of labels L, centroid C, first circle radius r0, and set of
corrective forces F

Output: label layout L.{r,d}
1: for Li ∈ L do di← (Pi−C) / ‖Pi−C‖
2: L.{d}← Relax(L.{d},F)
3: L← Sort(L.{d})
4: r← r0; for Li ∈ L do Ai← false
5: repeat
6: S←MaxSortedSubsequence(L)
7: for Si ∈ S do Si.r← r; Si.a← true
8: r← r+∆r
9: until S ==∅

10: return L.{r,d}

For each label Li, its direction di is initialized to the direction from
the entity center C to the label plane projection of the anchor point Pi
(line 1). In Fig. 3 these initial directions are shown with black dotted
lines, C is shown with red, and the projected anchor points Pi are shown
with yellow. These initial directions are then relaxed to avoid that labels
clump together, while striving to keep the label as close as possible to
its anchor point and to avoid long leader lines (line 2). In Fig. 3 the
relaxed directions are shown with blue dotted lines.

The relaxation process is implemented with a one-dimensional sys-
tem of springs. The spring system is loaded with three types of forces.
One type are repulsive forces Ri j, defined between all pairs of labels
LiL j , with magnitude inversely proportional to the angle ^(di,d j), and
with direction perpendicular to di, and away from d j . Fig. 3 shows only
two of the repulsive forces that act on label G, i.e., RGD and RGJ . The
second type are inertial forces Ii, one for each label, with magnitude
proportional to the displacement of the label direction from the initial
direction CPi, and with direction towards the initial direction. Fig. 3
shows the inertial force IG that aims to bring label G back to its initial
position, i.e., clockwise, to the right. The third type are the corrective
forces F computed at the previous iteration of Algorithm 1, which aim
to remove the intersection (see Fig. 2, middle).

Once the directions are relaxed, the labels are sorted based on the
angle between their relaxed direction and the x axis (line 3). In Fig. 3,
the sorting of the labels based on the relaxed directions (blue dotted
lines) is indicated with the number by the label, e.g., 6 for label ”G”.

Then labels are placed in a concentric layout through an iterative
process (lines 4-9). Initially, all labels are marked as not assigned
to the layout (line 4), and the process completes when there are no
labels left to assign (line 9). At each iteration, the algorithm finds the
longest alphabetically sorted subsequence of unassigned labels (line

Fig. 3: Candidate label layout Algorithm2. The algorithm finishes in
two iterations generating two sorted subsequences ”AEFGHIL” and
”BCDJK”, which will be displayed on two circles.

6). The alphabetical sorting can use the text string Ti of each label Li,
e.g., ”Stabilizer” ”Tail” ”Winglet”, a label numbering chosen by the
application, e.g., ”1” ”2” ”3”, or, when the application permits, a label
numbering computed by our method as a preprocess with the goal of
maximizing the length of sorted sequences and thereby minimizing the
number of circles in the concentric layout (Sect. 3.5).

The longest alphabetically sorted subsequence is found by traversing
L, and, for each unassigned label Li, we find the longest ascending-order
subsequence of unassigned labels that starts at Li, both in clockwise and
counterclockwise order. The overall longest subsequence S is assigned
to the current circle (line 7). In Fig. 3 the longest subsequence at the
first iteration is ”AEFGHIL”, which is assigned to the first circle, of
smallest radius, i.e., r0. The radius of the circle increases by ∆r (line 8),
to obtain the concentric layout of labels. The fixed circle to circle radius
increment ∆r is set based on the label font size, or based on the available
space in the image surrounding the entity labeled by the application.
Our current implementation does not handle exceedingly long labels,
which have to be dealt with by wrapping the text on multiple lines,
by adjusting the font size for individual labels, and by modulating
the spacing between consecutive circles based on the size of the label
boxes. For the example in Fig. 3, the longest sorted subsequence of the
second iteration contains all remaining labels, i.e., ”BCDJK”, which
are assigned to the second circle.

3.4 Layout temporal coherence

Algorithm 1 computes the layout based on the user view, and, as the user
changes the view, so does the layout. To avoid frequent small changes

Fig. 4: Left: sampling of possible view directions used in label presort-
ing (Algorithm 3). Right: label presorting iteration corresponding to
one of the possible view directions (green dot in top image).

to the layout, the layout is updated only if the user view translates a
significant amount (i.e., in practice we use a translation threshold of
30cm), or if the previous layout results in leader line intersections in
the current view. When the layout changes, the change is deployed
gradually, with the old layout morphing into the new layout with the
labels migrating from their old to their new position with a constant
velocity (i.e., in practice we use a label morphing velocity of 0.5m/s).

