
1

Path planning for planar articulated robots using
configuration spaces and compliant motion

Elisha Sacks

Abstract— This paper presents a path planning algorithm for an artic-
ulated planar robot with a static obstacle. The algorithm selects a robot
part, finds a path to its goal configuration by systematic configuration space
search, drags the entire robot along the path using compliant motion, and
repeats the cycle until every robot part reaches its goal. The planner is
tested on 11,000 random problems, which span dozens of robot/obstacle ge-
ometries with up to 43 moving parts and with narrow channels. It solves
every problem in seconds, whereas randomized algorithms appear to fail
on all of them.

Keywords—path planning, configuration space, compliant motion.

I. INTRODUCTION

�
HIS paper presents a path planning algorithm for an artic-
ulated planar robot with a static obstacle. The task is to

compute a valid robot path from a start configuration to a goal
configuration. A path is valid when no two parts ever overlap
and every joint equation always holds. Path planning is crucial
in robot navigation and is important in robot manipulation, de-
sign for assembly, virtual prototyping, computer graphics, and
computational biology.

Path planning is a subtask of motion planning. The larger task
is to devise a control policy that drives a robot from a start state
to a goal along a valid path. The policy must respect the robot
control authority and the task dynamics, and ideally should gen-
erate an optimal path. Motion planning is normally factored into
path planning followed by controller design [1], although there
is current research on an integrated approach [2]. This paper
does not address motion planning issues beyond path planning.

Path planning has been studied extensively over the past
twenty years and many algorithms have been developed. The
algorithms can be formalized as searching a configuration space
for a free-space path between start and goal configurations.
Early work constructed exact or resolution complete free space
representations and searched them systematically [3]. The key
measure of complexity is the configuration space dimension,
which equals the number of independent part translations and
rotations. The worst-case computation time is exponential in
this dimension for planar and spatial systems. Practical algo-
rithms have been developed for dimension three, notably for
polygonal robots and obstacles [4], [5]. But the approach ap-
pears impractical for dimension six, which is the minimum for
spatial planning or for multi-part planar planning.

The impracticality of systematic search led to the develop-
ment of probabilistic algorithms that construct free-space road

Elisha Sacks is a Professor of Computer Science at Purdue University, West
Lafayette, IN 47907, USA. This research benefited from discussions with Bruce
Donald, Ananth Grama, Leo Joskowicz, Jean-Claude Latombe, Jean Paul Lau-
mond, Matt Mason, Brian Mirtich, and Jeff Trinkle. Sacks was supported by
NSF grants CCR-9617600 and IIS-0082339, by the Purdue Center for Compu-
tational Image Analysis and Scientific Visualization, by a Ford University Re-
search Grant, by the Ford ADAPT 2000 project, and by grant 98/536 from the
Israeli Academy of Science.

maps by random sampling [6]. Although extremely promising,
probabilistic algorithms have some drawbacks. The probability
of finding a path when one exists is a function of geometric con-
stants that are hard to estimate. The constants are large when
the configuration space contains many narrow channels, most of
which do not link the start and goal configurations. Hence, there
is no efficient way to select enough samples to guarantee a spec-
ified error rate. Nor is there a way to prove that no path exists.
The running time is dominated by part intersection tests, which
can be slow for curved parts. Robots with closed loops of joints
pose problems for random sampling because the joint equations
must hold at the sample configurations.

This paper presents a planning algorithm that addresses the
impracticality of systematic search and the limitations of prob-
abilistic algorithms. The planner selects a robot part, finds a
path to its goal configuration by systematic configuration space
search, drags the entire robot along the path using compliant
motion, and repeats the cycle until every robot part reaches its
goal. The part selection heuristic focuses the planner on man-
ageable subtasks. The systematic search finds narrow channels.
The dragging heuristic explores a tiny subset of the system con-
figuration space based on the intuition that the nonselected parts
should slide along the obstacle and along each other. A heuristic
algorithm seems unavoidable given the exponential complexity
of path planning. However, the algorithm is complete for one
moving part, which is a common case in robotics and in design
for assembly.

The algorithm has been implemented for general planar sys-
tems with curved parts, closed loops, and narrow channels. Pla-
nar systems are important and common, yet are more tractable
than spatial systems. Many robots are planar or can be treated
as planar, including wheeled vehicles and legged robots that op-
erate in buildings, on ships, and on roads. Most mechanical sys-
tems are planar. The planner has been validated on 11,000 ran-
dom problems, which span dozens of robot/obstacle geometries
with up to 43 moving parts and with narrow channels. It solves
every problem in seconds, whereas randomized algorithms ap-
pear to fail on all of them.

The rest of the paper is organized as follows. Section 2 con-
tains a review of prior work. Sections 3–5 describe the planner.
Section 6 assesses its performance: running times on sample
systems, a comparison with randomized algorithms, and limita-
tions. Section 7 contains conclusions and plans for future work.

II. PRIOR WORK

Motion planning has spawned a large literature that is sur-
veyed by Latombe [7]. This section summarizes the portion that
is related to path planning. The most common cases are a planar
polygonal robot with a polygonal obstacle, a polyhedral robot
with a polyhedral obstacle, and a six degree-of-freedom robot

2

manipulator with a polyhedral obstacle. Latombe [3] describes
most algorithms in detail.

The configuration space approach originates in the work of
Lozano-Pérez [8] and underlies most path planning research.
The configuration space of a system of rigid parts is a differ-
entiable manifold that encodes their positions and orientations.
Points in this space, called configurations, are classified as free
when no two parts touch and as blocked when two parts over-
lap. The free and blocked configurations form open sets, called
free and blocked space. Their common boundary, called con-
tact space, contains the configurations where two or more parts
touch without overlap and the other parts are free. Figure 3
shows the configuration space of a planar part with respect to an
obstacle, which is three-dimensional and can be parameterized
by the position and orientation of the part. Contact space, drawn
in grey, consists of two connected components. Free/blocked
space are the regions outside/inside these components.

