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We present a monotonic convolution for planar regions A and B bounded by line and
circular arc segments. The Minkowski sum equals the union of the cells with positive
crossing numbers in the arrangement of the convolution, as is the case for the kinetic
convolution. The monotonic crossing number is bounded by the kinetic crossing number,
and also by the maximum number of intersecting pairs of monotone boundary chains,
which is typically much smaller. We give a Minkowski sum algorithm based on the
monotonic convolution. The running time is O(s + nα(n) log(n) + m2), versus O(s +
n2) for the kinetic algorithm, with s the input size and with n and m the number of
segments in the kinetic and monotonic convolutions. For inputs with a bounded number
of turning points and inflection points, the running time is O(sα(s) log s), versus Ω(s2)
for the kinetic algorithm. The monotonic convolution is 37% smaller than the kinetic
convolution and its arrangement is 62% smaller based on 21 test pairs.
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1. Introduction

Minkowski sums of planar regions are an important computational geometry con-

cept with diverse applications, including packing, path planning, and assembly.

The Minkowski sum of A and B is A ⊕ B = {a + b | a ∈ A, b ∈ B}. The kinetic

convolution1 is the standard construction method. The input is the oriented curve

segments that form the region boundaries. The boundaries are convolved into a

curve that partitions the plane into cells with crossing numbers. The cells with

positive crossing numbers comprise the Minkowski sum. Fig. 1a–c illustrates the

algorithm for A a convex polygon and B a hole bounded by a convex polygon.

The kinetic algorithm is suboptimal in that the portion of the convolution in

the interior of A⊕B is generated, partitioned, and then discarded. The convolution

can be pruned with a curvature test. The resulting convex convolution2 consists of

the Minkowski sum boundary along with some interior segments (Fig. 1d). Its cells

do not have crossing numbers, so an alternate A ⊕ B membership test is used.
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Fig. 1. (a) Part A in hole B and their kinetic convolution (actual size). (b) Minkowski sum x10.
(c) Kinetic convolution x10. (d) Convex convolution x10. (e) Monotonic convolution x10.

We present a monotonic convolution whose cells have crossing numbers that

determine membership in A⊕B (Fig. 1e, Sec. 4–5). Unlike the kinetic convolution,

the monotonic convolution depends on the coordinate frame. The region boundaries

are partitioned into x-monotone chains that meet at turning points. The monotonic

convolution is obtained by forming convex convolutions for all pairs of A/B chains,

computing their envelopes, and adding curve segments at concave turning points

(the T segments in Fig. 1e). The monotonic crossing number is bounded by the

kinetic crossing number, and also by the maximum number of intersecting pairs of

monotone boundary chains, which is typically much smaller. In our example, the

monotonic crossing number is 1 at infinity, 0 in the Minkowski sum, and 2 inside the

triangular cells. In contrast, the kinetic crossing number (Fig. 1c) is 1 at infinity,

rises to Ω(s) for s-sided A and B, then falls to 0 inside the Minkowski sum.

We give a Minkowski sum algorithm (Sec. 6) based on the monotonic convolu-

tion. The input regions are bounded by s line and circular arc segments. The running

time is O(s+nα(n) log(n)+m2), versus O(s+n2) for the kinetic algorithm, with n

and m the number of segments in the kinetic and monotonic convolutions, and with

α(n) the inverse Ackerman function. For inputs with a bounded number of turning

points and inflection points, the running time is O(sα(s) log s), versus Ω(s2) for the

kinetic algorithm. This is the case in our example. The monotonic convolution is

37% smaller than the kinetic convolution and its arrangement is 62% smaller based

on 21 test pairs of industrial part shapes (Sec. 7).

2. Definitions

A planar region has an outer boundary and zero or more inner boundaries (Fig. 2a).

A boundary is a simple loop of line and arc segments. The endpoints of segment a

are designated tail(a) and head(a), so that the region interior is to the left when

a is traversed from tail to head. Arcs are split at vertical turning points, so every

segment lies on its upper or lower semicircle. Arc a has a center, center(a), and a

signed radius, radius(a), which is positive/negative on the upper/lower semicircle.