3.5 Optional Label Presorting
When the application permits, the layout can be further improved
by presorting the set of labels, which results in a smaller number of
circles. For example, labels ”Stabilizer”, ”Tail”, and ”Winglet” could
be presorted by prefixing the label strings with an index number to
”1. Tail”, ”2. Stabilizer”, and ”3. Winglet”. The presorting takes into
account the 3D position of the anchor points of the labels and presorts
the labels in greedy fashion to reduce the number of layout circles, for
a dense sampling of all possible user view directions. Fig. 4, top, shows
the possible view directions as points on a bounding hemisphere.

The presorting is done according to Algorithm 3. The algorithm
takes as input the set of labels L, each with its 3D anchor point Ai and
text string Ti. The algorithm outputs the set of labels with the text
strings prefixed with an index number that reflects the presorting.

Algorithm 3 Label Presorting for Improved Layout Efficiency

Input: Set of labels L, view direction sampling resolution nlat×nlong,
center point C

Output: Presorted set of labels L
1: for LiL j ∈ L×L do M[i][j]← 0
2: for k← 0 to nlat −1 do
3: for l← 0 to nlong−1 do
4: vdkl ← LatLong2Direction(k, l,nlat ,nlong,C)
5: for Li ∈ L do Pi← Project(Ai,vdkl ,C)
6: for Li ∈ L do di← (Pi−C) / ‖Pi−C‖
7: S← IndexSort(L,L.d)
8: for Li ∈ L do M[i][S[i]]++
9: repeat

10: ti j←Max(T)
11: Ti = ”< j >. ” +Ti
12: M[i,1...n] = 0; M[1...n, j] = 0
13: until M == 0
14: return L

The algorithm uses a matrix Mi j of size n×n (where n is the number
of labels in the scene) to count how often label Li appears in position
j, over all possible view directions. M is computed by iterating over
all possible view directions (lines 2 to 8). For a given view direction
k, l, the direction vector vdkl is computed by converting from latitude
longitude to a 3D point on the unit sphere centered at C (line 4). The
anchor points Ai are projected orthographically on the plane with nor-
mal vdkl through C (line 5). The label directions in the projection plane

are computed (line 6), and they are sorted based on their angles start
from label ”A”(line 7). The labels are not actually shuffled, but instead
the sorting based on directions is recorded in a permutation S of the
label indices. Then, for each label Li, its frequencies (in row i of M)
are incremented based on S. In Fig. 4, bottom, the peripheral green
numbers illustrate the permutation S computed for the view direction
defined by the green point in Fig. 4, top.

Once the 2D array of frequencies M is known, M is used to presort
the labels (lines 10-13). At each iteration, the label with highest fre-
quency is prefixed with the index corresponding to the position where
the highest frequency occurs (lines 10-11). Once a highest frequency
value is used, it is removed from further consideration by setting its
rows and columns in M to 0 (line 12). Each iteration presorts a label,
and the process terminates when all labels have been presorted, which is
indicated with a frequency table with all zero entries (line 13). In Fig. 1,
computing the layout using the prefixed labels reduces the number of
circles from three (c and g) to two (d and h).

4 RESULTS AND DISCUSSION: USER STUDIES

We have evaluated our layouts first in a pilot study (N = 10), to select
the most promising parameter configuration, and then in a within-
subject controlled user study (N = 34), in which we compared the most
promising configuration, with and without the optional presorting, to
the conventional approach of a single circle layout.

4.1 Pilot study

One configuration parameter pertains to the number of labels on each
circle. One option (pilot experimental condition 1, or PEC1) is to start
placing labels on the inner most circle and then go towards the outer
circles, which results in more labels on the inner circles and fewer
labels on the outer circles. A second option (PEC2) is to start from the
outer-most circle and go towards the inner circles, resulting in more
labels on the outer circles and fewer labels on the inner circles. A third
option (PEC3) is to limit the number of labels on each circle, which
occasionally leads to needing additional circles.

Another configuration parameter is whether the circle line thickness
decrease is used to indicate the first label on each circle, or whether the
line thickness is constant. PEC1, PEC2, and PEC3 all use the circle
line thickness decrease. A fourth pilot experimental condition PEC4
matches PEC1, i.e., the labels are placed starting from the inner circle,
except that the circle line thickness is constant. All four experimental
conditions tested in the pilot study used the green and red colors to
indicate circles with labels sorted clockwise and counterclockwise.

We recruited N = 10 pilot study participants, 5 male, 5 female, of
age between 14 and 30 years old. Two of the participants had prior
experience with AR applications. We used a within-subject design,
with all participants performing the tasks in all conditions. The AR
labeling application ran on a 10 inch computer tablet (i.e., Apple iPad).
The real-world entity labeled was an anatomical brain model, with
twelve AR labels. The task was to locate the label specified at the
top left corner of the screen. Once the participant found a label, they
would indicate it by touching it on the screen with their index finger.
There were eight label location task repetitions, for each of the four
conditions. To minimize the influence of confounding factors such
as the pose in which each participant holds the tablet with respect to
the anatomical brain model, which could result in layout differences,
for the pilot study the tablet was placed on a tripod. For the full user
study the tablet was handheld by participants. Fig. 5 illustrates the four
experimental conditions tested in the pilot study.