Complete planning algorithms based on exact configuration
space representations have been developed for parts bounded by
algebraic curve segments [9]. The condition that the parts not
overlap yields multivariate polynomial inequalities in the con-
figuration space coordinates. The equations are solved by al-
gebraic methods, such as cylindrical decomposition or Gröbner
basis calculation. The solution set is searched for a path from
the start to the goal configuration. Canny [10] presents an
exact planning algorithm that constructs and searches a one-
dimensional subset of configuration space called a road map.
None of the algorithms for algebraic curves has been imple-
mented, perhaps because of their intricacy and high computa-
tional complexity. Complete, exact algorithms have proven ef-
fective for a polygonal robot with a polygonal obstacle [4], [5].

An alternative planning approach is to construct an approxi-
mate representation of free space and to search it heuristically.
Lozano-Pérez [8] decomposes the configuration space of a pla-
nar polygon into a stack of slices along the rotation axis. Brooks
[11] decomposes the configuration space into a graph of free,
blocked, and mixed cuboids. He performs A* search for a
piecewise linear path through the free nodes. If none is found,
heuristics are used to select mixed nodes and to split them into
smaller cuboids, the graph is updated, and the search is re-
peated. Takahashi and Schilling [12] plan for a rectangular robot
with a polygonal obstacle via heuristic search of the generalized
Voronoi diagram. Approximate approaches perform well in di-
mension three, as long as the part fits are not too tight, but are
impractical in dimension six or higher because the number of
cells is exponential in the dimension.

There are also heuristic planners for a polyhedral robot with a
polyhedral obstacle, which have six-dimensional configuration
spaces. The key concept is a contact patch: a connected subset
of contact space where the contact point lies on a fixed pair of
robot/obstacle features (vertices, edges, or faces). Donald [13]
constructs robot paths via A* search. He develops parametric
expressions for contact patches and their intersections, but does
not compute the free space topology. His planner moves through
free space and from patch to patch via heuristic motions, such
as sliding along the obstacle. Trinkle and Hunter [14] plan robot
manipulation by searching a graph of contact formations—sets
of touching robot/object feature pairs—that are akin to contact

patches. Joskowicz and Taylor [15] construct linearized con-
tact patches and infer patch transitions for a complex polyhedral
model of a prosthetic hip.

Recent path planning research focuses on probabilistic algo-
rithms. Potential field algorithms [16], [17] numerically mini-
mize a potential function that is designed to have a global min-
imum at the goal. Local minima are escaped by short random
walks. Road map algorithms [6] generate many random con-
figurations, prune the blocked ones, and link adjacent free ones
into a graph (normally with line segments). Path planning is
performed by linking the initial and goal configurations to the
graph then searching for a path between them.

Another approach is to build a roadmap between the start and
goal, rather than over the entire free space. One algorithm [18]
generates random trees rooted at the start and goal configura-
tions. Tree nodes are generated and linked in the same way as
road map nodes. A path is found when a node in one tree can
be linked to a node in the other tree. Another algorithm [19]
grows a tree from the start configuration and test for paths from
each new node to the goal. Randomized optimization is used to
maximize the distance between nodes and to generate paths that
minimize the distance to the goal.

Barraquand et al [20] unify the treatment of probabilistic al-
gorithms and prove them probabilistically complete. Their the-
ory predicts that cluttered environments and narrow passages
can require excessive numbers of samples, as has proven true.
Recent work addresses this problem via improved sampling
methods [21], [22]. Ji and Xiao [23] develop a road map al-
gorithm for compliant motion between two polyhedra. Other
work [24], [25] develops efficient sampling methods for closed
loops of joints. The configurations must satisfy the joint equa-
tions, which are coupled systems of algebraic equations in the
configuration space coordinates. The challenge is to cover the
solution space quickly and thoroughly.

Compliant motion is very useful in fine motion planning with
uncertainty [26], [27], [28]. The canonical task is to insert a peg
in a hole by adapting a nominal path to work with imperfect sen-
sors, imperfect actuators, inexact geometric models, and incom-
plete dynamical models. Compliant motion with force feedback
along a nominal insertion path can compensate for some errors.
The robot tries to follow a direct path to the goal. When the peg
hits the obstacle, the robot modifies its velocity by subtracting
the component that is normal to the obstacle. The challenge is
to construct a sequence of motions that achieves a planning goal
whenever the errors lie within given bounds. In this paper, com-
pliant motion allows a selected robot part to move in a specified
direction by assigning compliant velocities to the other parts.
Incomplete and imperfect information is not addressed.

In summary, prior work provides theoretical planning algo-
rithms for general systems, complete practical algorithms for
planar pairs, heuristic algorithms for spatial pairs, and proba-
bilistic algorithms for general systems. This paper describes a
heuristic planner for general planar systems based upon a com-
plete planner for planar pairs.

III. PATH PLANNING ALGORITHM

This section describes the input, output, and high-level struc-
ture of the path planner, which are summarized in Figure 1.

3

Input: parts, obstacle, joints, start, goals, configuration spaces.
While goals remain

Select goal.
Construct graph plan.
Construct full path.

Output: path that achieves goals.

Fig. 1. Path planning algorithm.

The inputs are parts, an obstacle, joints, a start configuration,
goals, and configuration spaces. The output is a valid path from
the start configuration to a configuration that achieves the goals.
The next two sections describe the main components of the plan-
ner: the graph planner and the full planner.

A part is a rigid body that consists of a stack of cross sec-
tions. A cross section is obtained by extruding a profile in the��� plane along an interval on the � axis. A profile is a circular
list of line and circle segments in which the head of each seg-
ment equals the tail of the following segment. Any planar part
can be modeled with a moderate number of line and circle seg-
ments according to our survey of 2500 mechanisms [29]. In our
examples, every part has one cross section. Multiple sections
occur in some mechanical systems and are needed to approxi-
mate spatial geometry.

The parts translate and rotate in the ��� plane. The configu-
ration of a part is a triple � �����	��
�� where � ������ is the position
of the part frame in a global coordinate frame and
 is the angle
between the frames. The obstacle consists of zero or more static
parts. A part can be connected to the obstacle or to another part
by a revolute or a prismatic joint. The start configuration is a
valid system configuration, a list of part configurations, which
means that no two parts overlap and all joint equations are sat-
isfied.