The rightward (outward) normal vector of a line segment, a, is (y,−x) with
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Fig. 2. (a) Planar regions; (b) Kinetic convolution; (c) Convex convolution.

(x, y) = head(a) − tail(a). The rightward normal vector of an arc segment at p

is (p − center(a))/radius(a) when head(a)x < tail(a)x and is negated otherwise.

The rightward normal angles at tail(a) and head(a), called α(a) and β(a), are in

[−π, 0]/[0, π] for a lower/upper semicircle. An arc is convex when α(a) < β(a) and

is concave otherwise. The angle interval of a is [α(a), β(a)] when a is convex and is

[β(a), α(a)] otherwise. The point on a with angle θ is called point(a, θ).

The inputs to the kinetic convolution1 are polygonal tracings. Imagine a

wheelchair driving along the boundary of a polygon. When it reaches a vertex,

it executes a pure turn to orient itself along the next edge. The turns eliminate

boundary orientation discontinuities. Since we include arcs in boundaries, we rep-

resent a pure turn as a zero radius arc: a set of pairs 〈p, θ〉 with p a vertex and with

θ ∈ [α, β] a rightward normal angle. Between each pair of consecutive segments, a

and b, we insert a smoothing arc, e, with center(e) = tail(e) = head(e) = head(a),

radius(e) = 0, α(e) = β(a), and β(e) = α(b). In Fig. 2a, convex/concave smoothing

arcs are labeled with black/gray circles. Smoothing arcs are split at 0 and π like

input arcs. They are treated identically to input arcs in our algorithms.

3. Prior work

With turns replaced by smoothing arcs, the kinetic convolution, A ⊗k B, is the

sum of all pairs of boundary points with equal rightward normal angles. Bound-

ary segments a ∈ A and b ∈ B contribute a segment, e, to the sum when their

angle intervals overlap. In Fig. 2b, selected sum segments are labeled with their

B segments, and the A segment is the upper/lower semicircle when the e nor-

mal vector points up/down. If a or b is a line segment with angle α, e is a line

segment with α(e) = β(e) = α. Let ta = tail(a) and ha = head(a) for a line

segment, ta = ha = point(a, α) for an arc, and likewise for b. The endpoints of

e are tail(e) = ha + hb and head(e) = ta + tb when a or b is a concave arc,

and the opposite otherwise. If a and b are arcs whose shared angle interval is

[α, β], e is an arc with α(e) = α and β(e) = β when a and b are both con-

vex/concave, and the angles reversed otherwise; center(e) = center(a) + center(b),



February 1, 2007 9:0 WSPC/Guidelines paper2

4 Victor Milenkovic and Elisha Sacks

compatible incompatible

Fig. 3. Curvature test.

radius(e) = radius(a) + radius(b), tail(e) = point(a, α(e)) + point(b, α(e)), and

head(e) = point(a, β(e)) + point(b, β(e)).

The Minkowski sum of two bounded, simply connected regions is obtained by

constructing the convolution arrangement and assigning the cells crossing numbers.

The unbounded cell is assigned crossing number 0. The other cells are traversed in

breadth-first order where two cells are neighbors if they share an edge. Suppose cell

b is visited from cell a with crossing number c. Cell b is assigned crossing number

c + 1 when the ab edge is crossed from right to left, as determined by its tail and

head, and is assigned c − 1 otherwise. In Fig. 2b, the large inner cell has crossing

number 1 and the five small cells have crossing number 2. If t lies in a cell with

crossing number K, A ∩ (−B + t) has K connected components. We call K the

kinetic intersection number of A and −B + t. The boundary of A ⊕ B consists of

the segments that separate cells of zero and positive crossing number.

