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ABSTRACT

Augmented Reality (AR) benefits telementoring by enhancing the
communication between the mentee and the remote mentor with
mentor authored graphical annotations that are directly integrated
into the mentee’s view of the workspace. An important problem is
conveying the workspace to the mentor effectively, such that they can
provide adequate guidance. AR headsets now incorporate a front-
facing video camera, which can be used to acquire the workspace.
However, simply providing to the mentor this video acquired from
the mentee’s first-person view is inadequate. As the mentee moves
their head, the mentor’s visualization of the workspace changes
frequently, unexpectedly, and substantially. This paper presents a
method for robust high-level stabilization of a mentee first-person
video to provide effective workspace visualization to a remote men-
tor. The visualization is stable, complete, up to date, continuous,
distortion free, and rendered from the mentee’s typical viewpoint,
as needed to best inform the mentor of the current state of the
workspace. In one study, the stabilized visualization had significant
advantages over unstabilized visualization, in the context of three
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Stabilized
Figure 1: Original (unstabilized) and stabilized video frame pairs for four sample workspaces. The videos are acquired with the
camera built in an AR HMD worn by a user who walks around and rotates their head. Our method alleviates the view changes in
the original first-person videos, which results in a stable visualization of the workspace, suitable for a remote collaborator, e.g. a
mentor. Our method can handle complex 3D geometry (all examples), large view changes (Workbench, Lobby), large depths
(Lobby), and dynamic geometry, complex reflectance properties, and outdoor scenes (running Fountain).
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number matching tasks. In a second study, stabilization showed
good results, in the context of surgical telementoring, specifically
for cricothyroidotomy training in austere settings.

Index Terms: Human-centered computing— Visualization; Graph-
ics systems and interfaces—Mixed / augmented reality.

1 INTRODUCTION

As science and technology specialize ever more deeply, it is more
and more challenging to gather in one place the many experts needed
to perform a complex task. Telecollaboration can transmit expertise
over large geographic distances promptly and effectively [28].

A special case of telecollaboration is telementoring, where a
mentee performs a task under the guidance of a remote mentor. One
approach is to rely only on an audio channel for the communication
between mentor and mentee. Telestrators add a visual channel—the
mentor annotates a video feed of the workspace, which is then shown
to the mentee on a nearby display [30]. The challenge is that the
mentee has to switch focus repeatedly away from the workspace,
and to remap the instructions from the nearby display to the actual
workspace, which can lead to a high cognitive load on the mentee,
and ultimately to task completion delays and even errors [4]. Aug-
mented Reality (AR) technology can solve this problem by directly
integrating the annotations into the mentee’s field of view. The
mentee sees the annotations as if the mentor actually drew them on
the 3D geometry of the workspace, eliminating focus shifts [2].



A problem less studied but nonetheless of great significance is
conveying the workspace to the remote mentor effectively [7, 8].
One approach is to acquire the workspace with an auxiliary video
camera, and to send its video feed to the mentor [19]. The approach
requires additional hardware, and the auxiliary camera captures the
workspace from a different view than that of the mentee. Effective
telementoring requires the mentor to see what the mentee sees for the
instructions to be as relevant and easy to understand as possible [14].
For example, the mentor might annotate a part of the workspace that
is not visible to the mentee due to occlusions, or, conversely, the
mentor might not see the part the mentee is working on.

With the advancement of AR, self-contained optical see-through
head mounted displays (HMDs) are now available. Such HMDs
typically incorporate a front-facing camera, which can capture the
workspace from a viewpoint close to the mentee’s viewpoint. How-
ever, simply providing the mentee first-person video to the mentor is
insufficient for effective telementoring [11]. As the mentee changes
head position and view direction, the mentor’s visualization of the
workspace changes frequently and substantially, which adversely af-
fects the mentor’s understanding of the scene. This in turn degrades
the quality of the guidance provided by the mentor, and ultimately
the mentee’s performance. For example, when the mentee looks to
the left, the workspace visualization shifts by hundreds of pixels to
the right; when the mentee moves to the other side of the workspace
as might be needed for best access during task performance, the
visualization rolls 180°, which results in an upside-down visual-
ization that is frustratingly difficult to parse. What is needed is a
robust stabilization of the mentee first-person video, such that it can
provide an effective visualization of the workspace to the mentor.
The needed high-level stabilization has to neutralize the effects of
substantial rotations and translations of the acquisition camera, and
cannot be provided by prior work low-level stabilization techniques
that remove jitter in hand-held acquired video.

In this paper we present the design, implementation, and eval-
uation of a method for robust high-level stabilization of a video
feed acquired from a mentee’s first-person view, in order to pro-
vide a remote mentor with an effective visualization of the mentee’s
workspace. The output visualization has to be (1) stable, i.e. to show
the static parts of the scene at a constant image location, (2) real-
time, i.e. to keep up with the input feed, and (3) of high quality, i.e.
without distortions, tears and other artifacts. In addition to conveying
the workspace to the mentor, the output visualization should also be
a (4) suitable canvas on which the mentor can author annotations
to provide guidance. The paper investigates three approaches and
adopts projective video texture-mapping onto a planar proxy of the
workspace geometry, as the approach that best satisfies the design
requirements. Fig. 1 illustrates the robustness of our stabilization
method on a variety of challenging workspaces.