The goals input is a list of part/goal configuration pairs. A
single pair suffices to specify a goal configuration for a robot
end effector. The planner must generate a robot path that brings
the end effector to the goal and that leaves the other parts in an
arbitrary valid configuration. Several input pairs are required
to specify a complete configuration for a multi-part robot. The
planner must generate a path that achieves all the goals, hence
that brings the robot to the specified configuration. Intermediate
cases also arise where some, but not all, parts have goals, as in
the room example below.

A configuration space is provided for every part/part and
part/obstacle pair. The configuration spaces are constructed by
our program [30]. The output is a boundary representation of the
free space of the first part in the the second part frame, which
is the global frame when the second part is the obstacle. The
boundary is encoded in a contact graph whose nodes and links
represent contact patches and patch adjacencies. A patch is a
connected subset of contact space where the contact point lies on
a fixed pair of part features (line segments, circle segments, or
segment endpoints). The surface equation is represented implic-
itly as ��� �������
������ and parametrically as � � ��� ��
������ ��� ��
�����
�� .
An adjacency occurs when two patches share a boundary curve.
The algorithm guarantees that every patch has four boundaries:
bottom and top curves of the form
���� and left and right
curves of the form � � �
������ �
�����
�� .

The algorithm achieves the goals iteratively. It maintains a
list of achieved goals, a list of failed goals, and a path. Initially,
the goal lists are empty and the start configuration is the sole
element of the path. Each iteration selects an input goal and tries
to extend the path to a configuration that achieves it. If a path is
found, the goal is moved to the achieved list and the failed goals
are returned to the input list. The reason for the second step
is that path extension can clear the way for a formerly blocked
part to reach its goal. If a path is not found, the goal is moved
to the failed list. The iteration ends when the input list is empty.
The algorithm outputs the path when the failed list is empty and
reports failure otherwise.

Each iteration consists of three steps. The first step selects the
input goal �! !" that minimizes the distance from the current con-
figuration of part � , which comes from the last configuration of
the current path, to its goal configuration " . This greedy heuris-
tic tries the goal that appears easiest. The second step searches
the � /obstacle contact graph for a path to the goal configuration,
meaning a path where � avoids the obstacle and the other parts
are ignored. The third step integrates a velocity field that moves
� along the path, holds fixed the parts with achieved goals, and
moves the other parts compliantly. If � reaches " , the integrator
output is returned. Otherwise, the contact graph is searched for
another path.

Figure 2 illustrates the planner. There are four parts: a robot
comprised of link1 and link2, a door, and a chair. The house
is the obstacle. The door is attached to the house by a pin
joint. The goal is to move link1 to the displayed goal config-
uration. The robot starts outside, moves to the door and pushes
it open, removes the chair from the bedroom doorway, enters
the bedroom, and parks. The thick black line is the projection
of the link1 graph path. The path is generated by navigating
the link1/house configuration space without considering link2,
the door, and the chair. The robot path is represented by se-
lected snapshots. It is generated by dragging link1 along the
graph path and assigning link2, the door, and the chair compli-
ant velocities. The compliant velocities satisfy the link1/link2
and door/house joint equations, cause the door to rotate when
link1 pushes it, cause the chair to move left when link1 pushes
it, and cause link2 to follow the house profile.

IV. GRAPH PLANNER

The graph planner searches a configuration space for a path
from a start to a goal configuration. It tests if the start and
goal lie in the same connected component of free space, which
is a standard computational geometry operation. If not, it re-
ports that there is no path. If so, it finds a path via A* search.
The search space consists of patch/configuration nodes where
the patch is in the contact graph and the configuration lies on
the patch. The start and goal are represented by nodes with 0
patches. Search nodes are stored in a heap that is sorted by a
heuristic quality measure. The heap is initialized to a single
node with the start configuration. The minimum node is re-
moved from the heap and its children are added to the heap.
Each untraversed neighbor of the minimum patch generates a
child whose configuration is the midpoint of the shared patch
boundary curve. There is also one child for the path that fol-
lows a straight line from the minimum configuration to the goal

4

start

link1

door

chair

doorway
house

goal

Fig. 2. Robot navigating a house. Top and bottom pictures show first and second
halves of the path from start to goal.

through free space. Its configuration is the first intersection with
a patch or the goal configuration. The cycle repeats until the
minimum configuration equals the goal configuration.

Figure 3 illustrates the algorithm. The contact space has two
connected components. The patches are shaded and their bound-
ary curves are drawn as thin lines. The path is the thick curve
from the start to "$# – "�% to the goal. The start node has a free space
child with patch & # and configuration " # . This node has no free
space child because the line toward the goal points directly into
blocked space. It has four untraversed neighbors of which &('
is closest to the goal, so �)& ' � " ' � is expanded next where " ' is
the midpoint of the & # �&*' boundary curve. The search proceeds
to �)&	+ � ",+ � and �)&*- � "�- � on the left hand connected component
of contact space. This node has free space child �.&(/ � ",/ � on the
right hand connected component, which is the first intersection
of the line from "�- to the goal. The search follows this connected
component to " % , which has the goal as a free child. The path is
� ��� start ��� �.& # � " # ���10,0,01� �.& % � " % ��� � ��� goal � .

The heuristic quality measure is � �325476 where 2 approxi-
mates the distance from the start configuration to the node con-
figuration and 6 is a lower bound on the distance from the node
configuration to the goal configuration. The metric is Euclidean
distance in the cylinder coordinates � �������
�� with the
 term
modulo 8:9 . The 2 value is the sum of the distances between
the configurations on the path from the node to the start node.
The 6 value of the start node is the distance from its configu-
ration to the goal. The 6 value of any other node is the mini-
mum distance to the goal from the four patch corners where the
top/bottom curves intersect the left/right curves.

