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Figure 1: Feature guided path redirection. Our method analyses a conventional rendering (a) of the virtual environment (VE) to
quantify visual detail (b), and then computes a deformation of the VE to make it fit in the available physical space, redirecting the
user’s path. This feature-guided path redirection minimizes distortions at regions with high visual detail (c). Path redirection without
feature guidance (d) results in higher distortion, e.g. δ = 1.41 for (d) vs. δ = 1.16 for (c).

ABSTRACT

Path redirection for virtual reality (VR) navigation allows the user to
explore a large virtual environment (VE) while the VR application
is hosted in a limited physical space. Static mapping redirection
methods deform the virtual scene to fit the physical space. The chal-
lenge is to deform the virtual scene in a reasonable way, making the
distortions friendly to the user’s visual perception. In this paper we
propose a feature-guided path redirection method that finds and takes
into account the visual features of 3D virtual scenes. In a first offline
step, a collection of view-independent and view-dependent visual
features of the VE are extracted and stored in a visual feature map.
Then, in a second offline step, the navigation path is deformed to fit
in the confines of the available physical space through a mass-spring
system optimization, according to distortion sensitive factors derived
from the visual feature map. Finally, a novel detail preserving ren-
dering algorithm is employed to preserve the original visual detail
as the user navigates the VE on the redirected path. We tested our
method on several scenes, where our method showed a reduced VE
3D mesh distortion, when compared to the path redirection methods
without feature guidance.

Index Terms: Virtual reality—Navigation—Path redirection—

1 INTRODUCTION

Exploring a Virtual Environment(VE) by walking gives users a sense
of immersion and presence in the VE, as confirmed by many per-
ceptual studies [17, 20, 28]. However, natural walking in large VEs
is challenging due to real world obstacles such as walls or pieces
of furniture, which do not have a counterpart in the VE. A possible
solution is teleportation, which temporarily suspends the one-to-one
mapping between the physical and virtual spaces, transferring the
user from one location to another without commensurate actual user
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locomotion. Teleportation has the disadvantage of breaking visual-
ization continuity, which leads to a loss of situational awareness, to
a loss of the sense of immersion and presence in the VE, and even
to simulator sickness. Another possible solution is path redirection,
which modifies the user’s path in the VE to abide by the physical
constraints of the space hosting the VR application.

One approach of path redirection is dynamically redirected walking
[10, 16, 19], which adds gains to the user’s position and orientation
in real time to steer the user clear of the boundaries and obstacles of
the physical space. Experiments have shown that vision dominates
people’s perception of space. When vision conflicts with the input
from other senses, the brain usually accepts the visual information
and overrules the other senses. Therefore, in the process of dynamic
redirected walking, changing the visual input provided to the user
with slight scene rotations and translations gives the user the illusion
of walking in a large space, avoiding interference from physical
obstacles. The challenge of dynamically redirected walking is to
devise manipulations of the user position and orientation that are
simultaneously large enough to achieve obstacle avoidance, and
small enough to remain imperceptible.

Another approach is static path redirection [5, 27], which takes
descriptions of the available physical space and of the VE as input,
and map the walkable sub-space of the VE onto the physical space
as a pre-process. When the user navigates the VE, the scene in line
of sight is rendered with distortions, in order to guide the user to
change their path to conform to the physical space. The goal is to
design the distortions to be as inconspicuous as possible, for the
experience to be as close as possible to actually explore the original
VE. Current static path redirection methods struggle with VEs that
have rich geometry and texture detail, and with VEs that have regular
features such as right angle corners or straight line segments, where
the tampering with the VE is readily noticeable by the user, resulting
in highly objectionable artifacts.

In this paper, we present a feature guided path redirection method
that aims to reduce distortions at regions with abundant visual detail,
in order to provide a high-quality visual exploration of the VE. Our
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method relies on an offline analysis of the visual features of VE. Our
method computes the distribution of view-independent, geometry
features and of view-dependent, visual features, and uses the feature
distribution to guide the mapping of the virtual space to the physical
space. First, the view-independent and view-dependent features are
found and stored in a visual feature map. Then, a mass-spring system
is run offline based on distortion costs according to the visual feature
map, and the equilibrium state computed by the optimization is used
to define the virtual to physical space mapping. Finally, at runtime,
a detail-preserving rendering algorithm is used to render the VE and
to guide the user on the fly. Figure 1 shows that our method produces
output frames that are comparable to the conventional rendering of
the original VE, with smaller and less noticeable distortions than
path redirection that does not take VE features into account.

In summary, our paper makes the following contributions: 1) A
pipeline for path redirection based on the visual features of the
VE. To the best of our knowledge, this is the first path redirection
framework that takes into account visual features; 2) A visual feature
map to store the distribution of geometry and appearance features of
the VE in the context of VR navigation; 3) A mass-spring-based path
optimization method to map the virtual path onto the physical space,
which takes into account distortion-sensitive factors computed by
the visual feature map; 4) A detail-preserving method for rendering
3D scenes to redirect users in VR navigation. 5) A user study that
validates the benefits of our method objectively, based on distortion
metrics, and subjectively, based on user perception.

2 PRIOR WORK

In recent years, a variety of path redirection methods have been
proposed, and they achieve the primary goal of fitting the VE into
the smaller physical space. However, problems remain, as summa-
rized, for example, by Nilsson et al. [13]. These problems include:
(1) subtlety, (2) safety, (3) generalizability, and (4) unwanted side
effects such as user disorientation and simulator sickness. Different
methods focus on a subset of these problems. In addition to the
overview of prior work given below, we also refer the reader to the
recent survey of techniques for path redirection [11, 14, 21].