Fig. 5: Screen shots from the four layout visualization configurations
tested in the pilot user study: more labels on inner circles (top left),
more on outer circles (top right), at most four labels per circle (bottom
left), and no line thickness variation (bottom right).

Table 2: Pilot study label finding times, in seconds. Significant differ-
ences are indicated with an asterisk.

Condition Avg
± std. dev. Comparison p

PEC1 1.19±0.15
PEC2 1.24±0.13 PEC2−PEC1 0.522
PEC3 1.48±0.22 PEC3−PEC1 0.005 *
PEC4 1.40±0.18 PEC4−PEC1 0.019 *

Table 2 shows the task completion time for the four conditions.
PEC2, PEC3, and PEC4 were compared to PEC1. The normal distribu-
tion of the data was confirmed using the Shapiro-Wilk test [43], and the
means of PEC2, PEC3, and PEC4 were compared to that of PEC1 us-
ing ANOVA. Performance in PEC3 and PEC4 was significantly slower
(p < 0.05) than in PEC1. Performance was faster in PEC1 compared
to PEC2, but the difference was not significant. This confirms our
intuition that fewer circles are better (i.e., PEC3 is slower than PEC1),
and that the circle line thickness decrease helps (i.e., PEC4 is slower
than PEC1). We chose PEC1 over PEC2 since it was somewhat faster.

The conclusion of the pilot study was that our most promising layout
visualization is to place as many labels as possible on each circle, and
to use a decreasing circle line thickness to indicate the first label and
the sorting order on each circle.

4.2 User study
We have conducted a user study to evaluate the most promising configu-
ration of our label layout visualization, with and without presorting, by
comparing it to an unsorted single circle layout. We present our study
using a format prescribed for health informatics evaluation reports [46].

4.2.1 Study context
We conducted the user study with the approval of our university’s
Biology and Medical Ethics Committee, which acts as the Institutional
Review Board overseeing all human subject studies. The study was
conducted during spring 2021, when the acute phase of the COVID-19
epidemic had subsided and human subject studies were possible. The
study took the COVID-19 safety measures prescribed by our university,
which included wearing face masks, using hand sanitizer, sanitizing the
tablet between participants, and social distancing.

Our label layout method was deployed on a 10 inch computer tablet
(i.e., Apple iPad), which the participant held with both hands in land-

scape mode. The AR application was implemented for iOS using the
Vuforia AR SDK [40] and Unity [1]. The layout computation algorithm
(Algorithm 1) converges in at most 18 iterations. The AR application
runs at the tablet maximum display frame rate of 60fps.

4.2.2 Methods
Study design. We have compared our method without presorting

(EC1) and with presorting (EC2) to the conventional approach of a
single circle layout (CC) in a within subject controlled study. The
method was the independent variable of our study defining two exper-
imental conditions (EC1 and EC2), and one control condition (CC).
Each participant was exposed to each condition, in random order. For
both EC1 and EC2 we used the circle line thickness variation and the
greedy assignment of as many labels as possible on each circle, starting
from the inner circle, the best configuration from our pilot study.

Hypotheses. Our method was designed to allow a user to locate a
label quickly and with little effort leveraging the sorting of the labels
on each layout circle. Thus, we formulate the following hypotheses.

H1 : Users can locate a label faster with our partially-sorted con-
centric layout without presorting (EC1) compared to a conventional
single-circle unsorted layout (CC), and the presorting (EC2) allows
users to locate labels even faster than when no presorting is used (EC1).

H2 : User task load with EC1 is lower than with CC, and user task
load with EC2 is lower than with EC1.

H3 : EC1 is easier to use than CC, and EC2 easier to use than EC1.

Participants. We recruited N = 34 participants, of age between
20 and 28, 23 male and 11 female, with good or corrected vision. 11 of
our participants had prior experience with AR applications. We expect
large effect sizes, i.e., with a Cohen’s d > 0.8 [16, 42], so N = 34
provides adequate statistical power.

Study flow. The task was to find eight labels, one at the time, in
each of the three conditions, in each of two scenes (Fig. 1): the brain
anatomical model, which had a total of 12 labels, and the airplane
model, which had a total of 10 labels. The brain and airplane models
were 3D printed, so the geometric models of the two scenes are known
to the AR application.

The experimental procedure starts with a three minute training period
when the participant familiarizes themselves with the task of finding
labels and the three types of layouts used in the three conditions. The
participant is also told that the green circles have the labels sorted
in clockwise order and that the red circles have the labels sorted in
counterclockwise order, starting at the thickest part of the circle, and
progressing towards the thinnest part. The training is conducted on
a computer graphics model of an engine (see Figure 2), such that the
participant does not become familiar with the brain and airplane scenes
used in the actual experiment.

