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Abstract— We present a path planning algorithm for a poly-
hedral robot with six degrees of freedom (6DOF) and a static
obstacle. The planner consists of a dual-tree RRT algorithm
that uses a novel local planner. A local planner tests if two
robot configurations can be connected by a simple path. Ours
searches a 3DOF subspace of the robot/obstacle configuration
space, whereas prior planners search the line segment that
connects the two configurations. Empirical evidence suggests that
the benefit of the 3DOF search outweighs the cost. Our planner
outperforms prior planners on problems with narrow channels
and performs comparably (shorter paths, similar running times)
on other problems.

I. INTRODUCTION

This paper presents a path planning algorithm for a poly-
hedral robot with six degrees of freedom (6DOF) and a static
obstacle. Path planning with 6DOF is important for robot
navigation and manipulation, design for assembly, virtual pro-
totyping, and computer graphics. Although complete planning
algorithms are available, they have proved impractical. The
most successful technique to date is probabilistic planning.
The drawback is that there is no efficient way to select
enough samples to guarantee a specified success rate. Picking
an optimal sampling rate is critical when the robot/obstacle
configuration space contains narrow channels, as is common in
structured environments. Too many samples make the planner
inefficient, whereas too few make it unreliable.

We hypothesize that the problem lies in the local planner:
the subroutine that tests if two robot configurations can be
connected by a simple path. In current planners, the only can-
didate path is the line segment between the two configurations.
Narrow channels cannot accommodate long segments, so the
planner must traverse them in many local steps. At each step,
many configurations are explored before a reachable one is
found, since most directions are blocked.

We have developed a local planner that searches 3DOF
subsets of the 6DOF configuration space. Each 3DOF subset
consists of parallel translations and perpendicular rotations
relative to a fixed plane. Planar motions are good building
blocks for general motions. Any Euclidean motion (rotation
plus translation) can be expressed as two planar motions.
Hence an n-step plan from current planners is expressible as
2n planar motions. In return for this factor of two, we gain
the ability to plan locally with 3DOF, instead of with line
segments. Complete 3DOF path planning has proved superior
to probabilistic planning for planar robots [1]. We build on
that work to obtain a local planner for polyhedral parts.

The 3DOF local planner finds more paths than prior plan-
ners because it searches a larger subset of configuration space.
The question is whether the benefit outweighs the cost. We
present empirical evidence in the affirmative. A standard
probabilistic algorithm (dual-tree RRT) with our local planner
far outperforms prior planners on problems with narrow chan-
nels and performs comparably (shorter paths, similar running
times) on other problems.

II. PRIOR WORK

The main approaches to robot path planning are determin-
istic, heuristic, and probabilistic [2]. The most promising ap-
proach is probabilistic planning, since deterministic planning
is impractical with 6DOF and heuristic planning is unreliable.
Probabilistic algorithms sample the robot/obstacle free space,
which is the subset of configuration space where the robot
is separated from the obstacle. The roadmap approach [3]
generates random configurations, prunes the blocked ones,
and links adjacent free ones into a graph. Path planning is
performed by linking the initial and goal configurations to
the graph then searching for a path between them. The RRT
(rapidly exploring random tree) approach [4], [5] builds a
roadmap between the start and goal, rather than over the entire
free space.

Barraquand et al [6] unify the treatment of probabilistic
algorithms and prove them probabilistically complete. Their
theory predicts that narrow channels can require excessive
numbers of samples, as has proved true. Prior work addresses
this problem by varying the sampling distribution and the
configuration space metric to favor narrow channels [7]–[12].
Other work replaces random sampling with grid search [13],
[14]. The reported results show improved performance in some
cases, but narrow channels remain problematic.

Sacks [1] presents a fast, complete planner for a planar
robot with a static obstacle, as part of a heuristic planner
for articulated robots. The planner performs a best-first search
on an exact representation of configuration space. Extensive
experimentation shows that the complete planner is much
better than probabilistic planners. We adapt this algorithm to
search 3DOF subsets of 6DOF configuration spaces.

III. PATH PLANNING ALGORITHM

Our planner consists of a dual-tree RRT algorithm [4] with
our local planner. We chose the RRT approach because it is
the most popular. We chose the dual-tree variant because it



is simple, well tested, and performs well. Any probabilistic
planner should benefit similarly from using our local planner.

A. RRT algorithm

The RRT algorithm generates a tree whose nodes are robot
configurations and whose links are free space paths. The tree
starts as a single node and grows as follows (Fig. 1). Pick a
free configuration, q, according to a given distribution. Find
the node whose configuration, r, is closest to q in a given
metric. Compute s by taking a step of length ε along the line
segment rq. If the line segment rs lies in free space, add s to
the tree and link it to r by this path.

Fig. 1. RRT construction.

The dual-tree algorithm generates two RRT trees starting
from the start and goal configurations. It alternately grows
each tree and tries to connect the new node to the closest
node in the other tree. The connection succeeds when the line
segment between the two nodes lies in free space. We modify
the algorithm to connect r to q using our local planner, instead
of connecting r to s via a line segment. We also use our local
planner to connect the two trees.