Dynamic redirection One natural approach to path redirection is
to change the mapping from virtual to real dynamically. Dynamic
redirection keeps users in the confines of the physical space through
translation and rotation gains to the tracking data. Razzaque et
al. [16] proposed a dynamic mapping approach that steers the user
towards an intermediate guidance point (i.e. a waypoint), and then
to the next waypoint after that. A large direction change occurs
when a waypoint is reached. Razzaque subsequently proposed three
general navigation strategies: Steer-to-Center, Steer-to-Orbit, and
Steer-to-Multiple Targets [15]. More recently, Langbehn et al. [10]
introduced a type of redirection method based on bending gains,
which introduce discrepancies between physical and virtual paths
that are concentrated in regions where both paths are bent. In ad-
dition, Ivleva [9] and Langbehn et al. [12] took advantage of the
lesser attention level associated with user’s eye blinks. When a blink
was detected, the visual input was suppressed and a large direction
manipulation was performed.

Sun et al. [26] suggested that the redirection operation can be per-
formed during rapid eye movement, i.e. saccades, when the user
simply changes view direction abruptly without focusing on the
scene in the process. He also proposed a method to trigger a larger
additional saccades for the system to exploit. Azmandian et al. [1]
investigated redirection in the context of multiple VR users, with the
primary concern of avoiding collisions between the user who share
the same physical space.

The advantages of the dynamic redirection method are its simplicity
and effectiveness at keeping the user within the confines of the

physical space. However, due to the real-time change in gain, the
redirection does not always go completely undetected by the user,
who occasionally feels manipulated. Dynamic redirection is less
conspicuous in large physical environments, where there is more
physical distance over which to dilute the rotation and translation
gains. The recent development of inside-looking-out trackers do
remove the constraint of the limited tracked space, however, most
applications will continue to be run in tight physical spaces, many
times smaller than the VEs they host. Furthermore, triggering extra
blinks and saccades does influence the user VR experience, and
research remains to be conducted to estimate what is acceptable,
when, and in what contexts.

Manipulation of virtual scenes. Suma et al. [22–24] proposed a
different approach to redirection, based on altering the VE geometry
when the user ”is not looking”. The method changes the geometry
outside the current user view frustum, e.g. it changes the position
of the doorways and corridors to modify the walking paths. Also
relying on the manipulation of geometry, Suma et al. proposed the
impossible spaces redirection technique [25]. Impossible spaces
compresses a large interior scene into a smaller physical area by
folding the floor plan manually. Vasylevska et al. [29] described
flexible spaces, which overcomes the over-constrained problem of
geometry folding by employing procedural layout generation, which
”grows” the VE geometry into the available space. The method
succeeds in some building interior environments, but it does not
generalize to handle all VE geometry.

Static virtual to real path mapping. Another approach is to pre-
compute a mapping of the virtual space to the real space by Sun et
al. [27]. The advantage is that the offline processing affords the time
needed to solve complex global optimizations. However, whereas
the mapping has low overall distortion, the approach could cause
large distortions in a specific region, that result in sizeable artifacts
noticeable to the user when the user explores that specific region.
Dong et al. [5] extended this research direction further, adopting
a divide-and-conquer strategy that focused on mapping individual
sub-parts of the walkable path, to avoid that any of these parts are
distorted excessively. Our method falls into this category of static
virtual to real path mapping. Unlike previous methods, our method
considers the visual features of the virtual scene when the static
mapping is generated, avoiding distortions where they matter most,
i.e. in areas on which the user is likely to focus, and concentrating
distortions in areas where they matter less, i.e. in areas on which
the user is unlikely to focus. Our path redirection method makes use
of the known visual features of the VE in two stages, first at a high
level, in an offline process, for the entire VE, and then at a low level,
at run time, for the part of the VE visible in each frame.

3 FEATURE GUIDED PATH REDIRECTION METHOD

We first give an overview of our pipeline.

3.1 Method overview
Given a 3D VE modeled with textured triangle meshes and a rect-
angular physical space, we provide a path redirection method that
allows the user to explore the VE within the confines of the physical
space. Our method takes into account VE features to minimize the
negative impact of path redirection on the visual quality of the VE
exploration. Our method proceeds with the following main steps.

• Step 1 (offline). Visual feature map construction (Sect. 3.2).

a) Extract view-independent visual features of VE;

b) Extract view dependent visual features of VE;

c) Generate visual feature map.

• Step 2 (offline). Path redirection optimization (Sect. 3.3).

a) Load mass-spring system based on feature map;
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b) Compute mass-spring system equilibrium state that de-
fines virtual to physical mapping.

• Step 3 (online). Detail-preserving rendering (Sect. 3.4).

a) Fold the VE based on a Bezier transformation that relies
on the virtual to physical mapping computed offline.

b) Refine the VE folding to avoid large disortions at distor-
tion sensitive regions close to the current user viewpoint.

c) Render folded VE.

In a first offline step, we extract both view-dependent and view-
independent visual features from VE geometry and textures, we
combine them, and we bake them into a visual feature map. The
feature map is a texture of VE surfaces that contains the distribution
of the visual features extracted (Sect. 3.2). In a second offline step, a
mapping between the VE walkable subspace and the physical space
is computed with a mass-spring optimization. The masses are placed
at the vertices of the walkable virtual space, and the springs are
loaded with forces based on the feature map. The equilibrium state
defines the virtual to physical mapping (Sect. 3.3). Then, at run
time, the VE is rendered with the mapping, which is optimized for
the current view, to abide by the physical space constraints while
minimizing visual distortion (Sect. 3.4).

3.2 Visual feature map construction
The goal of our path redirection method is to make the distortion
of the 3D scene more acceptable, which means: 1) local distortion
should be correlated to VE visual detail, i.e. if a region has many
details to which the user is likely to pay attention, the distortion for
this region should be small, while if the region has no details, the
local distortion can be larger; 2) the overall distortion of the VE
should be as small as possible. The first step towards satisfying these
requirements is to find the VE features on which users are likely to
focus, such as edges and complex objects and textures.

We introduce the visual feature map, which is a texture atlas that
stores the concentration of visual features in the VE. The higher
the value of a visual feature map texel, the richer in features the
corresponding VE surface patch. Similar to a lightmap, the visual
feature map is a surface texture that stores pre-computed information
to be conveniently reused at run time. The visual feature map is
constructed by extracting the visual features, and then by baking
them into the texture atlas, with the steps outlined in Alg.1.