After the training, each participant had to find 48 labels, one at the
time. The label to be found is displayed at the top left corner of the
tablet. When the participant finds a label in the layout, they indicate the
label location by touching the label text on the tablet screen. After a
label is found, the participant also has to touch the label’s anchor point.
When the anchor point is not visible due to occlusions, the participant
has to change the view to establish line of sight to the anchor point.
Occlusions were rendered accurately by the AR application using the
known geometry of the anatomical brain and of the airplane models.
Finding the anchor point requires the user to change the view, which
allows testing the label layout in a variety of views.

Outcome measures. We investigated our hypotheses with objec-
tive and subjective outcome measures (dependent variables).

We measured the time it took to find each label, defined as the time
from when the label to be found was displayed on the top left corner of
the tablet to the time when the participant touched the label text on the
tablet screen. The time to touch the anchor point after finding the label
is not included in our time metric. The performance of our label layout
visualization method was also measured with two additional dependent
variables: the number of layout circles and the number of labels placed
on the inner circle. These variables are not directly investigating our
hypotheses but they quantify the complexity of the layout.

One subjective outcome measure is task load, for which we used
a standard measuring instrument, i.e., the RTLX questionnaire [24],
which is a simplified version of the NASA-TLX questionnaire [25].
Finally, we measured usability through a questionnaire. The nine
questions were: was the layout easy to use (Q1), was the layout easy to
learn (Q2), will you be able to use the layout in the future (Q3), do you
think people can easily learn this layout (Q4), was the layout complex
(Q5), was the layout confusing (Q6), was the layout reasonable (Q7),
was the layout messy (Q8), did the layout help you quickly find the
label you were looking for (Q9).

Methods for data acquisition and measurement. The time to
find a label was recorded automatically, using a feature built into our
AR application. The layout complexity dependent variables were also
recorded automatically by our application. The RTLX and the usability
questionnaires were filled out by participants in pen and paper form
after each condition. All questions were answered with a numerical
score from 1 to 10. Some questions are negative, and some are positive,
which reduces the risk of mechanical answers.

Methods for data analysis. The time to find labels, the task load,
and the usability scores were compared across the three conditions using
a one-way repeated-measures ANOVA. First, the distribution normality
assumption was verified using the Shapiro-Wilk test [43]. All our data
satisfied the normality assumption. Then the sphericity assumption is
evaluated using the Mauchly test [36]. When the sphericity assumption
is violated, a Greenhouse-Geisser correction is applied to the data. Then
an overall ANOVA was conducted to investigate whether one can reject
the null hypothesis that there is no statistically significant difference
between the three conditions. When the null hypothesis was rejected
(p < 0.05), the differences between the three pairs was analyzed with
post-hoc tests, with a significance level lowered conservatively (α <
0.016) using the Bonferroni correction. For the time dependent variable
we also quantified effect magnitude using Cohen’s d [16], with the
customary qualitative labeling of the numerical values, i.e., ”huge”
for d > 2.0, and ”very large” for 2.0 > d > 1.2. The label finding
times were aggregated per participant, condition, and scene before
analysis, i.e., each participant data was reduced to six averages, one per
condition and scene pair, before being input into the ANOVA analysis.
The statistical analysis was performed using the SPSS software [28].

4.2.3 Results
All N = 34 participants completed the experiment without unexpected
events, so no participant data was discarded.

Table 3: Time to find labels, in seconds: descriptive statistics and
pairwise comparisons between conditions. Statistical significance (p <
0.016) is denoted with an asterisk.

Scene Cond. Avg ±
std. dev.

Pairwise
comparisons p Cohen’s

d
Effect
size

Brain
CC 4.7±0.3 CC−EC1 < 0.001∗ 2.5 Huge
EC1 3.5±0.6 CC−EC2 < 0.001∗ 5.9 Huge
EC2 2.3±0.5 EC1−EC2 0.001∗ 2.1 Huge

Airplane
CC 3.2±0.4 CC−EC1 0.060 1.4 V. large
EC1 2.8±0.2 CC−EC2 < 0.001∗ 3.6 Huge
EC2 2.1±0.2 EC1−EC2 < 0.001∗ 3.7 Huge

The label finding times and the pairwise comparisons between con-
ditions are given in Table 3. The box plots are given in Fig. 6 (left).
The sphericity assumption is verified: p = 0.787 (brain) and p = 0.054
(airplane). The overall ANOVA reveals that there is a statistically sig-
nificant difference between the three conditions for the brain scene
(F(2, 66) = 74.46, P < 0.001) and for the airplane scene (F(2, 66) =
27.75, P < 0.001). Post-hoc analysis reveals that EC1 label finding
times were significantly shorter than for CC, that EC2 times were sig-
nificantly shorter than for EC1, and that EC2 times were significantly
shorter than for CC, for both scenes, except for CC versus EC1 for the

Fig. 6: Box plots for label finding times (left) and task load scores
(right), for the three conditions and the two scenes. Asterisks denote
statistical significance.