We evaluated the effectiveness of our stabilization method in
two controlled within-subject user studies. One study (n = 30)
investigated workspace visualization quality by asking participants
to find matching numbers in a video of a workspace annotated
with numbers. The study used three workspaces: a Sandbox, a
Workbench, and an Engine (the Workbench and the Engine are shown
in Fig. 1 without the numbers). In the control condition, participants
watched the original (unstabilized) video acquired with the HMD
camera; in the experimental condition, the video was stabilized
with our method, which showed significant advantages in terms
of task performance and participant workload. For the sandbox
workspace we compared our method to a perfectly stable video
acquired from a tripod, and there were no significant differences in
performance. The second study tested our method in the context
of surgical telementoring, where participants (n = 20) practiced
cricothyroidotomy (cric) procedures on patient simulators (Fig. 2).
The study was conducted in an austere setting of an empty room,
with the patient simulator on the floor, with poor visibility achieved

Figure 2: Cricothyroidotomy training in austere environment using
video feed stabilized with our method. The mentee wears an AR
HMD that acquires the surgical field (top left), the video feed is sent
to the mentor where it is stabilized (rows 2-3, raw left, stabilized
right), the mentor annotates the stabilized feed (top right), and the
annotations are sent to the mentee where they are displayed with the
AR HMD. The first frame (grayscale) is used for context.

with a fog machine, and with loud combat-like noises. Compared
to audio-based telementoring, the stabilized video telementoring
improved surgical performance significantly. We also refer the
reader to the accompanying video.

2 PRIOR WORK

The widespread availability of digital cameras and of broadband
internet connectivity enable telecollaboration by acquiring the local
workspace with a video camera whose feed is transmitted to a remote
site. An important design decision is where to place the camera in
order to provide an effective remote visualization of the workspace.

One approach is to mount the camera on a tripod. This approach
was used to build a surgical telementoring system where the operat-
ing field was acquired with a ceiling-mounted overhead camera [19].
The top view is substantially different from the mentee’s view, which
reduces telementoring effectiveness, as a mentor can best guide a
mentee when the mentor sees what the mentee sees, and when the
mentor issues instructions in the mentee’s frame of reference. An-
other surgical telementoring system acquires the operating field
with the front-facing camera of a computer tablet mounted with a
bracket between the mentee and the patient [3]. The operating field
is acquired from a view similar to that of the mentee, but the tablet
creates workspace encumbrance. A shortcoming common to both
systems is that the operating field is acquired from a fixed view. A
second approach is to rely on the local site collaborator to acquire the
workspace with a hand-held video camera, changing camera pose
continually for a good visualization for the remote collaborator [13].
The problem is that the local collaborator becomes a cameraman,
which hinders collaboration.

A third approach is to rely on a head mounted camera [22]. This
brings freedom to the local collaborator, who can focus more on the
task. A 360° video camera captures more of the environment and
provides the remote collaborator with more awareness of the local
space [20]. One disadvantage is having to wear the head mounted
camera. The disadvantage has been alleviated as internet-connected
cameras have been miniaturized, e.g. telecollaboration using Google
Glass [27]. We have adopted this third approach. In our context,
having to wear the head-mounted camera is not an additional concern
since the mentee already has to wear an AR HMD.

The fundamental challenge of acquiring the workspace with a



head-mounted camera is that the visualization of the workspace pro-
vided to the mentor changes abruptly, substantially, and frequently
as the local collaborator moves their head during task performance.
Such a visualization can lead to a loss of situational awareness, to a
high cognitive load, to task performance delays and errors, and to cy-
bersickness. Researchers have investigated addressing this challenge
by attempting to stabilize the video such that it does not change as
the local collaborator moves their head.

One approach of stabilization is to use optical flow to track fea-
tures over the sequence of frames, to define homographies between
consecutive frames using the tracked features, to register all frames
in a common coordinate system, and to stabilize each frame by 2D
morphing it to the common coordinate system [22]. A second ap-
proach is to acquire a 3D geometric model of the workspace, to track
the video camera, and to projectively texture map the model with
the video frames, from a constant view. One option for acquiring the
model is SLAM [13], another option is to use real-time active depth
sensing. As we designed our stabilization technique, we investigated
both of these approaches, as discussed in Sect. 3.2.

Researchers have developed low-level video stabilization tech-
niques designed to remove small, high-frequency camera pose
changes, such as the jitter of a hand-held camera [24,31], or of a
bicycle helmet mounted camera [18]. However, the large amplitude
camera pose changes remain. If a hand-held camera is rolled 30°,
low-level stabilization preserves the 30° roll, striving for a smooth
angle change from 0° to 30°. In contrast, high-level stabilization
aims to remove the 30° roll altogether.

Beyond technical challenges, researchers have also investigated
video telecollaboration design from a user perspective, to optimize
collaboration effectiveness. The problem of obtaining a good view
of the workspace has been studied extensively in the context of
telemedical consultation [32], where fixed, head-mounted, or hand-
held cameras, 2D (view dependent) or 3D (view independent) in-
terfaces each have advantages and disadvantages. A recent study
finds that giving remote collaborators independent views is more
beneficial than letting the local participant choose the view for the
remote participant [17]. The benefit of view independence were
also noted in the context of shared live panorama viewing [21], and
remote instruction of cockpit operation [12]. Another study found
that a scene camera was preferred in video telecollaboration over a
head-mounted camera, not just by the remote helper who enjoyed
the stable, comprehensive view of the workspace, but also by the
worker who preferred not having to wear the camera [11].