The algorithm takes as input the VE and the possible user paths W ,
and it produces the visual feature map A. The algorithm also takes
as input a Gaussian kernel G by which the atlas is denoised. At line
1, the visual feature map is defined as a texture atlas A that covers
the entire V E. Every texel a of A stores the visual feature intensity f ,
the geometric detail g, the indices {v0,v1,v2} of the vertices of the
VE triangle sampled by a, and the barycentric coordinates {α,β ,γ}
that define a within its VE triangle. This initialization computes
{v0,v1,v2} and {α,β ,γ}, and sets f and g to 0.

At lines 2-3, the algorithm computes the geometric detail at each
vertex of the VE. The geometric detail is a view independent visual
feature of the VE. The geometric detail v.g for a vertex v is computed
as the average normal gradient over the vertices vi neighboring v:

v.g =
1

n

n

∑
i=1

arccos(vi.n · v.n)
‖vi.xyz− v.xyz‖ (1)

n denotes the normal and xyz denotes the position of the vertex. A
vertex neighbors another vertex if there is a triangle to which they
both belong. Fig. 2b illustrates the geometric detail computed by
our algorithm.

Algorithm 1: Feature map computation

Input: VE geometry + texture, walkable subspace W of VE,
Gaussian kernel G

Output: visual feature map atlas A
1 A( f ,g,v0,v1,v2,α,β ,γ) = TextureAtlas(V E)
2 for each vertex v in V E do
3 v.g = GeometricDetail(V E,v)

4 for each texel a in A do
5 a.g = a.v0.g∗a.α +a.v1.g∗a.β +a.v2.g∗a.γ
6 Sample W with set of viewpoints V
7 for each viewpoint v in V do
8 (CB,ZB) = Render(V E,v)
9 S = Salience(CB,ZB)

10 E = Edges(CB,ZB)
11 L = Lines(E)
12 C = Corners(L,ZB)
13 for each texel a in A do
14 P = a.Unproject(); p = Project(P,v)
15 if NotVisible(p, v, ZB) then
16 continue
17 fv=Combine(Sp,Ep,Lp,Cp,a.g)
18 a. f = ( fv > a. f )? fv : a. f

19 return A⊗G

At lines 4-5, the algorithm sets the geometric detail for each texel a
of the atlas by barycentric interpolation of the geometric detail values
at the vertices of the triangle of a. At line 6, the algorithm defines
a set of viewpoints V over the set of possible user viewpoints W ,
which will be used to estimate the view-dependent visual features.

For each viewpoint v in V , the view-dependent visual features are
computed first (lines 8-12), and then they are baked into the atlas
(lines 13-18). The view-dependent visual features are computed
based on the color and depth buffers CB and ZB obtained with a
conventional rendering of the VE from v (line 8). A salience map
S that encodes how much a region stands out from its neighbors is
computed with a prior art method [7], see Fig. 2c. An edge map E is
computed with a Canny edge detector [3], which is run on both the
color and depth channels (Fig. 2d). The edge map is used to compute
a line map L with a Hough transform [8]. The line map is further
processed to detect right-angle corners by finding line intersections
and computing the angle between the intersecting lines in 3D. The
line and corners map is visualized in Fig. 2e.

The view-dependent visual feature maps S, E, L, and C are computed
they are transferred to the atlas A. For each texel a of A, the corre-
sponding VE surface 3D point P is computed by unprojection (line
14), using the triangle vertices a.{v0,v1,v2} and the barycentric co-
ordinates a.{α,β ,γ}; then P is projected with viewpoint v to visual
feature map pixel p (line 14). If the texel is visible from v (lines
15-16), the visual feature intensity fv of a is computed (line 17)
by combining the visual feature map values at p and the geometric
detail a.g at a, as fv = (w1Sp+w2)(w3Ep+w4Lp+w5Cp)+w6a.g,
where wi are constant weights with values between 0 and 1. We
use w1 = 0.6,w2 = 0.4,w3 = 0.7,w4 = 0.4,w5 = 0.4,w6 = 0.4 for
all of our scenes. The edge, line, and corner visual features are
only taken into account for salient texels, and their combined value
is aggregated with geometric complexity. If the resulting feature
intensity fv is greater than what the atlas already stores at a, the atlas
is updated (line 18). (The atlas feature intensity channel is initialized
to 0, not shown in Alg.1 for conciseness.) Once all viewpoints are
processed, the atlas is convolved with a 5×5 Gaussian kernel G to
filter noise (line 19), and returned.
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Figure 2: Conventional image (a), geometric detail (b), salience (c),
edges (d), lines and corners (e), and resulting visual feature map (f).

3.3 Path redirection optimization

The visual feature map is used to compute a path redirection that
folds the VE into the available physical space, with a mass-spring
system optimization, according to Alg.2. The input is the visual
feature map A, a 2D navigation mesh M modeling the walkable
space of the VE, and a 2D rectangular bounding box of the available
physical space P. M is constructed manually as a quad mesh over
the floor plan of the walkable space. The output is the folded mesh
M′, which gives the mapping from virtual to physical.

Algorithm 2: Path redirection

Input: Visual feature map A, navigation mesh M of the VE,
and physical space P

Output: Folded mesh M′ that fits in P
1 S = MassSpringSystem(M, A)
2 repeat for each mass mi in S do
3 for each neighboring mass m j of mi in S do
4 Ti += Tension(mi,m j)
5 for each neighboring mass mk of mi in S, k > j do
6 (Fj,Fi,Fk) = AntiDeformation(m j,mi,mk)
7 (D j,Di,Dk) += (Fj,Fi,Fk)

8 Bi = BoundaryConformance(mi, P)

9 for each mass mi in S do
10 mi = UpdatePosition(Ti +Di +Bi, mi)

11 until Equilibrium(S) and S⊂ P
12 return M′ = Mesh(S)

A mass-spring system is initialized using the navigation mesh M
and the visual feature map A (line 1). One mass is placed at the
middle of each shared edge of M, and a spring is defined for each
pair of masses that belong to the same quadrilateral of M. A mass is
connected with at most four springs, one for each neighboring mass.
All mass particles have the same mass value, and all springs have
the same stiffness. Initially, all springs are undeformed.