B. Local planner

Fig. 2 shows the local planning algorithm. The inputs
are the robot and obstacle geometry, and the start and goal
configurations. The robot is a polyhedron and the obstacle is
a set of polyhedrons. The algorithm selects a robot motion
plane, maps the geometry to the motion plane, and moves
the mapped robot as close as possible to the goal. The cycle
repeats until the robot reaches the goal or until no progress is
made. We discuss the algorithm after presenting an example.

Input: robot, obstacle, start, goal.
1. Set current configuration to start configuration.
2. Select robot motion plane.
3. Map robot and obstacle to plane.
4. Find best path in plane.
5. If no progress, report failure.
6. If goal reached, return path.
7. Update current configuration and go to step 2.
Output: path or failure.

Fig. 2. Local path planning algorithm.

C. Example

Fig. 3a shows a cubical robot with a tank-shaped obstacle.
The initial configuration is inside the tank and the goal
configuration is outside. The planner maps the geometry to
the plane shown in Fig. 3b and finds a planar motion to the
goal position (Fig. 4). Fig. 5a shows the final configuration of

this path, which becomes the new current configuration. The
planner maps the geometry to the plane shown in Fig. 5b and
finds a planar rotation to the goal orientation.

(a) (b)
Fig. 3. First iteration: (a) start and goal configurations; (b) motion plane.

Fig. 4. Robot path in first motion plane.

(a) (b)
Fig. 5. Second iteration: (a) start and goal configurations; (b) motion plane.

D. Motion plane selection

The motion plane alternates between two choices, called the
translation plane and the rotation plane, that are determined by
the current configuration, c, and the goal configuration, g. Both
planes pass through the current position for specificity, since
orthogonal translation of the motion plane does not alter the
associated three degrees of freedom. Write gc−1 as rotation
by angle θ around axis n through the robot reference point
followed by translation by t. The rotation plane normal is n.
The translation plane normal is n−(t·n)t, which is orthogonal
to t and as close as possible to n in the least squares sense.

Without an obstacle, the robot can move from c to g
via rotation by θ around n in the rotation plane followed



by translation by t in the translation plane. Our heuristic
assumption is that the planner can make good progress in
these planes even with an obstacle. It can rotate towards
the goal orientation in the rotation plane, while translating
around obstacles. It can translate towards the goal position
in the translation plane, while translating and rotating around
obstacles. When the robot gets close enough to the goal,
the desired rotation and translation lie in free space and are
achieved by a final iteration of the local planner.

E. Geometry mapping

Path planning within a motion plane employs configura-
tion space construction. Although construction is feasible for
polyhedrons with 3DOF, the computation is much faster for
polygons. We map the polyhedral problem to a planar problem
in two ways, both of which are incomplete. Our heuristic
assumption is that this procedure works better than a complete
polyhedral planner.

First, we project the robot and the obstacle onto the motion
plane. The obstacle is clipped before being projected. Pick a
coordinate system in which projection occurs along the z axis.
The robot in configuration c is bounded by planes z = z1

and z = z2. The portion of the obstacle outside these planes
is discarded because the robot cannot reach it via motion
in the xy plane. If the planner planar finds a path for the
projected geometry, it is free for the true geometry and we are
done. Fig. 6 shows a two-dimensional example in which the
horizontal axis represents the motion plane.

Fig. 6. Projection succeeds.

When projection yields no path, we slice the geometry with
a plane through the robot centroid and parallel to the motion
plane. If no path is found, we fail. If a path is found, we
lift it to the true geometry. The path consists of Euclidean
motions. We sweep the robot along each motion and test for
collisions with the obstacle. If the lift succeeds, we are done.
Fig. 7 shows an example where projection fails, but slicing
succeeds.

Fig. 7. Projection fails and slicing succeeds.

F. Planar path planning

The planar planner searches the 3DOF configuration space
of the mapped robot and obstacle for a path from c to g. Fig. 8
show a path for a typical robot/tank motion plane. The planner
tests if c and g lie in the same connected component of free
space. If not, it reports that there is no path. If so, it finds a
path via A* search. The search states are regions in free space
and patches in contact space (the subset of configuration space
where the robot touches the obstacle without overlap). The
quality metric for the motion “rotation by θ and translation by
t” is ||t||+|θr| with r the robot radius. The search terminates at
the closest configuration to g in this metric. The path consists
of line segments in free space and of curves in contact space.
The algorithm is described by Sacks [1].

(a) (b)
Fig. 8. Planar planning: (a) path snapshots; (b) configuration space path.

IV. RESULTS

We present experimental results that compare our plan-
ner with a standard dual-tree RRT planner. The robot is a
16x16x16 cube. Some obstacles are random and others are
handcrafted.

A. Random cubes

The first obstacle is comprised of 20 random cubes. The
cube sizes vary from 1–40 and their configurations are random
in a bounding cube of size 220. The robot start and goal
configurations are random. Fig. 9 shows a typical test. The
start configuration is red, the goal is blue, and intermediate
steps are gray.