Researchers have also demonstrated the acquisition of a com-
plex environment with simple hardware, such as a tablet and its
camera [13], to allow a remote collaborator a view-independent
exploration of the environment; however, such systems are limited
to static environments. Some systems allow the remote collaborator
to suggest placement of objects in the workspace [33], again, un-
der the assumption of an otherwise static environment. Complex
dynamic scenes are handled by doing away with geometry acqui-
sition, under the assumption that the entire scene is sufficiently far
away, which enables panorama acquisition and rendering [26], but
this precludes nearby workspaces. Finally, dynamic geometry has
been handled through the volumetric fusion of data acquired with
multiple off-the-shelf depth cameras, which affords a remote collab-
orator an independent visualization of the workspace [1]; however,
this comes at the cost of additional hardware, intractable in austere
environments, and it is limited to the outside-looking-in scenario.

3 HIGH-LEVEL STABILIZATION OF FIRST-PERSON VIDEO

Consider the AR telementoring scenario with a mentee wearing an
optical see through AR HMD. The HMD has a built-in front-facing
video camera that captures what the mentee sees. The goal is to
use this video feed to inform a remote mentor of the current state
of the workspace. In addition to audio instructions, the mentor also
provides guidance through graphical annotations of the workspace.

(e) w/ true (manual) geometry
Figure 3: Stabilization of current frame (b) to initial view (a) by
projective texture-mapping onto acquired (c, d), truth (e), or proxy
geometry (f). Disocclusion errors are highlighted in green.

(f) w/ planar proxy

Therefore, the video feed should also serve as a canvas on which the
mentor authors annotations of the workspace.

3.1 Effective Mentor-Side Visualization Requirements

An effective mentor-side workspace visualization has to satisfy the
following requirements:

Stability. The visualization of the workspace should not move, to
allow the mentor to examine it in detail. Complex tasks require for
the mentor to concentrate on the workspace, and unexpected changes
in the visualization are particularly frustrating, forcing the mentor to
abandon the AR-enabled graphical communication channel, and to
take refuge in the trusted audio communication.

View agreement. The mentor’s view of the workspace should be
similar to that of the mentee, for the mentor to provide guidance
directly in the mentee’s context, avoiding any remapping that could
confuse the mentee. Furthermore, different viewpoints could show
different parts of the workspace to the mentor and mentee, which im-
pedes communication when one party refers to workspace elements
not visible to the other party.

Real time. The visualization of the workspace should be up to
date, as latency leads to workspace inconsistencies between mentor
and mentee, complicating communication.

High visual quality. The visualization should be free of static and
temporal artifacts such as tears, holes, and distortions. Of particular
importance are scene lines, which should project to lines in the
visualization. This is essential for the mentor’s ability to understand
and annotate the workspace.

3.2 Approaches Considered

Acquiring the workspace with a fixed camera satisfies the stability
requirement, but not the view agreement one. A mentee-acquired
first-person video satisfies the view agreement requirement, and
it is well suited for austere environments since it does not require
additional equipment. However, meeting the stability requirement
is challenging. As the mentee looks away from the workspace,
e.g. to grab a tool, the mentor’s visualization changes abruptly and
significantly. We investigated three stabilization approaches.

The first is a 2D stabilization approach similar to the one de-
scribed by Lee and Hollerer [22] , based on tracking and stabilizing
2D video features. The approach lacked robustness in our con-
text, with occasional incorrect feature tracking causing unacceptable
stabilization artifacts. The second approach is based on the acqui-
sition of workspace geometry (Fig. 3). Real-time acquisition of



complex 3D scenes is imperfect, resulting in stabilized frame distor-
tions (Fig. 3d); furthermore, the workspace has to be acquired from
multiple viewpoints to avoid disocclusion errors (Fig. 3e).

3.3 Stabilization by Projection on Planar Proxy

The third approach investigated, which we adopted, is to projectively
texture map the tracked video feed onto a planar approximation
of the workspace geometry. The planar proxy is defined once per
session. Rendering the textured planar proxy takes negligible time,
even on the thinnest of mentor platforms, such as a computer tablet
or a smartphone, so the visualization is real time. The visualization
is of high quality (Fig. 3f), i.e. without distortions due to inadequate
geometric approximation, and without tears due to disocclusion
errors. All scene lines project to lines in the visualization. The
effect is similar to a photograph of a photograph of a 3D scene.
The concatenation of an additional projection does not make the
visualization confusing, the same way a visualization makes sense
to two or more users seeing it on a display, with no one assuming
the true viewpoint from where it was rendered.

4 THEORETICAL VISUALIZATION STABILITY ANALYSIS

The two possible sources of visualization instability are workspace
geometry approximation error, and video camera tracking error. In
this section we provide a theoretical analysis of the impact of these
two errors on visualization stability. In the next section we provide
empirical measurements of visualization stability.