Care is required in intersecting the line between a node

start

c2
c3 c4 c6

c1

c5 c8

goal
d1

d2
d3

c7

p1 p2 p3 p4
p5

Fig. 3. Path planning A* search.

configuration and the goal configuration. The “line” between
� � # ��� # ��
 # � and � � ' ��� ' ��
 ' � with
 #<;
 ' is really a closed curve
that is represented by two lines in = + : one from � � # ��� # ��
 # � to
� � ' ��� ' ��
 ' � and the other to � � ' ��� ' ��
 '<>?8:9 � . Each line/patch
intersection is computed by substituting the line equation into
the implicit patch equation, solving the resulting polynomial in
closed form (the degree is 3 or 4), and returning the roots that
lie on the patch. The last step maps each root to patch parameter
space and checks if it lies in the region bounded by the paramet-
ric boundary curves.

The planner is complete. Completeness is trivial when the
start and goal are in different free space connected compo-
nents. We add a first step to the planner that makes it com-
plete when they are in the same connected component. The
new first step intersects the start/goal line with the contact
space and adds the intersection points, @!# �,010,0,� @,A , to the search
graph. In Figure 3, these are "$# ��B # �CB ' ��B + along the dashed line.
Each pair � @ # � @ ' ��� � @ + � @ - ���,010,0 � @ AEDF# � @ A � lies in the same con-
nected component of contact space, hence in the same com-
ponent of the original search graph. The free space paths
� @ ' � @ + ��� � @ / � @1G ���10,010 � @1AED ' � @1AED(# � merge these components into
a single component in the extended graph. The start and goal
nodes are linked into this component by free space paths to @:#
and @1A , hence they will be connected by the A* search. The in-
tersection step takes linear time in the configuration space size
and adds a linear number of nodes to the graph.

The planner runtime is linear in the configuration space size,
as measured by the number of patches, because each patch is
visited at most once. This size is worst-case H ����I(J � + � when I
and J are the number of part and obstacle features. It is much
smaller in practice because most contacts are prevented by other
contacts, so most patches lie in blocked space and can be ig-
nored. The performance evaluation in Section 6 shows that the
planner is very fast in practice.

V. FULL PLANNER

The full planner generates a path in the system configuration
space that links a start configuration to a configuration in which
a selected part is at its goal configuration. It processes the path
nodes sequentially. Each step moves the selected part from its
current configuration to the goal configuration of the next node

5

by integrating a velocity field that implements compliant mo-
tion. The step fails when the velocity equals zero before the
goal is reached. If a step fails, the planner fails. Otherwise, it
returns the concatenation of the step paths.

The parts with achieved goals are assigned zero velocity.
The remaining velocities are computed in three steps. Step 1
computes a selected part velocity that drives it toward its goal.
Step 2 computes a compliant system velocity. Step 3 adjusts
the compliant velocity to restore the selected part velocity to its
step 1 value. The computations are performed in the coordinates
� � # ��� # ��
 # �,010,01���*KL����KM��
NK5� of the J non-fixed parts where the
selected part has index 1. Elements of this space are displayed
in boldface.

A. Selected part velocity

The selected part velocity, �PO� # � O� # � O
 # � , is determined by the
current configuration " , the current patch normal I , and the goal
configuration "�Q . The velocity is "�Q<>R" when there is no patch,
which occurs when the part moves from the initial configuration
to a patch, from a patch to the goal configuration, or between
connected components of contact space. Otherwise, it is the
component of "�QS>T" that is tangent to the patch, which equals
�U" Q >V" � >?WX�U" Q >Y" ��Z I�[1I . This velocity implements compliant
motion of the selected part relative to the obstacle. It is written
as \ � �PO� # � O� # � O
 # �����,0,010������ in system coordinates.

B. Compliant system velocity

A compliant system velocity is computed by modifying the
normal velocities at the contact points where parts are colliding.
The selected part/obstacle contact is never modified because it
is tangential by construction. Every other contact may be modi-
fied, including selected part/obstacle contacts. The velocity at
the] th contact is \ Z�^`_ where ^`_ is the contact normal that
points into free space. The normal has abJ elements of which
6 are nonzero part/part pairs and 3 are nonzero for part/obstacle
pairs. If the velocity is positive, the contact breaks immediately
and can be ignored. Otherwise, overlap is prevented by a con-
tact velocity c _ ^ _ with c _ positive. The new system velocity
is d � \ 4fe�g_ih # c _ ^ _ where � is the number of contacts. The
c _ s are computed from the symmetric system of linear equations
d Z$^(jk��� with l �nm��,010,0��o� .

Figure 4 illustrates the computation. Part 1 is selected with
configuration � � # ��� # ��
 # ��� �p>qa ��������� and part 2 has configura-
tion � � ' ��� ' ��
 ' �r� � ���C������� . Contact occurs between the point &
with part 1 coordinates � mb����� and the line segment cEs with part 2
coordinates ����>qa � >t8 ��� �p> mb� 8 ��� . The contact patch equation is
�)&u>vc �xw �ysz>vc �z�{� . Substituting the coordinate expressions
and simplifying yields

� � 'q> � # � �U|�}�~
 ' 4 8��,��|
 ' ��4 � � 'x> � # � ��8�|�}i~
 '�>v����|
 ' �4 |�}�~F�
 #z>
 ' � >R8��,��|��
 #x>
 ' � >V� ����0
The contact normal is the gradient vector of this function ^��
�p>t8 �,m��,mb� 8 � > mb� > mN� . Step 1 computes a system velocity of
\ � � mb�C���������������C��� because the part 1 goal is �p>t8 ��������� and
it does not touch the obstacle. (The arrows labeled ^ and
\ are their projections into the part 1 frame.) Step 2 makes
part 1 comply with part 2. The normal velocity, \ ZF^��

a

p

part 1
part 2

b
n

d

Fig. 4. Velocity computation example.