In addition to its position and mass, a particle mi also has a property
that defines the local sensitivity to distortion, which is constant, and
it is computed using A. We first render the VE to a cubemap centered
at mi. Then an initial distortion sensitivity Si is computed for mi by
averaging the intensity×depth over all texels in the cubemap. Once
Si is computed for all masses, it is discretized to one of four levels
Li, based on the normal distribution, as follows,

Figure 3: The blue dots represent masses and the black lines rep-
resent springs. The forces Fi,Fj,Fk oppose the change of the angle
Δθ . Mass mi, which is outside the boundary of the physical space, is
pushed by force Bi towards the boundary.

Li =

⎧⎪⎨
⎪⎩

0,Si < μ−σ
1,μ−σ < Si < μ
2,μ < Si < μ +σ
3,Si > μ +σ

(2)

where μ is the mean and σ is the std. dev. of Si over all masses.

The algorithm simulates the mass-spring system dynamics iteratively
until equilibrium is reached and all masses are inside the physical
space P (lines 2-11). Each iteration first computes the forces acting
upon each mass (lines 3-8). Three types of forces act upon each
mass mi. One type is spring tension force Ti, which is computed by
summing up to four tensions, one for each of the springs (mi,m j)
connected to mi (line 4). A second type is a deformation resisting
force Di, which, for masses with high distortion sensitivity, opposes
deformation. Di is computed by adding up to six deformation re-
sisting forces Fi, one for each pair (m j,mk) of neighboring masses
of mi (lines 5-7); Fi opposes the change of angle (m j,mi,mk); this
process also computes deformation resisting forces Fj and Fk which
act on m j and mk, and are accumulated. The third type of force is
a boundary conforming force Bi that acts on mi only if it is outside
the boundary of P, and pushes it towards P (line 8).

Spring tension Ti j is given by Hooke’s law

Ti j = kΔx, (3)

where k is the spring coefficient and Δx is the spring deformation.

The deformation resistant forces (Fi,Fj,Fk) (line 6), act upon mi, m j
and mk to resist the change of the angle between springs (m j,mi) and
(mi,mk). In Fig. 3, the springs (m j,mi) and (mi,mk) were initially
aligned, and they now form an angle Δθ . Forces (Fi,Fj,Fk) aim
to reduce Δθ . Fj and Fk are perpendicular to springs (m j,mi) and
(mi,mk), respectively. The magnitudes of Fj and Fk are

Fj = Fk = Δθ ∗ k ∗2Li∗a, (4)

where Li is the discrete distortion sensitivity level given by Equa-
tion 2. Constant a helps modulate the range of sensitivities. Fi is a
reaction force equal and opposite to the resultant of Fj and Fk:

Fi =−(Fj +Fk) (5)

The tension and distortion resistant forces prevent large and abrupt
deformations of the path. A third type of force is needed to advocate
for the folding of the VE to fit inside the boundary P of the physical
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space. This force Bi is proportional to the distance between mi and its
closest point on the boundary P. The direction of Bi is perpendicular
to and towards P (Fig. 3).

Once the forces are computed, the position of each mass is updated
(lines 9-10), using the classic Newton equations. The folded mesh
M′ is recovered from the distorted mass-spring system at equilibrium
(line 11). We run Alg.2 multiple times, initializing the mass-spring
system with different stiffness coefficients at line 1, and we select
the equilibrium state for which the angles between connected springs
have changed the least from the initial state.

3.4 Detail-preserving rendering for path redirection

The computation of the deformation M′ of M is a first, high level,
step towards achieving a path redirection that meets the physical
space limitations while avoiding distortions in feature-rich areas of
the VE. This first step is performed off-line and it acts on the path
graph, achieving a global deformation of the VE. A second, low
level, step for avoiding these unwanted distortions is taken at run
time, for each frame. This second step acts locally, on the geometry
currently seen by the user. This second step removes some of the
distortion introduced by the first step, based on the now known user
view. The second step ensures that the geometry of a feature-rich
region currently seen by the user is rendered closer to its original
version, using a rigid body transformation that preserves the original
geometry. The combination of these two global and local steps
achieve greater output image fidelity in feature-rich regions (Fig. 4).
The second step proceeds according to Alg.3.

Figure 4: Conventional rendering for ground truth (left), rendering
using our method with both the global and local detail-preserving
steps (middle), and rendering using our method with only the global
step (right). The local step alleviates the stretching of the statue.

Algorithm 3: Detail-preserving rendering

Input: VE geometric model, feature atlas A, current user
viewpoint v, navigation mesh M, deformed to M’

Output: output frame FB
1 T B.r = RenderTopView(V E,A,v)
2 for each pixel p in T B do
3 p.gb = LocalMaximum(p,T B.r)

4 T B.r = NormalizeAndClamp(T B.r,Rmin,Rmax)
5 FB = Render(VE, v, T B, VertexProgram)
6 return FB
7 Vertex VertexProgram(Vertex P)
8 p = TopViewProject(P,v)
9 pmax = T B[p].gb

10 q = pmax +‖(p− pmax)/||p− pmax‖∗ ε
11 (p′, p′max,q

′) = BezierTransform((p, pmax,q),M,M′)
12 W= ExtractRigidBodyTransformation(pmax, p′max,q,q

′)
13 pr =W × p; pr = Clamp(pr, p′, p′max)

14 p′ = p′+T B[p].r ∗ (pr− p′)
15 P′= TopViewUnproject(p′,P′.y)
16 return MV P×P′

Figure 5: Bezier mapping of point p to p′. We construct in the neigh-
borhood of p a quadratic Bezier surface with nine control points Pi j,
derived from the undistorted navigation mesh; then we compute pa-
rameters (s, t); finally, we use (s, t) to sample the corresponding Bezier
surface of the folded navigation mesh to obtain p′.