Fig. 7: Usability questionnaire results for individual questions and
over all questions. Significant differences are denoted with an asterisk.
Scores of questions about negative features are complemented such
that a higher score always means better.

airplane scene. The effect size was ”Huge” for all pairwise comparisons
except for the CC-EC1 for the airplane, where it was ”Very large”.

Table 4: Layout statistics.

Scene Condition Avg.
circles

Min.
circles

Max.
circles

Labels on
inner circle

Brain EC1 2.97 2 3 5.7
EC2 1.99 1 2 9.8

Airplane EC1 3.00 3 3 6.0
EC2 2.00 2 2 8.7

Table 4 gives the number of circles in our EC1 and EC2 layouts, for
the two scenes. Presorting the labels almost always reduces the number
of circles from 3 to 2, which explains the significant advantage of EC2
over EC1. There are never more than 3 circles (Max. circles=3), and
EC2 occasionally places all labels on a single circle (Min. circles=1).
Table 4 also gives the average number of labels on the inner circle,
which shows that EC2 places most of the 12 labels of the brain and
most of the 10 labels of the airplane on the inner circle of the layout.

The RTLX task load scores are shown in Fig. 6 (right). The sphericity
assumption is violated: p = 0.001 (brain) and p < 0.001 (airplane).
After applying the Greenhouse-Geisser correction, the overall ANOVA
reveals significant differences between the three conditions: (F(1.16,
37.11) = 67.38, P < 0.001) for the brain scene, and (F(1.11, 39.98)
= 108.90, P < 0.001) for the airplane scene. The post-hoc analysis
reveals that all pairwise differences are significant in favor of CC over
EC1 and EC2, and of EC1 over EC2, for both scenes (p < 0.001 for all
six comparisons).

The answers to the individual questions as well as the average over
all questions are given in Figure 7. A negative score x is replaced with
its complement 11-x such that larger is always more favorable. Over
all nine questions, the sphericity assumption is validated (p = 0.322),
the overall ANOVA reveals significant differences between the three
conditions (F(2,66) = 26.83, p < 0.001), and post-hoc analysis reveals
that EC2 is significantly easier to use than CC and than EC1, and

Fig. 8: Label finding time dependency on the number of labels.

that EC1 is significantly easier to use than CC. In terms of individual
questions, statistically significant pairwise differences were recorded
for Q1, Q3, Q8, and Q9. The scores for the four questions satisfy
the sphericity assumption (p = 0.117, p = 0.558, p = 0.994, and p =
0.093), and the overall ANOVA reports significant differences between
the three conditions (F(2,66) = 4.691, p = 0.031; F(2,66) = 12.411,
p = 0.001; F(2,66) = 5.550, p = 0.020; F(2,66) = 26.78, p < 0.001).

4.2.4 Discussion
The results support hypothesis H1. Our label layout leads to faster
label finding compared to a conventional single-circle unsorted layout.
Furthermore, presorting helps reduce the number of layout circles
and therefore it accelerates label finding even more. Five of the six
differences are statistically significant (Table 3, Fig. 6). The only
exception is for EC1 vs. CC for the airplane scene, where the total
number of labels is small enough to not make CC exceedingly slow,
yet the geometric complexity is high enough for the unsorted labels
to always in three circles for EC1 (Table 4). Presorting reduces the
number of circles to two, which speeds up label finding significantly.

We have extended the user time study data (Table 3, Fig. 6 (left)) in
an additional experiment aimed to elucidate the dependency of time
to the total number of labels. We asked a subset of 10 of our original
participants to find labels in the brain scene where the total number of
labels was changed to 8, 10, and 16, providing three additional data
points (in the main user study the brain scene had 12 labels). Fig. 8
shows that the label finding time grows more slowly with the number
of labels in the scene for EC2 and EC1 compared to CC, for up to 12
labels. EC1 and EC2 maintain their advantage over CC for 16 labels,
but the advantage is smaller. This is likely to be a consequence (1) of
the larger number of circles needed for our layouts, which reduces the
efficiency of EC1 and EC2, and (2) of the ability to consider several
labels in parallel as the density of labels increases in CC. We conclude
that our approach is suitable for scenes with up to 16-20 labels which
cap the maximum number of circles to 3 (Table 1), and provide faster
label finding than CC (Fig. 8). As the number of labels increases, the
CC approach also becomes intractable. Larger sets of labels have to be
first pruned to a relevant subset using orthogonal approaches such as
color coding, eye tracking, and intelligent filtering.

The results (Fig. 6) (right) support hypothesis H2, with significantly
lower task loads for EC2 vs EC1 and for EC1 vs CC, for both scenes.
As expected, users can find labels more easily on the sorted circles
compared to the unsorted circle, and fewer circles are better.