4.1 Visualization instability definition

Given a 3D workspace point P, an initial frame Fy with view Vp, and
a current frame F; with view V;, we define the reprojection error of P
as the distance e;(P) between where P should be seen from V{y and
where it is actually seen in the stabilized F;. In Equation 1, the actual
location of P in the stabilized frame is denoted with x (P, V;,Vy), and
the correct location m(P,V}) is obtained by projecting P with Vj.
The approximate projection function ) depends on the stabilization
approximation errors. ¢;(P) is relative to the frame’s diagonal d to
obtain an adimensional, image resolution independent measure of
reprojection error.
_ 2PV, Vo) — (P Vo)l
= ] ey
Given a point P and two consecutive frames F; and F; |, we define
visualization instability at P as the absolute change in reprojection
error from F; to Fi4 1, as given by Equation 2.

&(P) = leir1(P) —ei(P)| @

4.2 Simulation scenario

ei(P)

We analyze visualization instability in a typical telementoring sce-
nario. The workspace is Imx 1m wide, and it is 1m above the floor
(Fig. 4a). This is the largest workspace size for which the mentee
can work in the outside looking in scenario—for larger workspaces
the mentee would have to travel from one area to another, and stabi-
lizing the mentor view to a single view is not applicable. The actual
workspace geometry is in between two planes (dotted lines) that are
20cm apart. This height variation is sufficient to model a workbench
with tools on it. The workspace geometry is approximated with the
solid line rectangle. The mentee is 1.8m tall, and their default view,
to which the video is stabilized, is shown with the black frustum.
We consider two typical mentee view sequences. The first se-
quence is a 25° pan to the left (blue frustum in Fig. 4a), as needed,
for example, to reach for a tool placed just outside the workspace.
The panning sequence also has a small lateral translation of 10cm,
to account for the translation of the eyes when someone turns their
head to the side. The second sequence corresponds to the mentee
moving to the corner of the workspace to see it diagonally (green
frustum in Fig. 4a), which implies a 50cm lateral translation from
the initial position, while looking at the center of the workspace.

G
L
approximation error, and eiC (P%) due to camera tracking error.

Figure 5: Reprojection error e (P) due to workspace geometry

Instability depends on frame to frame view changes. We assume
the sequence is completed in 1s, which implies 30 frames at 30Hz.
This is a conservative upper bound for the view change speed. For
abrupt focal point changes, the mentee does not want to and can-
not focus on the workspace during the transition, so any instability
will not be perceived, as also noted in walking redirection research
that takes advantage of saccadic eye movement to manipulate the
visualization [6].

4.3 Dependence on Geometry Approximation Error

In Fig. 5, point P is acquired by video frame V; and projected onto
the proxy plane w at PY. P and PY project at different locations
onto the stabilized view V}y, which results in the reprojection error
elG(P). The dependence of visualization instability on geometry
approximation error is obtained by plugging into Equation 2 the
expression for x given in Equation 3, where V;PNw is P in Fig. 5.

X (PVi, Vo) = m(ViPw, Vo) 3

The instability induced by geometry approximation error is largest
where the true location of a workspace point is farthest from the
proxy plane, i.e. on the dotted rectangles in Fig. 4. Fig. 4 illustrates
the reprojection errors at the center C and corner L of the workspace
proxy, for the last frames of the panning (Fig. 4b) and translation
(Fig. 4c) sequences. The correct projections of L,, Ly, C,, and Cy
are shown with black dots. The actual projections are shown with
blue dots for the panning sequence, and with green dots for the
translation sequence. As expected, the reprojection error is tiny for
the panning sequence since the viewpoint translation is minimal.
Pure panning would have a zero reprojection error. The maximum
instability at the center of the workspace (i.e. C in Fig. 4) is 0.03%
and 0.17% for the panning and translation sequences, respectively.
The maximum is reached for the last frame of the sequence, where
the viewpoint translation is largest. For an HDTV display with a
diagonal of 2,200 pixels and 1m in length, the instability figures
translate to 1.1pix and 0.5mm for the panning sequence, and 5.5pix
and 2.5mm for the translation sequence. We computed the maximum
instability over the entire workspace to be 0.05% and 0.25% for the
two sequences, respectively, which occurs at the workspace corners,
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Figure 6: Sandbox workspace with overhead projected numbers
acquired with video-camera built into an AR HMD (left column),
original, unstabilized video frame (middle), and stabilized video
frame (right).
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i.e. L, and R, in Fig. 4a, for the last frame.

An important advantage of our method is that the geometric
approximation is constant, i.e. the proxy plane does not change.
This means that, when the mentee translates their viewpoint, the
instability is not only small, but also smooth, and when the mentee
pauses to focus on a part of the workspace, the instability is 0. For
a method that uses a geometric model acquired in real time, the
instability is noisy, even when the mentee does not move.