The region of the VE in the proximity of the current user viewpoint
v is rendered orthographically from above, textured with the atlas A,
into the red channel of an auxiliary color buffer T B (line 1). This
orthographic projection switches from 3D to the 2D domain where
the path redirection M to M′ was defined, setting the stage for using
it to compute the deformation of each vertex.

Then, for each pixel p of T B we find the pixel that has the highest
red channel intensity in a square neighborhood of p (lines 2-3). The
coordinates of this local maximum pixel are stored in the green and
blue channels of p. Then the red channel of T B is normalized and
clamped to a subinterval of feature intensities [Rmin,Rmax], i.e. 0
for Rmin and below and 1 for Rmax and above (line 4). Rmin and
Rmax are constants selected once per VE, which allow increasing the
sensitivity with mid-range feature density. Then the output frame
FB is rendered with the vertex program given in lines 7-16.

The vertex program starts by projecting the input vertex P with the
top view to p (line 8). The local maximum of p is looked up in the
green and blue channels of the T B pixel at p (line 9). A 2D point
q is defined inside segment (pmax, p), ε close to pmax. The three
2D points p, pmax, and q are transformed using a Bezier mapping
computed using the navigation mesh M and its deformation M′ (line
11). Bezier mapping is a classical geometric deformation tool [4],
except that we do it in 3D and not in 2D, as illustrated in Fig. 5.
Then, the original and Bezier transformed points pmax,q and p′max,q

′
are used to define a 2D rigid body transformation W (line 12), which
is applied to p to obtain pr (line 13). pr is clamped with

pr =

⎧⎨
⎩

(p′ − p′max)∗Smax + p′max,
‖p′max−pr‖
‖p′max−p′‖ > Smax

pr,
‖p′max−pr‖
‖p′max−p′‖ ≤ Smax

(6)

where the maximum scaling factor Smax is selected once per VE.

Finally, the vertex is adjusted one more time by pushing p′ towards
pr a fractional amount given by the feature density at the vertex
T B[p] (line 14). The final position of the vertex is computed by
restoring the y coordinate (line 15). The vertex program returns the
distorted vertex P′ transformed and projected by multiplication with
the usual modelview and projection matrix MV P (line 16).

4 RESULTS AND DISCUSSION

We have tested our method on five scenes: Maze (11m × 15m, S1),
Apartment (13m × 32m, S2), Office (14m × 16m, S3), Passage
(9.6m × 9.6m, S4), and Corridor (17m × 18m, S5). We have
conducted a user study using an HTC Vive system which has a
tracked head-mounted display (HMD), an external tracker, and a
wireless hand-held controller. The HMD is tethered to a desktop
PC (Intel i7 processor, 16GB RAM, and NVIDIA 1080-ti graphics
card). The size of the tracked physical space is 4m × 4m. The VE’s
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Table 1: Path distortion with and w/o feature guidance, for the entire
path, and for the part of the path with high detail.

Scene
Δθ ◦ (Avg/Max) Red. Δθhigh detail

◦ (Avg/Max) Red.

w/ FG w/o FG of avg w/ FG w/o FG of avg

S1 13◦ / 79◦ 15◦ / 56◦ 15% 13◦ / 28◦ 17◦ / 32◦ 23%

S2 22◦ / 76◦ 26◦ / 85◦ 18% 23◦ / 49◦ 30◦ / 82◦ 28%

S3 13◦ / 57◦ 18◦ / 55◦ 28% 18◦ / 38◦ 21◦ / 49◦ 14%

are folded with our approach to fit in the physical space and the user
navigates the environment naturally, by walking.

4.1 Path distortion
We investigated the amount of distortion introduced by our method
with an objective path distortion metric computed as the average
distortion angle Δθ (Equation 4) over all springs in the spring-mass
system. Table 1 shows the average and maximum path distortions
for several scenes, with and without feature guidance. Average
distortion is quantified both over the entire path, as well as just
over the parts of the VE with high feature density, i.e. the top
50% densities in the feature map. Feature guidance is disabled by
setting all feature density values (Li in Equation 2) to 0. Our method
yields smaller average distortions at the cost of occasionally larger
distortions when the entire VE is considered. In the high feature
areas, both maximum and average path distortion values are reduced
with our feature guided method.

Figure 6: Path distortion visualization. Regions R1 and R2 have high
feature density, and region R3 has low feature density. Without feature
guidance, path distortion is high at R1 and R2 and low at R3; our
feature guidance method moves the distortion away from R1 and R2,
and concentrates it at R3.

4.2 View-independent geometry distortion
We measure the distortion of the VE geometry using Sorkine’s
distortion metric δ [18]. For a triangle T and its distortion T ′, δ is
defined as follows.

δT = max{γmax,1/γmin} (7)

Figure 7: The three rows show frames at R1, R2, and R3, rendered with
our method with feature guidance (middle), without feature guidance
(right), and conventionally (left). For the feature dense regions R1 and
R2 our method produces frames that are similar to those obtained by
conventional rendering, whereas not using feature guidance results
in distortions and occlusions at R1 and R2. For R3, our method with
feature guidance distorts the path, whereas not using feature guidance
doesn’t distort the path, having inappropriately distorted the virtual
environment at R1 and R2.

Table 2: VE geometry distortion, with and without feature guidance,
for the entire VE, and for the parts of the VE with high detail.

Scene
δ avg

g /δ max
g Red.