Fig. 9. Random test case.



B. Tank

Fig. 10 shows the second test. The obstacle is a tank of
size 80. One wall of the tank is removed for the purpose of
illustration. The robot starts at the center of the tank aligned
with its walls. The goal configuration is selected randomly
outside the tank.

(a) (b)
Fig. 10. Tank test case: (a) start and goal; (b) path.

C. Box

Fig. 11 shows the third test. The obstacle is a box of size
80 with a window of size 20 on its top. One wall of the box
is removed for the purpose of illustration. The robot starts at
a random configuration inside the box; the goal is a random
configuration outside.

(a) (b)
Fig. 11. Box test case: (a) start and goal; (b) path.

D. Tunnel

Fig. 12 shows the fourth test. The obstacle is a tunnel
comprised of three segments of size 60x20x20 that are parallel
to the three coordinate axes. The mouth of the first segment
is sealed and the mouth of the third segment is open. Several
sides are removed for the purpose of illustration. The robot
starts in the first segment. The goal is a random configuration
outside the tunnel.

E. Maze

Fig. 13 shows the fifth test. The obstacle is a maze
comprised of four 20x20x60 tunnels in a 70x70x120 room.

(a) (b)
Fig. 12. Tunnel test case: (a) start and goal; (b) path.

Adjacent tunnels are 10 units apart. The robot starts on one
side of the maze. The goal is a random configuration on the
other side. All four tunnels are open on the start side, but only
one leads to the goal side.

(a) (b)
Fig. 13. Maze test case: (a) start and goal; (b) path.

F. Performance

Table I compares the performance of the two planners.
The “old” columns refer to the standard dual-tree RRT algo-
rithm; the “new” columns refer to our planner. The “success”
columns list the number of paths found on 100 trials. The
other columns are average values over these trials. The “nodes”
entry is the number of attempts to link two RRT nodes in
order to grow one tree or to connect the two trees. The
number of motion planes that our planner examines is listed in
parenthesis. The “time” entry is the running time in seconds
on a 2GHz Pentium 4.

TABLE I
PLANNER PERFORMANCE.

success nodes time
test old new old new old new
20 cubes 100 100 97 4 (4) 4 8
tank 100 100 241 4 (7) 0.4 0.9
box 65 100 12112 11 (18) 324 9
tunnel 0 100 20000 63 (128) 618 19
maze 0 100 20000 29 (63) 951 205

The sample configurations (q in Fig. 1) are selected uni-
formly in the bounding box. For the standard algorithm, the
step size (ε in Fig. 1) is 10 units of translation and 0.5
radians of rotation. This was the best step we could find



based on trial and error with values ranging from 10% to
400% of it. We terminated the RRT tests after 20,000 nodes.
Changing the cutoff to 50,000 nodes increases the running
time proportionally without increasing the success rate. The
only exception is that the RRT can sometimes solve the maze
in 2 CPU hours with the 10% step and 50,000 nodes.

All five tests show that our planner performs far fewer local
planning steps than the standard planner. The final three tests
show that our planner traverses narrow channels in a moderate
number of steps, whereas the standard planner fails after many
steps. The first two tests show that our planner is half as fast
as the standard planner on problems without channels. We
discuss this issue below.

V. CONCLUSION

We have presented a 6DOF RRT path planner with a 3DOF
local planner. The local planner heuristically formulates a
sequence of planar path planning problems, solves them with a
complete configuration space search algorithm, and combines
the results to obtain 6DOF paths. The overall planner is a
hybrid of probabilistic, heuristic, and deterministic methods.
The motivation for this work is narrow channels. Our test
results show that prior planners perform poorly on narrow
channels, whereas our planner performs well.

The first direction for future research is to see how our plan-
ner works on complex robot/obstacle geometry. The compu-
tational bottleneck is configuration space construction, which
is polynomial in the geometric complexity. We expect that
the number of motion planes is linear in the number of
configuration space channels. We also expect that the number
of channels is independent of the geometric complexity, since
it is a topological property. A preliminary experiment supports
this analysis. We increased the number of random obstacles
from 20 to 100 in the first test. The number of motion planes
stayed the same, while the time per plane increased by a factor
of 10.

We will explore ways to limit the configuration space
construction time. One option is to explore only a portion
of the configuration space per motion plane. We might restrict
the planner to an ε neighborhood of c, just as the original RRT
planner takes an ε step from r to s. A second option is to use
multi-resolution polyhedral models, as has proved effective in
collision detection. A third option is to search 2DOF subsets
of configuration space before (or instead of) 3DOF subsets.
Prior work [1] shows that configuration space construction for
planar parts with 2DOF is fast even for complex geometry. It
remains to see if the number of motion planes is manageable.

Another research direction is to derive an efficient algorithm
for selecting enough motion planes to guarantee a specified
planning success rate. We conjecture that the success rate
can be estimated by sampling a moderate number of motion
planes, constructing their free spaces, and calculating certain
metric properties.
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