4.4 Dependence on Camera Tracking Error

The second source of visualization instability is the error in tracking
the video camera which acquires the workspace. Using Fig. 5 again,
let us now assume that proxy plane point P is an actual workspace
point to factor out all geometry approximation error. PC is captured
at pixel p by the frame with true viewpoint V;. If V; is incorrectly
tracked at Vi/ , then p is incorrectly projected onto the proxy at point

PC, which generates reprojection error eic (P%). The dependence
of visualization instability on camera tracking error is obtained by
plugging into Equation 2 the expression for y given by Equation 4,
where w is the workspace proxy.
x(P.Vi,Vo) = (Vi piw, Vo) “

Unlike for the instability due to the workspace geometry approxi-
mation, tracking inaccuracy affects the entire frame uniformly. We
have measured tracking accuracy to be 2 degrees for rotations and
2cm for translations. In the scenario above, these maximum tracking
errors translate to a 2.68% and a 1.45% instability, figures that dwarf
the instability caused by geometric approximation error (Sect. 4.3).
Even assuming tracking that is an order of magnitude more accu-
rate than what our AR HMD provides, instability due to geometry
approximation will still be smaller than instability due to tracking.

In conclusion, we have defined instability metrics to be used in
the empirical validation, and we have established that instability due
to geometric error is dwarfed by that due to camera tracking error,
which validates, at principle level, our approach.

5 USER STUDY I: NUMBER MATCHING

We developed a method for stabilizing the video of a workspace
captured by a head mounted camera. The stabilized video serves
as a visualization of the workspace for a remote collaborator. In a
first controlled user study, we tested the effectiveness of workspace
visualization by asking participants to find matching numbers in the
original and the stabilized videos, for three workspaces.

5.1 Experimental Design

Farticipants. We recruited participants (n = 30, 8 female) from
the graduate student population of our university, in the 24-30 age

Figure 7: Workbench (top) and Engine workspaces used in study 1.

group. We opted for a within-subject design, with each participant
performing the task in all conditions.

Task. A participant was seated 2m away from an LCD monitor
with a 165cm diagonal. The monitor displays a video of a workspace
annotated with numbers, and the participant is asked to find pairs
of matching numbers. When a participant spots a matching pair,
they call out the number, and an experimenter tallies the number of
matches found. All numbers called out by participants were correct
matches, i.e. they were not just reading out numbers at random.

Workspace 1: Sandbox. The first workspace is a sandbox in our
lab (Fig. 6). The sandbox is approximately 1mXx 1m in size, and
it is placed about 1m off the floor. The sand had a depth variation
of about 20cm, so this corresponds to the scenario investigated by
the theoretical instability analysis in Sect. 4. An overhead projector
displays a matrix of 4 x4 numbers on the sandbox. The workspace
was acquired with the front-facing camera of an AR HMD (i.e.
Microsoft’s HoloLens [25]) worn by an experimenter who walked
around the sandbox while looking at its center. The experimenter
starts out at the default position, where the numbers are correctly
oriented (first row of Fig. 6). This is also the view to which the video
was stabilized. The experimenter occasionally pans the view to the
side. Then the experimenter walks to the corner of the sandbox
(second row of Fig. 6), and even on the other side, which makes
the numbers appear upside down in the video (third row of Fig. 6).
This results in a video sequence where the matrix of numbers moves
considerably. The video shows 21 matrices, and each matrix was
shown for 5s, for a total video length of 105s. 18 of the 21 matrices
had exactly one pair of matching numbers, and 3 of the matrices
had no matching numbers. Half the numbers of two consecutive
matrices are the same, which means that when the video switches
from one matrix to the next, exactly 8 of the 16 numbers change.
All 8 numbers change simultaneously at the end of the 5s. When a
matrix had a matching pair, at least one of the numbers in the pair
was replaced for the next matrix, such that a matching pair would
not persist longer than the 5s that each matrix is displayed.

Workspace 2: Workbench. The second workspace is an actual
workbench cluttered with tools (Fig. 1 and Fig. 7). The acquisition
path was similar to that for the Sandbox workspace. The tallest
tool reached 30cm above the workbench plane. The experimenter
wearing the AR HMD impersonating a mentee started out at the
default position, then panned the view, and then finally moved to
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Figure 8: Normalized box and whisker plot of pairs found, and of NASA-TLX subscores, for each of the three Sandbox conditions: perfectly
stabilized (PS), stabilized (S), and not stabilized (NS). The star indicates significance (p < 0.05). No S to PS difference was significant.

the side of the workbench to see it from a direction rotated by 90°.
The numbers were added to the workspace using pieces of paper, all
facing the mentee in the initial position. There were 24 numbers, 8
of which appeared twice, so 8§ numbers were unique. Although the
numbers on paper did not change, the mentee moved tools on the
workbench covering and uncovering a few numbers. Furthermore, as
the mentee viewpoint translated, some of the numbers would appear
and disappear due to occlusions.

Workspace 3: Engine. The third workspace is an Engine mounted
on the floor, 80cm high (Fig. 1 and Fig. 7). The Engine was decorated
with numbers and was acquired similarly to the Workbench.

Conditions. Each participant performed the number matching
task for the Sandbox workspace in each of three conditions, in
randomized order. In one control condition, the participant was
shown the raw video with no stabilization (NS). In a second control
condition, the participant was shown a perfectly stable (PS) video
that was acquired by placing the AR HMD on a mannequin head
mounted on a tripod at the default position. In the experimental
condition, the participant was shown the video stabilized with our
method (S). The hypotheses related to the Sandbox were that (1)
participants will perform better in the S condition compared to the
NS condition, and that (2) participants will not perform better in
the PS condition compared to the S condition. A subgroup of 20
participants were tested for each of the Workbench and the Engine
workspaces, for each of two conditions. Participants were shown
the original, unstabilized video in the control condition, and the
stabilized video in the experimental condition.