δ high detail
g

Red.
w/ FG w/o FG w/ FG w/o FG

S1 1.47 / 1.59 1.57 / 1.60 10% 1.10/1.59 1.40/1.60 26%

S2 1.53 / 1.93 1.71 / 3.09 18% 1.82/1.93 2.78/3.09 53%

S3 1.25 / 1.62 1.28 / 1.70 3% 1.23/1.62 1.25/1.70 2%

In Equation 7, γmax and γmin are the largest and smallest scaling
factors over T as it is distorted to T ′. A δ of 1 indicates no distortion.
Table 2 gives the average δ avg

g and maximum δ max
g distortion over

the entire VE geometry, and over the VE geometry with feature
density values in the top 50% of the feature map, with and without
feature guidance. For feature guidance, the VE distortion is com-
puted after the view-independent path redirection optimization (Step
2 in Sect. 3.1), so it does not include the view-dependent refinement
brought by Step 3. Our feature guidance method reduces VE ge-
ometry distortion in all cases, as it strives to reduce distortion over
regions with high geometric complexity, therefore exempting a large
number of triangles from significant distortion. The distortion reduc-
tion is more noticeable in the high detail areas for S1 and S2. The
small distortion reduction of S3 is because the visual detail features
in S3 are more evenly distributed, making it difficult to distinguish
between high detail and low detail areas.

4.3 View-dependent geometry distortion
We have also investigated the distortion introduced by our method
in screen space, for individual output frames. Given a frame where
a triangle T is visible, we define the view-dependent distortion δv of
T as the distortion of the projected triangle, computed according to
Equation 7. δv is computed after the final per-frame distortion refine-
ment (Step 3). Fig. 8 illustrates the benefits of the view-dependent
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Table 3: Time cost

Scene num of tris area [m2] Step 1 Step 2 fps

S1 563k 165 549s 100s 57

S2 478k 416 815s 195s 49

S3 167k 224 603s 90s 60

S4 209k 92 494s 62s 89

S5 318k 306 754s 79s 88

refinement in terms of reducing view-dependent geometry distortion.
The refinement corrects the appearance of the objects of interest, e.g.
by removing the stretching of the statue.

Figure 8: Frames rendered conventionally (left), with our method and
with refinement (middle), and with our method but without refinement
(right). Rows 2 and 4 show distortion in white. The view dependent
distortion, shown for each frame, is reduced by the refinement.

4.4 Rendering performance
Table 3 shows the time cost of our method, broken down into the
time for the offline Step 1 of visual feature map construction and
the time for the offline Step 2 of path redirection optimization, as
well as the frame rate provided to the user exploring the VE. Step
1 dominates the preprocessing time. Preprocessing time for step 1
does not correlate with the number of scene triangles, but rather with
the scene area, as the scene is sampled uniformly to collect visual
features. For these five scenes, the total preprocessing time is below
20 minutes. The frame rate is comfortably interactive for all scenes.

4.5 Comparison to prior state-of-the-art method
We compared our method with the state-of-the-art Smooth Assem-
bled Mappings method (SAM) [5], using the authors’ code, for
which we are grateful. SAM achieves redirection with low distortion
by subdividing the path into segments, optimizing the mapping on
individual segments, and then combining the individual mappings.
Table 4 shows that our method reduces the average view-independent
distortion δg. The maximum view-independent distortion of our

Figure 9: Frames rendered conventionally (left), with our method
(middle), and with SAM (right). Our method distorts qualitatively
and quantitatively less compared to SAM for frames with high feature
density (rows 1 and 3), and more than SAM for frames with low feature
density (rows 2 and 4).

Table 4: Comparison to prior art method SAM, over the entire VE, and
over the VE regions with high feature density.

Group δ avg
g /δ max

g δ avg
n /δ max

n δ high detail
g

S4-our 1.21/2.00 1.21/1.86 1.21/1.80

S4-SAM 1.32/2.47 1.21/1.90 1.32/2.16

S5-our 1.23/3.19 1.22/2.04 1.24/ 1.85

S5-SAM 1.30/2.91 1.23/1.82 1.37/2.04

method is slightly larger for S5. We also calculate δ high detail
g of the

high feature density areas of the 3D mesh. Both average and max-
imum view-independent distortion values are reduced. The SAM
paper introduces an additional distortion metric δn, defined on the
geometry of the navigation path. On average, our method has a lower
δn (Table 4), at the cost of an occasional slightly larger maximum δn
value, as our method distributes distortion non-uniformly, protecting
regions with high density of visual features.

Fig. 9 gives a visual comparison between our method and SAM. Our
method concentrates the distortion at regions with low feature den-
sity (rows 2 and 4), to show regions of interest with little distortion.

4.6 User study
We have evaluated our method in a VE exploration user study.

Participants, tasks, and experimental design. We recruited
(n=16) participants from the graduate student population of our
institution. The age range was 22 to 26, and 4 participants were
female. All participants had experience with HMD VR applications.
The participants were asked to perform two tasks with each of three
methods: the Steer to Center (S2C) method [15], SAM, and our
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Table 5: User study results: view-dependent distortion δv, SSQ Total
Severity score TS, locomotion fidelity ρl , and visual fidelity ρv

.

Condition δ avg
v ±δ dev

v Pre TS Post TS ρl [%] ρv [%]

S4 S2C 1.00±0.00 3.8±2.9 19.2±3.4 50.0 100

S4 our 1.25±0.08 1.5±2.1 1.8±1.9 80.0 80.0
S4 SAM 1.29±0.04 7.3±7.4 1.5±2.1 76.7 70.0

S5 S2C 1.00±0.00 2.1±1.7 22.9±10.2 40.0 100

S5 our 1.26±0.02 4.4±2.3 5.2±3.6 75.0 70.0
S5 SAM 1.39±0.03 4.1±2.0 5.2±3.6 72.5 57.5

method. S2C and SAM served as control. S2C is a real time method,
i.e. with no preprocessing required. SAM requires preprocessing.
For example, for S4, SAM preprocessing takes 24min, whereas the
preprocessing for our method takes 9min on S4. The tasks were
to find exits in S4 and S5, respectively. We used a within-subject
design, with each participant performing both tasks in each of the
three conditions, in random order. Each task took approximately
five minutes. The subjects took a two minute break between tasks
and between conditions.