The results support hypothesis H3 when the answers to all nine ques-
tions of the usability questionnaire are aggregated (Fig. 7). In terms
of individual questions, all significant differences were in favor of our
layouts when compared to the conventional layout. Not all differences
were significant, and a larger study might be needed to increase statis-
tical power and establish significance. The only two questions where
CC had an advantage (that was not statistically significant) were asking
participants whether they found the layout complex (Q5) and confusing
(Q6). This is expected since, indeed, reading our layouts requires famil-
iarity with the increased structure of the layouts, which have multiple
circles, with the labels of a circle being sorted, and with the color of the

circle line and the change in line thickness indicating the sorting order.
The CC layout is unstructured and the participant can straightforwardly
examine the circle sequentially. As established earlier, the additional
structure in our layouts leads to faster label finding. Users are able to
learn the structure quickly and to use it successfully.

5 CONCLUSIONS, LIMITATIONS, FUTURE WORK

We have presented a method for displaying labels in AR applications
that makes it easier for the user to find a specific label. The essence of
our method is to leverage a sorting of the labels, while avoiding label
and leader line intersections. Our layout uses a small number of concen-
tric circles, with the labels on each circle being sorted. The complexity
of our layout is bound by a result from circular permutation research
that prescribes the minimum length of the longest sorted subsequence
of labels. An optional presorting step further reduces the average num-
ber of circles. In a user study, our layout compared favorably to the
conventional approach of a single circle layout, reducing the average
time participants needed to locate a label.

One limitation of our method is that the multiple circle layout re-
quires more screen real estate than a single layout, which means that
less space is available to visualize the real world object of interest to
the application. In the AR context, this means that the user has to hold
the tablet sufficiently far away from the object to leave room around
the object for the labels. We note that in the figures shown in this
paper, e.g., Figure 1, the labels are drawn larger than they are on the
tablet, to make the figure readable in the paper. We refer the reader to
the accompanying video and to the supplemental material which show
screen captures where the labels are drawn with their accurate relative
size. A related limitation is that, like all label visualization methods,
our approach prefers short label text strings, to avoid obscuring too
much of the object. Compared to the single circle approach, our method
is more robust to label text length as the crowding on each circle is
reduced due to the smaller number of labels per circle.”

Our method applies to the outside-looking-in visualization scenario,
with a single object of interest, that can be surrounded by its labels.
Future work should examine the more challenging inside-looking-out
visualization scenario, with the user immersed in the scene of interest,
which might require partially sorting labels on more general closed
curves, not just concentric circles. As stated in the prior work Sect. 2.4,
in addition to leader lines, there are other approaches for catering to
and guiding the user’s attention, and future work could investigate
multi-step approaches where color coding, eye tracking, or intelligent
filtering are used first to identify the subset of labels of interest, which
are then laid out using our approach.

Although our method was presented and evaluated in the context of
AR, our label layouts might prove to be useful in the context of other
interactive visualization contexts. From an implementation standpoint,
our method readily works for fully virtual scenes. Our method is
particularly useful in contexts such as AR and VR that rely on HMD
visualization and where the user cannot easily rely on a keyboard to
search for the label textually. One direction of future work is to deploy
our method to an HMD AR interface. An ideal AR HMD that does not
reduce the user’s natural field of view would avoid the screen real estate
limitation mentioned above for our tablet AR interface. However, an
AR HMD that limits the user’s field of view will require that the user
trace the circle with the central part of their field of view to be able to
read the labels. This problem is not unique to our method and the circle
could actually help guide the user towards the labels that are clipped by
the small active field of view. Future studies should also quantify the
benefit of our method in VR, which has the advantage of HMDs with a
wider active field of view, providing more visualization real estate.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foun-
dation of China through Projects 61932003 and 61772051, by National
Key RD plan 2019YFC1521102, by the Beijing Natural Science Foun-
dation L182016, by the Beijing Program for International ST Coopera-
tion Project Z191100001619003, by the funding of Shenzhen Research
Institute of Big Data(Shenzhen 518000).

REFERENCES

[1] Unity. https://unity3d.com.
[2] K. Ali, K. Hartmann, and T. Strothotte. Label layout for interactive 3d

illustrations. Journal of WSCG, 13(1):1–8, 2005.
[3] R. Azuma and C. Furmanski. Evaluating label placement for augmented

reality view management. In The Second IEEE and ACM International
Symposium on Mixed and Augmented Reality, 2003. Proceedings., pp.
66–75. IEEE, 2003.

[4] J. Balata, L. Cmolik, and Z. Mikovec. On the selection of 2d objects using
external labeling. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 2255–2258, 2014.

[5] L. Barth, A. Gemsa, B. Niedermann, and M. Nöllenburg. On the readability
of leaders in boundary labeling. Information Visualization, 18(1):110–132,
2019.

[6] M. A. Bekos, S. Cornelsen, M. Fink, S.-H. Hong, M. Kaufmann,
M. Nöllenburg, I. Rutter, and A. Symvonis. Many-to-one boundary label-
ing with backbones. J. Graph Algorithms Appl., 19(3):779–816, 2015.