Metrics. We measured participant task performance as the num-
ber of pairs found. We also measured participant workload using
the NASA Task Load Index (NASA-TLX) questionnaire [15], and
participant simulator sickness using the Simulator Sickness Ques-
tionnaire (SSQ) [16]. Better performance means more matching
pairs found, lower cognitive load, and absence of simulator sickness.

5.2 Results and Discussion

A within-subject statistical analysis compared the three Sandbox
conditions, with three data points for each metric and for each
participant. The participants and the order of the trials were treated
as blocks in the statistical design. The data normality assumption
was confirmed with the Shapiro-Wilk test [29]. In addition, the data
equal-variance assumption was confirmed with the Levene test [23],
so no data transformation was needed. We ran a repeated measures
ANOVA [9] with Bonferroni correction [5] for each condition pair,
i.e. PS vs NS, PS vs S, and S vs NS. The two conditions for the
Workbench and Engine were similarly compared, except that no
Bonferroni correction is needed.

Fig. 8 gives the box and whisker plot [10] of the number of pairs
found, and of the six NASA-TLX subscales, for each of the three
Sandbox conditions. The six subscales are: mental demand, physical
demand, temporal demand, performance, effort, and frustration. All
seven metrics are normalized. The plot indicates the inter-quartile
range (IQR) with a box, the average value with an x, the median
value with a horizontal line, farthest data points that are not outliers
with whiskers, and outliers with dots. Outliers are data points “out-

Table 1: Comparison between the number of pairs found in the no
stabilization (NS) and stabilization (S) conditions.

Workspace NS S S-NS p-value
Workbench ~ 5.45+0.83  5.95£1.19 0.50£0.28  0.043*
Engine 5.05£1.57 6.10+£1.29 1.05+0.31  0.002*

Table 2: p-values of NASA TLX subscore differences between no
stabilization (NS) and stabilization (S) conditions (i.e. NS-S).

Mental Physical Temporal p, ¢ .
Workspace Demand Demand Demand mance Effort Frustration

Workbench 0.000* 0.000* 0.001* 0.188 0.356 0.001*
Engine 0.005* 0.050* 0.000* 0.034 0.002* 0.001*

side the fences”, i.e. more than 1.5 times the IQR from the end of
the box. NS participants found on average 28% or 5.1 of the 18
matching pairs. S participants found on average 36% or 6.5. PS
participants found on average 34% or 6.3. The differences between S
and NS, and PS and NS are significant, while the difference between
PS and S is not. The best performing participant found 12 of the 18
matching pairs for both the S and PS conditions, performance levels
that are within the fence and therefore not outliers; this participant
only found 8 matching pairs in the NS condition.

S and PS participants reported significantly lower cognitive load
than those in NS on all six NASA-TLX subscales, and there was no
significant difference between PS and S. For NS, the upper fence
exceeded the maximum possible value of 1.0, and it was therefore
capped at 1.0, for all six NASA-TLX subscales. This indicates
the high cognitive load in the NS condition, and it eliminates the
possibility of outliers. For S and PS, two of the scales had the upper
fence at 1.0, which leaves the possibility of outliers for the other
four scales. However, there was only one outlier for each of the
PS and S conditions, both for the TLX-2 scale, which increases the
confidence that PS and S place less demand on the participant.

Table 1 gives the number of pairs found for the Workbench and
the Engine workspaces, for each of the unstabilized (NS) and the
stabilized (S) conditions. S has a significant advantage for both
workspaces. Table 2 compares the NASA TLX scores between the S
and NS conditions (i.e. NS-S, as lower NASA TLX scores indicate
less demand on the participant). Most S advantages are significant.
For the Sandbox workspace, the analysis of the Total Severity score
derived from the SSQ answers indicates the absence of simulator
sickness in all three conditions. Furthermore, there are no significant
differences for any of the three differences PS-NS, S-NS, and PS-S,
for any SSQ subscore. While this suggests that our stabilization
might not induce simulator sickness, and that discomfort levels
are similar to those for a perfectly stabilized video, the absence of
differences between PS and NS indicates that the exposure might
have been too short and the workspace too simple for a revealing
simulator sickness comparison between the three conditions.

The SSQ provided more insight in the case of the more visually
complex Workbench and Engine workspaces (Table 3). S had a



Table 3: p-values of SSQ Total Severity score differences between
no stabilization (NS) and stabilization (S) conditions (i.e. NS-S).

Workspace Nausea Oculomotor Disorientation Total Severity

Workbench 0.019* 0.001* 0.116 0.004*
Engine 0.053 0.060 0.019* 0.021*

1.0
0.8
0.6
0.4
0.2

p
93

0.0
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Figure 9: Trajectories of 9 tracked feature points, in normalized
pixel coordinates, for the NS (left) and S (right) Sandbox conditions.

significant advantage over NS in terms of Total Severity score, for
both workspaces. The S advantage was due to less nausea and ocu-
lomotor effort for the flatter but more cluttered Workbench, and due
to disorientation for the more occlusion/disocclusion prone Engine.
Although the differences between conditions were significant, for
no workspace and no condition did the Total Severity score increase
from pre- to post- exposure above the threshold of 70, which would
indicate the presence of simulator sickness.