>t8 , indicates a collision, so the system velocity is changed to
d � \ 4 c ^ . The unknown c is computed from the equa-
tion d ZE^���� , which yields c � >q\ ZP^ ^TZP^���m :� and
d � ��8� !a �1m :� �,m !� �,m :a � > m N� � > m N� � .
C. Modified system velocity

In step 3, the system velocity is modified from d to d 4��
where � satisfies the following linear equations

� # � O� # >Y� #
� ' � O� #z>v� '
� + � O
 #z>v� +��Z$^_�� ��0

The first three equations state that � restores the selected part
velocity to the step 1 value. The following equations state that� is tangential to every contact point, hence preserves compli-
ancy. In the final equation,] ranges over all contacts other than
the selected part/obstacle, since that velocity is tangent by con-
struction. There are �54 8 equations when this pair is in contact
and �L4 a equations otherwise. This system is normally under
constrained, but is over constrained given enough contacts. It is
solved by singular value decomposition [31].

In our example, the part 1 velocity is restored from
��8� !a �,m :� �1m !� � to � mb�C������� . The equations are � # ��m !a � �!' �
> m :� � �!+ � > m :� and �MZ�^���� . Substituting the first three
into the fourth and simplifying yields 8b�:-�>��!/�>��!� � > m . One
solution is � - � > m b8 � � / ����� � � ��� , which yields a system
velocity of d 4T�k� � mb�C���C��� > m !� � > m :� � > m N� � .
D. Kinematic simulator

The kinematic simulator is a utility program that integrates a
velocity field for a system of rigid parts. It is identical to our
dynamical simulator [32], except for the vector field that it inte-
grates. The inputs are the initial configuration, the velocity field,
the joints, the configuration spaces, and an integration accuracy.
The simulator integrates the velocity field with a Runge-Kutta
integrator. At each step, it enforces the joint equations and the
current contacts via Newton iteration and checks for collisions.
A collision between two parts is detected when their relative
configuration enters blocked space. The simulator backs up to
the instant where the configuration crosses from free to blocked
space, updates the current contacts, and resumes integration.

VI. PERFORMANCE EVALUATION

This section presents an empirical evaluation of the path plan-
ner based on 11,000 random problems, which span dozens of

6

robot/obstacle geometries with up to 43 moving parts and with
narrow channels. The experiments are performed on a 933 MHz
Pentium 3 processor running Linux. The planner solves every
problem in seconds, whereas randomized algorithms appear to
fail on all of them.

A. Configuration space construction

Configuration space construction combines numerical com-
putation with computational geometry on large datasets. This
type of computation is prone to robustness problems due to the
fundamental mismatch between floating point arithmetic and
real geometry [33]. These problems are addressed via heuris-
tics, software engineering, and extensive testing. The program
has no known failures on the 11,000 test inputs below or on hun-
dreds of other inputs, but it might fail on some degenerate inputs.
A canonical example is two line segments that are almost col-
inear: floating point error could cause the program to infer that
the lines intersect and that both endpoints of one segment lie on
the same side of the other segment, which could produce incon-
sistent output. A fast, provably robust algorithm is a topic for
future research.

B. Graph planner

Table I contains runtime statistics for the configuration space
constructor and the graph planner. For each problem, 1000 pairs
of pseudo random start/goal configurations were generated in
a bounding box roughly twice the size of the obstacle. The
statistics for 1000 pairs are the same as for the first 500, which
indicates that the sample size is adequate. The configuration
space construction times confirm our experience that moderate
size pairs take under 10 seconds. The mean planning times are
low because most start/goal configurations can be connected by
free space paths, which require no search. The maximum times
indicate that the worst-case performance is good on moderate
size problems. We see that the planner visits few patches on av-
erage, and performs well even when it visits almost all patches.
The planner found paths for all 10,000 trials, as a complete al-
gorithm should.

We briefly describe two test problems. Problem 2 (Figure 5) is
an expanded version of a challenging test case by Boor [34]. The
fit between the horizontal and the vertical arms is very tight: in-
creasing the center square size from 0.2825 units to 0.283 units
blocks the channels, which causes the planner to compute a path
around the obstacle in 6.2 seconds. Problems 9–10 are a cross-
shaped robot with an obstacle comprised of six randomly placed
triangles (Figure 6). Problem 9 is the easiest and problem 10 is
the hardest out of 20 such obstacles.

C. Full planner

Table II contains runtime statistics for the full planner based
on five problems with 200 random tests per problem. The statis-
tics for 200 tests are the same as for the first 100, which indicates
that the sample size is adequate. The purpose of the tests is to
validate the effectiveness of the compliant motion heuristic, so
the random selection is biased toward the hardest cases for each
problem. The planner found paths for all 1000 tests.

The first problem is the robot in the house (Figure 2). The
table describes paths to the displayed goal configuration from

TABLE I

GRAPH PLANNER STATISTICS: � IS THE NUMBER OF PART FEATURES; � IS

THE NUMBER OF OBSTACLE FEATURES; PATCHES IS THE NUMBER OF

PATCHES IN THE CONTACT GRAPH; CS TIME IS THE CONTACT GRAPH

CONSTRUCTION TIME IN SECONDS; A* TIME IS THE AVERAGE/MAXIMUM

GRAPH PLANNING TIME IN SECONDS; AND VISITED IS THE

AVERAGE/MAXIMUM PERCENTAGE OF PATCHES VISITED.

I J patches cs time A* time visited
1. 8 20 656 0.0 0.0/0.0 15/79
2. 16 160 16868 5.9 0.6/6.7 7/51
3. 8 24 300 0.0 0.0/0.0 11/92
4. 8 48 600 0.0 0.0/0.1 8/82
5. 16 40 4973 0.6 0.1/0.6 7/50
6. 24 16 8422 0.6 0.1/0.7 2/67
7. 8 16 248 0.0 0.0/0.0 7/48
8. 8 36 754 0.0 0.0/0.1 7/84
9. 24 36 2008 1.8 0.0/1.6 1/10
10. 24 36 34220 3.2 0.1/3.4 1/14