[7] M. A. Bekos, M. Kaufmann, M. Nöllenburg, and A. Symvonis. Boundary
labeling with octilinear leaders. Algorithmica, 57(3):436–461, 2010.

[8] M. A. Bekos, M. Kaufmann, K. Potika, and A. Symvonis. Polygon
labelling of minimum leader length. In Asia-Pacific Symposium on Infor-
mation Visualisation, pp. 15–21, 2006.

[9] M. A. Bekos, B. Niedermann, and M. Nöllenburg. External labeling
techniques: A taxonomy and survey. In Computer Graphics Forum,
vol. 38, pp. 833–860. Wiley Online Library, 2019.

[10] B. Bell, S. Feiner, and T. Höllerer. View management for virtual and
augmented reality. In Proceedings of the 14th annual ACM symposium on
User interface software and technology, pp. 101–110, 2001.

[11] S. Bianco, F. Gasparini, and R. Schettini. Color coding for data visual-
ization. In Encyclopedia of Information Science and Technology, Third
Edition, pp. 1682–1691. IGI Global, 2015.

[12] E. Castellina and F. Corno. Multimodal gaze interaction in 3d virtual
environments. Cogain, 8(2008):33–37, 2008.

[13] L. Čmolı́k and J. Bittner. Real-time external labeling of ghosted views.
IEEE transactions on visualization and computer graphics, 25(7):2458–
2470, 2018.

[14] L. Cmolik, V. Pavlovec, H.-Y. Wu, and M. Nollenburg. Mixed labeling: In-
tegrating internal and external labels. IEEE Transactions on Visualization
and Computer Graphics, 2020.

[15] E. M. Coelho, S. Julier, and B. Maclntyre. Osgar: A scene graph with un-
certain transformations. In Third IEEE and ACM International Symposium
on Mixed and Augmented Reality, pp. 6–15. IEEE, 2004.

[16] J. Cohen. Statistical power analysis for the behavioral sciences. Academic
press, 2013.

[17] É. Czabarka and Z. Wang. Erdős–szekeres theorem for cyclic permutations.
Involve, a Journal of Mathematics, 12(2):351–360, 2018.

[18] P. Erdös and G. Szekeres. A combinatorial problem in geometry. Compo-
sitio mathematica, 2:463–470, 1935.

[19] J.-D. Fekete and C. Plaisant. Excentric labeling: Dynamic neighborhood
labeling for data visualization. In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems, pp. 512–519, 1999.

[20] A. Gemsa, J.-H. Haunert, and M. Nöllenburg. Multirow boundary-labeling
algorithms for panorama images. ACM Transactions on Spatial Algorithms
and Systems, 1(1):1–30, 2015.

[21] T. Götzelmann, K. Hartmann, and T. Strothotte. Agent-based annotation
of interactive 3d visualizations. In International Symposium on Smart
Graphics, pp. 24–35. Springer, 2006.

[22] R. Grasset, T. Langlotz, D. Kalkofen, M. Tatzgern, and D. Schmalstieg.
Image-driven view management for augmented reality browsers. In 2012
IEEE International Symposium on Mixed and Augmented Reality, pp.
177–186. IEEE, 2012.

[23] Q. Han, M. John, S. Koch, I. Assenov, and T. Ertl. Labeltransfer-integrating
static and dynamic label representation for focus+ context text exploration.
In 2018 International Symposium on Big Data Visual and Immersive
Analytics, pp. 1–8. IEEE, 2018.

[24] S. G. Hart. Nasa-task load index (nasa-tlx); 20 years later. In Proceedings
of the human factors and ergonomics society annual meeting, vol. 50, pp.
904–908. Sage Publications Sage CA: Los Angeles, CA, 2006.

[25] S. G. Hart and L. E. Staveland. Development of nasa-tlx (task load index):
Results of empirical and theoretical research. In Advances in psychology,
vol. 52, pp. 139–183. Elsevier, 1988.

[26] K. Hartmann, K. Ali, and T. Strothotte. Floating labels: Applying dynamic

potential fields for label layout. In International Symposium on Smart
Graphics, pp. 101–113. Springer, 2004.

[27] K. Hartmann, T. Götzelmann, K. Ali, and T. Strothotte. Metrics for
functional and aesthetic label layouts. In International Symposium on
Smart Graphics, pp. 115–126. Springer, 2005.

[28] IBM. Spss software. https://www.ibm.com/analytics/

spss-statistics-software.
[29] P. Kindermann, B. Niedermann, I. Rutter, M. Schaefer, A. Schulz, and

A. Wolff. Multi-sided boundary labeling. Algorithmica, 76(1):225–258,
2016.

[30] D. Kouřil, L. Čmolı́k, B. Kozlı́ková, H.-Y. Wu, G. Johnson, D. S. Good-
sell, A. Olson, M. E. Gröller, and I. Viola. Labels on levels: labeling
of multi-scale multi-instance and crowded 3d biological environments.
IEEE transactions on visualization and computer graphics, 25(1):977–986,
2018.