5.3 Empirical Visualization Stability Analysis

Sect. 4 defined visualization instability and analyzed its dependence
on the workspace geometry approximation error and on the camera
tracking error. Here we measure the actual instability in the raw
video and in the stabilized video by tracking nine salient feature
points over the entire Sandbox sequence. The features are dark
particles mixed in with the white sand, and they cover the matrix
area uniformly. The frame trajectories of the tracked features are
shown in Fig. 9, where the coordinates in the 1,280x 720 video frame
were normalized. Whereas the tracked points move considerably
in the NS video, their trajectory is short and smooth in the S video.
The average reprojection error (Equation 1) over all feature points
and all frames is 13.5%=7.9% for NS and 2.0%=1.8% for S; the
maximum reprojection error is 37.5% for NS and 5.8% for S.

The average visualization instability (Equation 2) over all 9 fea-
ture points is given in Fig. 10 for both the unstabilized and the
stabilized sequences. These instability values are based on empir-
ical values for the x(P,V;,Vp) and ©(P,Vp) from the definition of
reprojection error Equation 1. Instability is large for NS, and it is
largest for the first part of the sequence, when the mentee panned
their head left and right repeatedly. This is expected since, for a
non-stabilized sequence, panning motions change the frame coor-
dinates of workspace features quickly and substantially. Instability
is low for our stabilized sequence, and it is lower for the first part
of the sequence when workspace geometry approximation error has
little influence on instability. For the first part of the sequence, the
instability is very low most of the time, with the exception of some
small spikes which we attribute to camera tracking latency. The
average instability is 0.081% £ 0.082% for the NS sequence, and
about eight times lower for the S sequence at 0.011% =+ 0.0093%.

6 USER STUDY Il: AUSTERE SURGICAL TELEMENTORING

We conducted a second user study, which tests the benefits of stabi-
lization in the context of a complete surgical telementoring system.
The mentee acquires the surgical field with a front-facing video cam-
era built into their AR HMD, the video is transmitted to the remote
mentor site, the video is stabilized, the stabilized video is shown to
the mentor, the mentor provides guidance by annotating the stabi-
lized video, and the annotations are sent to the mentee site, where
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Figure 10: Empirical visualization instability measured by tracking
feature points over the video sequences.

they are overlaid onto the surgical field using the AR HMD. The
study evaluates the benefit of stabilization indirectly: the hypothesis
is that the stabilized video leads to a better mentor understanding of
the operating field, to better guidance for the mentee, and ultimately
to better mentee performance.

6.1 Experimental Design

Participants. The participants served as mentees in the study. We
recruited participants (n = 20) from the corpsmen of a naval medi-
cal center who were training for performing surgical procedures in
austere settings. The participant age range was 18—43, and 3 partic-
ipants were female. The study used two mentors that are teaching
faculty at a surgery residency program. The mentor site was 900km
away from the mentee site. We opted for a within-subject design,
with each participant performing a task in both conditions.

Task. The participants performed a practice cric on a synthetic
patient simulator in an austere setting (Fig. 2). The cric is an emer-
gency procedure performed when a patient is not able to breathe due
to airway obstruction. The procedure entails performing precise inci-
sions through multiple layers of neck tissue, opening up the cricoid
cartilage, inserting and securing a breathing tube, and connecting a
breathing bag to the tube. Since emergent, the procedure stands to
benefit greatly from telementoring.

Conditions. In the experimental condition (EC), the mentee ben-
efited from visual and verbal guidance from the mentor. The vi-
sual guidance was provided through the AR HMD, which overlaid
mentor-authored annotations onto the operating field, such as free-
hand sketched incision lines, or dragged-and-dropped instrument
icons. The mentor monitored the operating field and authored anno-
tations based on a first-person video of the operating field acquired
by the mentee, which was stabilized with our method. In the control
condition (CC), the mentee benefited from verbal mentor guidance.

Metrics. The mentee performance was evaluated by two expert
surgeons located at the mentee site. The experts used the cric evalua-
tion sheet typically used at the naval center to score the performance
of the mentees. The evaluation sheet contains 10 subscales based on
procedure steps, which are scored with a 5-level Likert Scale. The
subscales evaluate aspects related to anatomical landmark identifi-
cation, incision performance, and patient airway acquisition. The
overall mentee performance score was computed as the average of
the 10 subscale scores.

6.2 Results and Discussion

A within-subject statistical analysis was run to compare both condi-
tions, with two data points for each metric and for each participant.
The condition was treated as an independent variable, while each
of the expert evaluation scores were treated as dependent variables.
The participants and the order of the trials were treated as blocks in
the statistical design. The data normality and equal variance assump-
tions were confirmed with the Shapiro-Wilk [29] and the Levene
test [23], respectively, and a repeated measures ANOVA was run [9].

The results are shown in Fig. 11, which gives means and standard
deviations. The total performance score (EE-T) was significantly
higher (p = 0.04) for EC than for CC. The means for each of the ten
subscale scores (i.e. EE-1 to EE-10) favor EC over CC, but only two
of the differences are significant, i.e. for EE-8 (p = 0.03) and for
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Figure 11: Procedure subscale (EE-1 to EE-10) and overall (EE-T) cric performance. EC has an advantage over CC for each metric. The star

indicates a significant advantage (p < 0.05).