TABLE II

FULL PLANNER STATISTICS: �$� IS THE NUMBER OF PARTS; ��� IS THE

TOTAL NUMBER OF PATCHES IN ALL CONTACT GRAPHS; CS TIME IS THE

CONTACT GRAPH CONSTRUCTION TIME IN SECONDS; PLAN TIME IS THE

AVERAGE/MAXIMUM TOTAL PLANNING TIME IN SECONDS; VISITED IS THE

AVERAGE/MAXIMUM PERCENTAGE OF PATCHES VISITED; AND PATHS IS

THE AVERAGE/MAXIMUM NUMBER OF GRAPH PLANS PER FULL PLAN.

cs plan
IP& IF" time time visited paths
1. 4 4110 0.1 0.9/1.0 84/91 5/13
2. 4 992 0.0 0.4/2.4 22/66 6/22
3. 2 1200 0.1 0.3/0.8 75/99 4/10
4. 2 600 0.0 0.0/0.1 23/48 3/10
5. 15 3680 0.5 4.9/5.1 3/22 1/5

random start configurations outside the house and inside a 50%
larger square. Link1 failed as the first selection in 12% of the
cases where link2 blocked against the house. Link2 never failed
as a selected part. The link width is 1 unit and the doorway
clearances are 1.1 units. Decreasing the clearance has no effect
on performance.

The second problem is a floating linkage, comprised of four
bars connected by revolute joints, that must traverse a narrow
channel through the obstacle (Figure 7). The planner moves
the bottom link to its goal while dragging the other links along
then moves the left link to its goal while holding the bottom link
fixed. The linkage rotates until the four parts are almost parallel,
translates through a narrow gap in the vertical wall, then opens.
The table describes paths from the displayed start configuration
to random goals to the right of the wall. No part selections fail.
Decreasing the gap width has no effect on performance.

The third problem is a two-bar linkage with a two-part obsta-
cle (Figure 8). The table describes paths from the displayed start
configuration to random goal configurations inside the upper ob-
stacle part. The selected part is horizontal in the goal configu-
ration shown in the Figure. The fourth test case is identical, but
without the upper obstacle part. The running time, number of

7

start goal

Fig. 5. Expanded Boor challenge with a detail of one channel. Solid/dashed
lines show paths for a robot that fits/blocks in the channels.

graph paths, and percentage of patches visited are much lower
because the goal is easier to reach. No part selections fail in
either case.

The fifth problem is a snake robot with random obstacles (Fig-
ure 9). The snake consists of 8 round pins and 7 rectangular links
connected by pin joints. The first pin is attached to the first link,
which is attached to the second pin, and so on. Each obstacle is
50 triangles randomly placed in the box ��� ���,m1��� � ���,m$����� . The ta-
ble describes paths from the displayed configuration to random
goal configurations for the first snake pin in ��� ��� 8 ��� �p>t8 ��� 8 ����� .
The results are for 4 geometries with 50 tests apiece. The right-
most snake pin is always selected first and never fails.

We conclude the evaluation with two problems on which ran-
dom testing was not performed. Figure 10 shows how the snake
robot navigates a kitchen sink in 6.8 seconds. Adding a pin and
a link increases the time to 11.4 seconds.

The final problem is a mechanical design application in col-
laboration with Ford Motors Company (Figure 11). A designer
wishes to compute an assembled configuration for a chain gear.
There are two drive gears, one tensioner gear, and 38 chain
links. In the assembled configuration, the gears rotate around
their centers and the chain is taut. The designer constructs a
start configuration in which the drive gears are attached to the
frame with pin joints, the chain links are connected with pin
joints, the chain is slack, and the tensioner is disengaged. This
configuration is easy to compute by hand, but could also be con-
structed from a fully disassembled configuration by a sequence
of planning steps.

The path planning task is to engage the tensioner. A free space
path would suffice if it were not for the chain. The challenge is
to follow this path, while avoiding part overlap. The solution is a

Fig. 6. Random obstacle with 50 paths between random start/goal configura-
tions. Sample configurations shown along the thick path.

start

goal

Fig. 7. Four-bar linkage path.

prime example of compliant motion in which all the parts must
move to achieve the tensioner goal. The configuration space
dimension is 119. The 38 link/left driver pairs have 148 patches
apiece, while the 38 link/right driver and 38 link/tensioner pairs
have 116 patches apiece. The planner computes the assembled
configuration in 17 seconds.

D. Comparison with randomized planners

I tested the MSL implementation (http://msl.cs.uiuc.edu/msl/)
of Kavraki’s road map planner [6] and of Kuffner and Lavalle’s
random tree planner [18] on every test problem. A single repre-
sentative start/goal pair was chosen for each problem. In prob-
lems with multiple parts, every part/obstacle pair was tested.
The optional files were as follows: Holonomic, PlannerDeltaT
equals 0.001, ModelDeltaT equals 0.01, and helpful Lower-
State/UpperState values. A test was declared a failure when it
exceeded one million nodes or one CPU hour. Both planners
failed every test. The only exception was the cross-shaped robot
from Figure 6 with an empty corridor between the start and goal
configurations. Although nothing can prove that a randomized
planner cannot solve a problem, the tests show that the configu-
ration space planner solves in seconds a broad range of problems

8

start

goal

Fig. 8. Two-bar linkage path.

that they cannot solve in an hour.

E. Limitations

The evaluation shows that the planner performs well on many
problems, including ones with many moving parts, tight fits, and
closed loops. However, there are simple problems on which the
compliant motion heuristic fails. Figure 12 shows three cases
where the house robot fails to reach its goal from a random start
configuration with link1 as the selected part. In the graph plan
for failure 1, link1 follows a free space path toward the goal, hits
the left wall of the house, and follows the house profile through
the doorway. The full planner fails to move link1 into contact
with the wall because link2 hits it first. The link2/wall con-
tact blocks link2’s horizontal motion and the link1/link2 joint
blocks link1’s horizontal motion. The other failures are analo-
gous: link1 cannot reach the bottom of the house in failure 2 and
cannot reach the right wall in failure 3.