Objective metric. For each participant, we calculate the average
view-dependent 3D mesh distortion δv, over all frames. The calcula-
tion is performed off-line, based on the participant HMD trace, to
avoid lowering the frame rate.

Subjective metrics. Participants completed a simulator sickness
questionnaire (SSQ) [8] before the experiment, and then after the
experiment. Participants also completed a fidelity questionnaire [2]
that asks participants to rate locomotion and visual fidelity. Locomo-
tion fidelity was defined for participants as the degree of similarity
to conventional VR locomotion, on a scale from 0 to 100, with 0
corresponding to ”completely different” and 100 corresponding to
”exactly the same”. Visual fidelity was defined for participants as
the degree to which the images seen are similar to the images seen
in conventional VR, on the same 0 to 100 scale.

Results and analysis Table 5 gives the results of our study. As
S2C does not distort the scene, the view dependent distortion is
always 1 and the visual fidelity is always 100, which comes at
the cost of substantially lower locomotion fidelity and higher post
TS. Our method achieves a lower distortion than SAM. A repeated
measures ANOVA test run on the three conditions reveals that there
is a significant difference between at least one pair of conditions
for the view dependent distortion on S4 (p < 0.0001,F = 58.02)
and on S5 (p < 0.0001,F = 107.7). The subsequent Bonferroni
correction shows an advantage of our method over SAM for S4
(p = 0.0949), and a significant advantage of our method over SAM
for S5 (p< 0.0001). We explain the greater advantage of our method
over SAM for S5 than for S4 due to the larger size of S5, which
gives more room to relocate the distortion of feature-rich regions.

The TS does not increase from pre to post beyond 70, which is
the threshold above which the increase would indicate onset of mo-
tion sickness [6]. Our method and SAM have similar TS scores,
while the S2C scores are substantially higher. Locomotion fidelity
is low for S2C, as the method redirects the participants with view-
point translation and rotations dynamically, and the participants can
feel the inconsistency between real movements and the movements
in the virtual scenes. The locomotion fidelity for our method is
slightly higher than those of SAM, but the advantage is not sig-
nificant. The same ANOVA test shows that there is a significant
difference between the three conditions in terms of visual fidelity
for S4 (p < 0.0001,F = 88.08) and for S5 (p < 0.0001,F = 140).
The Bonferroni correction shows that our method has a significant
advantage over SAM on both S4 (p = 0.0051) and S5 (p < 0.0001).

Several participants noted for SAM that regions with high complex-
ity are occasionally distorted, which leads to incorrect depth and
scale perception, which in turn affects navigation.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have presented an approach for path redirection that takes into
account the visual features of the virtual environment. The central
idea of our approach is to use visual features to optimize the virtual
to real mapping and make the distortions of the VE less noticeable
and less distracting to the user as they navigate the VE. The visual
features are extracted from the VE with view-dependent and view-
independent methods, and the distribution of features is stored in a
visual feature map texture atlas of the VE. The virtual to real path
mapping is generated by optimizing a mass-spring system, which
takes into consideration the visual feature distribution. At run-time,
the regions of the VE that are visible to the user and that are sensitive
to distortion, are rendered with as little distortion as possible based
on a detail-preserving rendering algorithm. Our method achieves
path redirection with less 2D and 3D distortions for regions with
abundant visual detail, and, as a result, provides a more comfortable
VR user experience.

One limitation of our current implementation is that it cannot handle
planar vertical surfaces with high (texture) detail, such as a painting
on a wall, as these have no footprint in the horizontal plane where the
deformation is computed. This could be remedied by encasing any
such region in a thin box used for the purpose of the orthographic
projection. A second limitation of our current implementation is
that the transition from the low-deformation feature-rich region to
the adjacent high-deformation feature-poor regions can be too fast.
This fast transition distorts, for example, the texture on the floor
surrounding the statue in Fig. 8, row 3, middle, and a more gradual
transition could alleviate the problem.

Our approach falls into the category of static mapping methods for
path redirection. In the case of a VE with narrow corridors, this
is a reasonable choice as the user can only see a small part of the
VE at any given moment due to the occlusion culling provided by
the corridor walls. On the other hand, for VE’s with large empty
spaces, static path redirection will result in objectionable distortions,
and dynamic mapping methods are to be preferred. One possible
direction of future work is to bring the idea of visual feature aware
optimization to the realm of dynamic mapping methods.

Another limitation of the current work is that we derive visual fea-
tures from standard features of the VE geometry and texture, such as
salience, presence of long lines, corners, and complex 3D geometry
detail. Whereas often these are features that indeed attract the atten-
tion of the user, future work could explore making use of application
specific knowledge of what is truly important to the user in each
application context. The same VE could have its visual features
weighted differently based on each task. Another approach is to
learn user interests from user traces.

Longer term, research should continue to address the practicality of
the VR interface, such that the effectiveness of experiencing a 3D
dataset while immersed in it is leveraged beyond niche applications
in entertainment.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science
Foundation of China through Projects 61932003 and 61772051, by
National Key R&D plan 2019YFC1521102, by the Beijing Natural
Science Foundation L182016, by the Beijing Program for Interna-
tional ST Cooperation Project Z191100001619003.

144

Authorized licensed use limited to: Purdue University. Downloaded on August 24,2020 at 17:30:54 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] M. Azmandian, T. Grechkin, and E. S. Rosenberg. An evaluation of

strategies for two-user redirected walking in shared physical spaces. In

2017 IEEE Virtual Reality (VR), pp. 91–98. IEEE, 2017.

[2] D. A. Bowman, J. L. Gabbard, and D. Hix. A survey of usability evalua-

tion in virtual environments: classification and comparison of methods.

Presence: Teleoperators —& Virtual Environments, 11(4):404–424,

2002.

[3] J. Canny. A computational approach to edge detection. In Pattern
Analysis and Machine Intelligence, p. 679–698. IEEE Transactions on,

1986.

[4] S. Coquillart. Extended free-form deformation: A sculpturing tool for

3d geometric modeling. In Proceedings of the 17th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’90, p.