Another Minkowski sum algorithm3 decomposes A and B into convex pieces,

sums the pieces, and combines the results. The advantage is that convex regions

are simple to sum. The algorithm is less efficient than the kinetic one because the

union of the piece sum boundaries is a superset of A⊗k B. Also, concave boundary

segments can only be approximated, typically by many line segments.

A large portion of the kinetic convolution can lie in the Minkowski sum inte-

rior, as Fig. 1a–c illustrates for a convex polygon in a convex polygonal hole. The

convolution can be pruned by excluding convexly incompatible sums.

The kinetic convolution contains points that a curvature test excludes from

the Minkowski sum boundary. Boundary segments a ∈ A and b ∈ B are convexly

incompatible when the sum of their curvatures is negative. The curvature is 0 for a

line segment, 1/r for a convex arc of radius r, and −1/r for a concave arc. Smoothing

arcs have infinite curvature. If points p ∈ a and q ∈ b have equal rightward normals,

A and −B + p + q have a point of tangency and intersect in the neighborhood of

this point, so p + q is in the Minkowski sum interior (Fig. 3).

The convex convolution, A⊗c B, is the set of sums of convexly compatible pairs

of boundary points2 (Fig. 2c). We have A⊗c B ⊆ A⊗k B, yet A⊗cB is a superset of

the boundary of A⊕B. The cells of the arrangement do not have crossing numbers.

The Minkowski sum is obtained by selecting a point t in each cell and testing
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whether A intersects −B + t, which takes O(s log s) time with s the input size.

4. Monotonic intersection number

We define the monotonic intersection number of regions A and B and prove that

it is positive when A and B intersect, is zero otherwise, and is bounded by the

kinetic intersection number. The next section shows how to construct a monotonic

convolution curve whose crossing number at t is the monotonic intersection number

of A and −B + t. The Minkowski sum consists of the cells with positive crossing

numbers, since these are the ones in which A and −B + t intersect.

We make the simplifying assumption that neither A nor B has a vertical line

segment in its boundary. In Sec. 6, we show how to handle vertical line segments

in the input through a form of symbolic perturbation.

A segment is upper/lower when its tail is right/left of its head, which means that

the region interior is below/above it. An upper/lower chain is a maximal sequence

of upper/lower segments on a region boundary. The chains are partially ordered

in y. Pairs of upper and lower chains meet at turning points. A turning point is

convex/concave when the lower chain is below/above the upper chain. In Fig. 2a,

the upper chains are ghijklm and na, the lower chains are abcdefg and mn, the

convex turning points are a,g, and m, and the concave turning point is n.

Let O be the number of pairs consisting of an upper chain of A that overlaps in

x a lower chain of B. (We show that O also equals the number of overlaps between

lower chains of A and upper chains of B.) If an upper chain of A overlaps in x

and is always less in y than a lower chain of B, we say the pair of chains is facing.

Similarly, an upper chain of B can face a lower chain of A. Let F be the number

of pairs of facing chains. Let T be the number of concave turning points of A that

lie interior to B plus the number of concave turning points of B that lie interior to

A. The monotonic intersection number is M = O − F − T .

We define the pair intersection number, P , as the number of pairs of connected

components of A and B that intersect. Trivially, P ≤ K with K the kinetic inter-

section number because K is the number of connected components in A ∩ B.

Theorem 1. If A and B are bounded and simply connected, then P ≤ M ≤ K.

Proof. Sweep A and B with a vertical sweep line, L, from left to right. As the sweep

line moves, maintain the value of P , M , and K for H ∩ A and H ∩ B, where H is

the half-plane to the left of L. We have P = M = K = 0 when H ∩A = H ∩B = ∅.

The values can change at turning points of A or B and at the intersection of a chain

of A with a chain of B. We show that P ≤ M ≤ K after each of the nine possible

events (Fig. 4). When the sweep ends, H ∩ A = A and H ∩ B = B.

The proof covers the generic case in which events have distinct x values and

crossings are transverse. The general case can be handled by symbolic perturbation.