It is possible for every selection to fail, which causes the plan-
ner to fail. For example, suppose in Figure 8 that the robot links
are connected at their centers and that the initial configuration is
an x-shape inside the lower obstacle part. The robot cannot leave
the obstacle: if one link tries to drag it through the mouth, the
other link will rotate horizontally then block against the mouth
bottom. The problem can be solved by steering the second link,
but not by compliant motion. Another type of failure occurs
when the robot is blocked by a part. For example, the chain gear
tensioner cannot traverse a free space path from above the chain
to the goal because it cannot push the chain out of the way. Nor
can steering the chain clear the path. This type of problem can
be solved by selectively treating parts as static.

The planner uses one-point contacts to manipulate parts that
move freely in the plane. It assumes zero friction between these

start

Fig. 9. Snake robot with 50 random goals. Obstacle is 50 random triangles.
Lines are graph paths for the rightmost pin. Sample robot configurations are
shown along the thick path.

start

goal

Fig. 10. Plumbing snake in sink.

parts and the surface on which they move. The only example in
the paper is where the robot pushes the chair from the doorway
in Figure 2. The true effect of such a push depends critically on
the pressure distribution of the free part. If the distribution were
known, we could solve this problem by replacing the kinematic
simulator with a quasi-static simulator. But pressure distribu-
tions are rarely known. One point pushing might still suffice for
simple tasks like clearing a part from a path, but it is inadequate
for fine path planning.

VII. CONCLUSIONS

This paper has presented a planar path planning algorithm
that combines systematic configuration space search with com-
pliant motion. The algorithm handles systems with many mov-
ing parts, closed kinematic loops, narrow channels, and curved
parts. Extensive testing shows that it solves hard problems in
seconds, whereas prior algorithms appear incapable of solving
them. The main areas of future research are very large systems,
deformable parts, geometric uncertainty, non holonomic con-

9

tensioner

start

goal

Fig. 11. Chain gear assembly.

goal

failure 1

failure 2

failure 3

Fig. 12. Representative failures of compliant motion.

straints, and spatial planning.
Some applications have very high geometric complexity, for

example detailed models of industrial plants with over 100,000
part features. Computing full configuration spaces appears in-
feasible. The best alternative may be a hierarchical strategy that
decomposes the environment into manageable regions, plans in
each region, and links the results at region boundaries. Incre-
mental and distributed algorithms should also prove important.

The snake examples suggest a methodology for path planning
with deformable parts akin to finite element analysis. Break
each deformable part into rigid elements connected by joints,
plan with these elements, and apply the result. Round elements

were chosen in the example, but other shapes are acceptable.
The results in Section 6 suggest that tens of elements can be
handled efficiently. The question is whether this is enough for
applications. Applying paths to deformable parts poses control
problems, such as how to drive the snake along a path by means
of its handle.

Geometric uncertainty plays a significant role in practical
path planning, but is barely addressed in prior research. The first
task is to quantify the effect on path planning of imprecise mea-
surements of the robot configuration and of the environment.
The larger goal is to generate plans that succeed (always or with
high probability) despite a bounded amount of uncertainty. We
have developed a kinematic tolerance analysis algorithm [35]
that has the potential to automate the first task. It provides a
detailed understanding of how small variations in geometry af-
fect nominal contact relations. The next step is explore ways to
incorporate this analysis into path planning. A natural starting
point is manipulation planning, which is very sensitive to the
contact geometry and to the environment.

Wheeled robots can follow only those free space paths that
satisfy non holonomic steering constraints, which are non-
integrable equations in the derivatives of the configuration space
coordinates. A path planner must integrate obstacle avoidance
with non holonomic constraint satisfaction to obtain traversable
paths. There is some prior work on this problem [36], but it is
far from solved.

The planar algorithm applies to spatial systems in theory, but
it is impractical because it requires a subroutine that computes
the configuration space of a pair of spatial parts. A possible
solution is to restrict the selected part to a series of planar mo-
tions. Each motion plane defines a three-dimensional configura-
tion space for two spatial parts. These spaces can be constructed
by a generalization of our algorithm for planar parts [37] and can
be searched by the graph planner. The challenge is to pick mo-
tion planes that contain a goal path. Heuristic or probabilistic
algorithms are worth investigating. Compliant motion can be
implemented as before, except that contact changes must be de-
tected by collision detection instead of by configuration space
queries. Collision detection has proven practical for very large
polyhedral models and may extend to curved parts. This hybrid
algorithm preserves the heart of the planar algorithm, system-
atic configuration space search and compliant motion, although
it sacrifices one-part completeness and some efficiency.

REFERENCES

[1] Z. Shiller and S. Dubowsky, “On computing time-optimal motions of
robotic manipulators in the presence of obstacles,” IEEE Transactions
on Robotics and Automation, vol. 7, no. 6, pp. 785–797, 1991.

[2] Steven. M. LaValle and James. J. Kuffner, “Randomized kinodynamic
planning,” International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[3] Jean-Claude Latombe, Robot Motion Planning, Kluwer Academic Pub-
lishers, Boston, 1991.

[4] F. Avnaim, J. D. Boissonnat, and B. Faverjon, “A practical exact motion
planning algorithm for polygonal objects amidst polygonal obstacles,” in
IEEE International Conference on Robotics and Automation, 1988.

[5] Randy C. Brost, Analysis and planning of planar manipulation tasks,
Ph.D. thesis, Carnegie-Mellon University, 1991, Available as Technical
Report CMU-CS-91-149.

[6] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilis-
tic roadmaps for path planning in high dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, 1996.

10

[7] J-C Latombe, “Motion planning: A journey of robots, molecules, digital
actors, and other artifacts,” International Journal of Robotics Research,
vol. 18, no. 11, pp. 1119–1128, 1999.

[8] T. Lozano-Pérez, “Spatial planning: A configuration space approach,” in
IEEE Transactions on Computers. 1983, vol. C-32, pp. 108–120, IEEE
Press.

[9] J. T. Schwartz and M. Sharir, “On the piano movers II. general techniques
for computing topological properties on real algebraic manifolds,” Ad-
vances in Applied Mathematics, vol. 4, pp. 298–351, 1983.

[10] J. Canny, The Complexity of Robot Motion Planning, MIT Press, Cam-
bridge, MA, 1988.