187–196. Association for Computing Machinery, New York, NY, USA,

1990. doi: 10.1145/97879.97900

[5] Z.-C. Dong, X.-M. Fu, C. Zhang, K. Wu, and L. Liu. Smooth assembled

mappings for large-scale real walking. ACM Transactions on Graphics
(TOG), 36(6):211, 2017.

[6] J. A. Ehrlich and E. M. Kolasinski. A comparison of sickness symp-

toms between dropout and finishing participants in virtual environment

studies. Proceedings of the Human Factors —& Ergonomics Society
Annual Meeting, 42(21):1466–1470, 1998.

[7] X. Hou and L. Zhang. Saliency detection: A spectral residual approach.

In IEEE Conference on Computer Vision Pattern Recognition, p. 1–8,

2007.

[8] P. Hough. Method and means for recognizing complex patterns. US
Patent 3 069 654, 1962.

[9] V. Ivleva. Redirected Walking in Virtual Reality during eye blinking.

PhD thesis, Bachelor’s thesis, University of Bremen, 2016.

[10] E. Langbehn, P. Lubos, G. Bruder, and F. Steinicke. Bending the

curve: Sensitivity to bending of curved paths and application in room-

scale vr. IEEE transactions on visualization and computer graphics,

23(4):1389–1398, 2017.

[11] E. Langbehn and F. Steinicke. Redirected walking in virtual reality,

2018.

[12] E. Langbehn, F. Steinicke, M. Lappe, G. F. Welch, and G. Bruder. In the

blink of an eye: leveraging blink-induced suppression for imperceptible

position and orientation redirection in virtual reality. ACM Transactions
on Graphics (TOG), 37(4):66, 2018.

[13] N. C. Nilsson, T. Peck, G. Bruder, E. Hodgson, S. Serafin, M. Whitton,

F. Steinicke, and E. S. Rosenberg. 15 years of research on redirected

walking in immersive virtual environments. IEEE computer graphics
and applications, 38(2):44–56, 2018.

[14] N. C. Nilsson, S. Serafin, and R. Nordahl. Walking in place through

virtual worlds. In International Conference on Human-Computer
Interaction, pp. 37–48. Springer, 2016.

[15] S. Razzaque. Redirected walking. University of North Carolina at

Chapel Hill, 2005.

[16] S. Razzaque, D. Swapp, M. Slater, M. C. Whitton, and A. Steed.

Redirected walking in place. In EGVE, pp. 123–130. Eurographics

Association, 2002.

[17] R. A. Ruddle and S. Lessels. The benefits of using a walking interface

to navigate virtual environments. ACM Transactions on Computer-
Human Interaction (TOCHI), 16(1):5, 2009.

[18] O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-

distortion piecewise mesh parameterization. In Proceedings of the
conference on Visualization’02, pp. 355–362. IEEE Computer Society,

2002.

[19] F. Steinicke, G. Bruder, T. Ropinski, and K. Hinrichs. Moving towards

generally applicable redirected walking. In Proceedings of the Virtual
Reality International Conference (VRIC), pp. 15–24. IEEE Press, 2008.

[20] E. Suma, S. Finkelstein, M. Reid, S. Babu, A. Ulinski, and L. F. Hodges.

Evaluation of the cognitive effects of travel technique in complex real

and virtual environments. IEEE Transactions on Visualization and
Computer Graphics, 16(4):690–702, 2010.

[21] E. A. Suma, G. Bruder, F. Steinicke, D. M. Krum, and M. Bolas. A

taxonomy for deploying redirection techniques in immersive virtual

environments. In Virtual Reality Short Papers and Posters (VRW), 2012

IEEE, pp. 43–46. IEEE, 2012.

[22] E. A. Suma, S. Clark, S. L. Finkelstein, and Z. Wartell. Exploiting

change blindness to expand walkable space in a virtual environment.

In Virtual Reality Conference (VR), 2010 IEEE, pp. 305–306. IEEE,

2010.

[23] E. A. Suma, S. Clark, D. Krum, S. Finkelstein, M. Bolas, and Z. Warte.

Leveraging change blindness for redirection in virtual environments.

In Virtual Reality Conference (VR), 2011 IEEE, pp. 159–166. IEEE,

2011.

[24] E. A. Suma, D. M. Krum, and M. Bolas. Redirected walking in

mixed reality training applications. In Human Walking in Virtual
Environments, pp. 319–331. Springer, 2013.

[25] E. A. Suma, Z. Lipps, S. Finkelstein, D. M. Krum, and M. Bolas. Im-

possible spaces: Maximizing natural walking in virtual environments

with self-overlapping architecture. IEEE Transactions on Visualization
and Computer Graphics, 18(4):555–564, 2012.

[26] Q. Sun, A. Patney, L.-Y. Wei, O. Shapira, J. Lu, P. Asente, S. Zhu,

M. McGuire, D. Luebke, and A. Kaufman. Towards virtual reality

infinite walking: dynamic saccadic redirection. ACM Transactions on
Graphics (TOG), 37(4):67, 2018.

[27] Q. Sun, L.-Y. Wei, and A. Kaufman. Mapping virtual and physical

reality. ACM Transactions on Graphics (TOG), 35(4):64, 2016.

[28] M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed, M. Slater,

and F. P. Brooks Jr. Walking¿ walking-in-place¿ flying, in virtual envi-

ronments. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pp. 359–364. ACM Press/Addison-

Wesley Publishing Co., 1999.

[29] K. Vasylevska, H. Kaufmann, M. Bolas, and E. A. Suma. Flexible

spaces: Dynamic layout generation for infinite walking in virtual envi-

ronments. In 3D user interfaces (3DUI), 2013 IEEE Symposium on,

pp. 39–42. IEEE, 2013.

145

Authorized licensed use limited to: Purdue University. Downloaded on August 24,2020 at 17:30:54 UTC from IEEE Xplore.  Restrictions apply. 