[31] M. Lankes and B. Stiglbauer. Gazear: Mobile gaze-based interaction in
the context of augmented reality games. In International Conference on
Augmented Reality, Virtual Reality and Computer Graphics, pp. 397–406.
Springer, 2016.

[32] G. Li, Y. Liu, and Y. Wang. An empirical evaluation of labelling method
in augmented reality. In Proceedings of the 16th ACM SIGGRAPH Inter-
national Conference on Virtual-Reality Continuum and its Applications in
Industry, pp. 1–9, 2018.

[33] M. Löffler, M. Nöllenburg, and F. Staals. Mixed map labeling. In Interna-
tional Conference on Algorithms and Complexity, pp. 339–351. Springer,
2015.

[34] J. B. Madsen, M. Tatzqern, C. B. Madsen, D. Schmalstieg, and
D. Kalkofen. Temporal coherence strategies for augmented reality labeling.
IEEE transactions on visualization and computer graphics, 22(4):1415–
1423, 2016.

[35] J. Marks and S. M. Shieber. The computational complexity of cartographic
label placement. Harvard Computer Science Group Technical Report TR-
05-91., 1991.

[36] J. W. Mauchly. Significance test for sphericity of a normal n-variate
distribution. The Annals of Mathematical Statistics, 11(2):204–209, 1940.

[37] S. Oeltze-Jafra and B. Preim. Survey of labeling techniques in medical
visualizations. In Proceedings of the 4th Eurographics Workshop on Visual
Computing for Biology and Medicine, pp. 199–208, 2014.

[38] J. Orlosky, K. Kiyokawa, T. Toyama, and D. Sonntag. Halo content:
Context-aware viewspace management for non-invasive augmented reality.
In Proceedings of the 20th International Conference on Intelligent User
Interfaces, pp. 369–373, 2015.

[39] H. M. Park, S. H. Lee, and J. S. Choi. Wearable augmented reality system
using gaze interaction. In 2008 7th IEEE/ACM International Symposium
on Mixed and Augmented Reality, pp. 175–176. IEEE, 2008.

[40] PTC. Vuforia developer portal. https://developer.vuforia.com.
[41] T. Ropinski, J.-S. Praßni, J. Roters, and K. H. Hinrichs. Internal labels as

shape cues for medical illustration. In Vision Modeling and Visualization,
vol. 7, pp. 203–212. Citeseer, 2007.

[42] S. S. Sawilowsky. New effect size rules of thumb. Journal of Modern
Applied Statistical Methods, 8(2):26, 2009.

[43] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 52(3/4):591–611, 1965.

[44] F. Shibata, H. Nakamoto, R. Sasaki, A. Kimura, and H. Tamura. A view
management method for mobile mixed reality systems. In Immersive
Projection Technology Workshop/Eurographics Symposium on Virtual
Environments, pp. 17–24, 2008.

[45] T. Stein and X. Décoret. Dynamic label placement for improved interactive
exploration. In Proceedings of the 6th international symposium on Non-
photorealistic animation and rendering, pp. 15–21, 2008.

[46] J. Talmon, E. Ammenwerth, J. Brender, N. De Keizer, P. Nykänen, and
M. Rigby. Stare-hi—statement on reporting of evaluation studies in health
informatics. International journal of medical informatics, 78(1):1–9, 2009.

[47] M. Tatzgern, D. Kalkofen, R. Grasset, and D. Schmalstieg. Hedgehog
labeling: View management techniques for external labels in 3d space. In
2014 IEEE Virtual Reality, pp. 27–32. IEEE, 2014.

[48] M. Tatzgern, D. Kalkofen, and D. Schmalstieg. Dynamic compact visu-
alizations for augmented reality. In 2013 IEEE Virtual Reality, pp. 3–6.
IEEE, 2013.

[49] M. Tatzgern, V. Orso, D. Kalkofen, G. Jacucci, L. Gamberini, and
D. Schmalstieg. Adaptive information density for augmented reality
displays. In 2016 IEEE Virtual Reality, pp. 83–92. IEEE, 2016.

https://unity3d.com
https://www.ibm.com/analytics/spss-statistics-software
https://www.ibm.com/analytics/spss-statistics-software
https://developer.vuforia.com

	Introduction
	Previous Work
	Internal label layouts
	External label layouts
	Hybrid internal/external label layout
	Approaches for guiding the user's attention
	Evaluation of label layout

	Partially-Sorted Concentric Layout
	Upper bound on the number of circles
	Label Layout Algorithm
	Candidate Label Layout Algorithm
	Layout temporal coherence
	Optional Label Presorting

	Results and Discussion: User Studies
	Pilot study
	User study
	Study context
	Methods
	Results
	Discussion

	Conclusions, Limitations, Future Work