[11] Rodney A. Brooks, “A subdivision algorithm in configuration space for
findpath with rotation,” IEEE Transactions on Systems, Man and Cyber-
netics, vol. SMC-15, no. 2, pp. 224–233, 1985.

[12] O. Takahashi and J. Schilling, “Motion planning in a plane using general-
ized Voronoi diagrams,” IEEE Transactions on Robotics and Automation,
vol. 5, no. 2, pp. 143–150, 1989.

[13] Bruce R. Donald, “A search algorithm for motion planning with six de-
grees of freedom,” Artificial Intelligence, vol. 31, no. 3, pp. 295–353,
1987.

[14] Jeffrey C. Trinkle and Jerry J. Hunter, “A framework for planning dex-
terous manipulation,” in IEEE International Conference on Robotics and
Automation, 1991, pp. 1245–1251.

[15] L. Joskowicz and R. H. Taylor, “Interference-free insertion of a solid body
into a cavity: An algorithm and a medical application,” International Jour-
nal of Robotics Research, vol. 15, no. 3, pp. 211–229, 1996.

[16] J. Barraquand and J.-C. Latombe, “Robot motion planning: A distributed
representation approach,” International Journal of Robotics Research, vol.
10, no. 6, 1991.

[17] Hsuan Chang and Tsai-Yen Li, “Assembly maintainability study with mo-
tion planning,” in IEEE International Conference on Robotics and Au-
tomation, 1995, pp. 1012–1019.

[18] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation, 2000.

[19] Emmanuel Mazer, Juan Manuel Ahuactzin, and Pierre Bessière, “The
ariadne’s clew algorithm,” Journal of Artificial Intelligence Research, vol.
9, pp. 295–316, 1998.

[20] J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, and P. Raghavan, “A
random sampling scheme for path planning,” International Journal of
Robotics Research, vol. 16, no. 6, pp. 759–774, 1997.

[21] N. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo, “OBPRM:
an obstacle-based PRM for 3d workspaces,” in Robotics: the algorithmic
perspective, P.K. Agarwal, L. E. Kavraki, and M. T. Mason, Eds., Natick,
MA, 1998, A.K. Peters.

[22] D. Hsu, L. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin, “On find-
ing narrow passages with probabilistic roadmap planners,” in Robotics:
the algorithmic perspective, P.K. Agarwal, L. E. Kavraki, and M. T. Ma-
son, Eds., Natick, MA, 1998, A.K. Peters.

[23] X. Ji and J. Xiao, “Planning motion compliant to complex contact states,”
International Journal of Robotics Research, vol. 20, no. 6, pp. 446–465,
2001.

[24] S. M. LaValle, J. H. Yakey, and L. E. Kavraki, “A probabilistic roadmap
approach for systems with closed kinematic chains,” in IEEE International
Conference on Robotics and Automation, Detroit, MI, 1999, pp. 1671–
1676.

[25] Li Han and Nancy M. Amato, “A kinematics-based probabilistic roadmap
method for closed chain systems,” in Proceedings of the Workshop on
Algorithmic Foundations of Robotics, 2000, pp. 233–246.

[26] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” International Journal of Robotics
Research, vol. 3, pp. 3–24, 1984.

[27] Michael Erdmann, “Using backprojections for fine motion planning with
uncertainty,” International Journal of Robotics Research, vol. 5, pp. 19–
45, 1986.

[28] Jean-Claude Latombe, “Motion planning with uncertainty: on the preim-
age backchaining approach,” in The Robotics Review, Oussama Khatib,
John J. Craig, and Tom’as Lozano-P’erez, Eds., pp. 53–69. MIT Press,
1989.

[29] Leo Joskowicz and Elisha Sacks, “Computational kinematics,” Artificial
Intelligence, vol. 51, no. 1-3, pp. 381–416, Oct. 1991, reprinted in [38].

[30] Elisha Sacks, “Practical sliced configuration spaces for curved planar
pairs,” International Journal of Robotics Research, vol. 18, no. 1, pp.
59–63, Jan. 1999.

[31] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling, Numerical Recipes in C, Cambridge University Press, Cam-
bridge, England, 1990.

[32] Elisha Sacks and Leo Joskowicz, “Dynamical simulation of planar sys-
tems with changing contacts using configuration spaces,” Journal of Me-
chanical Design, vol. 120, no. 2, pp. 181–187, June 1998.

[33] Christoph M. Hoffmann, “Robustness in geometric computations,” Jour-
nal of Computing and Information Science in Engineering, vol. 1, pp. 143–
156, 2001.

[34] V. Boor, M. H. Overmars, and F. van der Stappen, “The gaussian sampling
strategy for probabilistic roadmap planners,” in IEEE International Con-
ference on Robotics and Automation, Detroit, MI, 1999, pp. 1018–1023.

[35] Elisha Sacks and Leo Joskowicz, “Parametric kinematic tolerance analysis
of general planar systems,” Computer-Aided Design, vol. 30, no. 9, pp.
707–714, Aug. 1998.

[36] J. P. Laumond, S. Sekhavat, and F. Lamiraux, “Guidelines in nonholo-
nomic motion planning for mobile robots,” in Robot Motion Planning and
Control, J. P. Laumond, Ed., pp. 1–53. Springer-Verlag, Berlin, 1998.

[37] Elisha Sacks, “Configuration space computation for polyhedra with planar
motions,” Tech. Rep. CSD-TR 01-004, Purdue University, 2001.

[38] K. Goldberg, D. Halperin, J.C. Latombe, and R. Wilson, Eds., The Algo-
rithmic Foundations of Robotics, A. K. Peters, Boston, MA, 1995.

Elisha Sacks is is a professor of computer science at
Purdue. He received his Ph.D. in 1988 from MIT un-
der Gerald Sussman and Ramesh Patil. His research
interests are scientific and engineering problem solv-
ing, geometric computing, mechanical design automa-
tion, and robotics. He is collaborating with Sandia
National Laboratory on micro-mechanical system de-
sign and with Ford Motors, Cologne on automotive
transmission design. He is the Director of the Purdue
Computer Science Center for Graphics and Visualiza-
tion.