EE-9 (p = 0.01). We attribute the lack of significance for the score
differences for the other subscales to the low number of participants.
EE-8 verifies that the cuff of the Melker canula was inflated with
10ml of air, which indicates that there is air circulating through the
tube. EE-9 verifies that the air actually makes it into the lungs of
the patient (simulator) as indicated by a bilateral rise and fall of the
chest. On the other hand, EE-10 verifies that the cannula is properly
secured with tape for patient transport, so it concerns a step beyond
the end of the actual cric, and participants could score highly on
EE-10 even if the procedure actually failed. Thus, EE-8 and EE-9
are important scores that depend on the success of all previous steps,
and they validate the entire procedure.

The mentee moves their head considerably as they reach for sur-
gical instruments, which causes numerous, substantial, and abrupt
changes in the input video. In one typical instance, a mentee trans-
lated their head for a total of 7.66m over a 3min and 12s sequence,
with spikes of over 20cm per second. In the same sequence, the
mentee rotates the view direction by over 1,500°, which is more
than four full rotations. These large view changes make the raw
video unusable at the mentor, and our stabilization is essential to the
success of the AR telementoring system.

The workspace in the surgical telementoring study is highly dy-
namic, with the mentee’s hands and instruments moving in the video
feed. While such dynamic environments are challenging for ap-
proaches that rely on real time geometry acquisition, the dynamic
workspace does not pose any additional challenge to our approach.
Note that our definition of instability (Equation 2) does apply to
dynamic environments since it does not simply measure how far the
projection of a 3D point moves from one frame to the next, which
would penalize the moving elements of the environment even in a
perfectly stabilized visualization; instead, our definition is based
on how far away the 3D point is in the visualization from where it
should be in a perfectly stabilized visualization.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We have presented the design and evaluation of a method for stabi-
lizing a first-person video of a workspace, such that it can effectively
convey the workspace to a remote collaborator. We investigated
three approaches and we chose an approach that projectively texture
maps the registered video feed onto a planar proxy of the workspace.
The approach has the advantages of stability, view agreement, real
time performance, lack of distortions, lack of disocclusion errors,
good temporal continuity, and robustness with workspace geometric,
reflectance property, and motion complexity. We refer the reader to
the accompanying video for additional stabilization examples.

The stabilized video doesn’t always contain all the pixels in the
input mentee video. This happens when the mentee view frustum is
not a subset of the mentor view frustum. For example, in Fig. 1, for
the Engine workspace, the top left unstabilized frame captures more
of the text on the wall than its stabilized counterpart. This is due
to the fact that the mentor view frustum was chosen to encompass
tightly the workspace, i.e. the engine. A wider mentor field of view
would have kept the entire back wall pixels in the stabilized frame.
Certainly, this would come at the cost of a lower resolution on the
workspace, and each application should decide what works best in its
own context. Another possibility to be explored as future work, is to
not insist on a fixed mentor view, but rather a view that slowly keeps

up with the mentee view in order to show the mentor everything the
mentee sees. For example, if the the mentee chooses to focus on a
completely different area of the workspace, the mentor view should
gradually focus on that area as well.

When the mentee looks away from the workspace, the mentor’s
live visualization of the workspace is truncated, or even interrupted
if the mentee view frustum is completely disjoint from the mentor
view frustum. One solution for mitigating this problem is to rely on
previous frame pixels to maintain workspace visualization continuity.
Of course, these are not live pixels so they can only be used for
orientation purposes, and not for up to date situational awareness.
We took this approach in the cric study, where the a previous frame
is used to provide context (see frame in Fig. 2, row 3, right). The
background frame is shown in grayscale to make it clear to the
mentor that it is not a live shot. Future work could explore updating
the background frame to keep up with a dynamic workspace, i.e.
to be more recent and less obsolete. Another direction of future
work is to rely on a series of background images and to rely on an
approach similar to projective texture mapping to choose the most
suitable background image for the current frame. Suitability can
be quantified as the number of missing mentor frame pixels that
are filled in, which requires view direction similarity, and as the
continuity of the transition from live to background pixels, which
requires viewpoint similarity.

One limitation to address in future work is that our first study
does not provide a sufficiently long exposure to measure simulator
sickness. Another direction of future work is to examine conveying
the workspace to the remote collaborator through a Virtual Reality
(VR) HMD, where simulator sickness is likely to be a bigger factor.

The second user study compared AR telementoring based on our
stabilization to a control condition where the mentor and mentee
could only communicate through audio. One reason for this is
that audio communication is the most frequently used means of
communication between mentor and mentee. The second reason
is that the unstabilized video was judged by the expert surgeon
mentors as unusable in the context of the emergent cric and of the
austere conditions. In other words, it was not possible to run a
user study where one of the conditions was AR telementoring with
the raw, unstabilized video. Future studies could attempt to isolate
the stability factor in settings where the surgical intervention and
the environment are less stressful to make the unstabilized video
acceptable, at least for the purpose of a user study.

Our work tests AR surgical telementoring with actual health care
practitioners, in a real training exercise, in a highly demanding
austere setting, towards placing AR technology into societal service.
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