1. Free left convex turning point If L sweeps through a left convex turning

point a ∈ A such that a 6∈ B (free), H ∩ A has a new upper and a new lower chain
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Fig. 4. Intersection number events.

with a as their common left endpoint. H ∩A has a new connected component, but

it does not intersect H∩B, so P and K stay the same. If L∩B has k components, L

intersects k upper chains and k lower chains of B. Hence, O increases by k whether

we are counting upper chains of A paired with lower chains of B or vice versa. T

remains the same. L ∩ B has k− components below a and k+ components above a

with k− + k+ = k. The lower chain of A starting at a faces k− upper chains of B

and the upper chain of A starting at a faces k+ lower chains of B. Thus, F increases

by k− + k+ = k and M = O − F − T is unchanged.

2. Embedded left convex turning point If a ∈ A∩B, the new connected com-

ponent of H ∩A intersects a single component of H ∩B in a single region, so P and

K increase by 1. One component of L∩B contains a. The lower and upper chain of

A at a face k− and k+ upper and lower chains of B where this time k−+k+ = k−1.

F increases by k − 1 and M = O − F − T increases by 1.

3. Right convex turning point If a ∈ A is a right convex turning point, sweeping

past a does not change P , M , or K.

4. Free left concave turning point If a ∈ A is a left concave turning point

with a 6∈ B, M remains the same, as in the convex case. No new component or

intersection region is created, so P and K stay the same.

5. Embedded left concave turning point If a ∈ A ∩ B, O increases by k, the

number of components of L ∩ B, as in the convex case, and F increases by k − 1.

This time T increases by 1, so M stays the same. No new component or intersection

region is created, so P and K stay the same.

6. Free right concave turning point If a ∈ A is a right concave turning point

and a 6∈ B, then O, F , T , and hence M stay the same. Since a 6∈ A∩B, K stays the

same. P does not increase, since the number of A components does not increase.
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7. Embedded right concave turning point If a ∈ A∩B, T increases by 1 and

M decreases by 1. We show that two H ∩A components merge at a, which implies

that P decreases by 1. The two corresponding components of H ∩A∩B merge, so

K decreases by 1.

Two vertical segments of L ∩ A merge at a. Suppose they are connected by a

curve in H ∩ A. Once the two segments merge, the curve can be extended to the

right of a to form a loop around a. Such a loop cannot exist because A is simply

connected, so the curve cannot exist, which means that the vertical segments are

in different components of H ∩ A before a.

8. Intersection of facing chains If an upper chain of A intersects a lower chain of

B from below at their leftmost intersection p, their subchains in H∩A and H∩B go

from facing to non-facing as L sweeps through p. F decreases by 1, so M increases

by 1. A new region of H ∩A∩B appears, so K increases by 1. If the component of

A immediately below p did not intersect the component of B immediately above p,

P also increases by 1; otherwise, it stays the same.

9. Intersection of other chains If p is not the leftmost intersection, the subchains

in H ∩A and H ∩B were not facing, so F and M stay the same. K increases by 1.

The component of A below p and the component of B above p already intersected,

so P stays the same. If an upper chain crosses a lower chain from above, two upper

chains cross, or two lower chains cross, no numbers change.

The theorem tells us that M is positive when A and B intersect and is zero

otherwise. If they intersect, P > 0, so M > 0. If not, P = K = 0, so M = 0. The

theorem does not extend to multiply connected regions. A counterexample appears

in Fig. 5a: region A intersects disk B, so K = P = 1, but M = 2 − 0 − 2 = 0.

We extend the theorem to A (the complement of A) and B bounded and simply

connected. The general case reduces to these two cases, as shown in Sec. 6. We

define M = C +O−F −T where C is the number of upper chains (or lower chains)

of B. Connected region A is wider than B if its projection onto the x-axis is longer.

Corollary 1. If A and B are bounded and simply connected and A is wider than

B, then P ≤ M ≤ K for A and B, and P = M = K = 1 if B ⊆ A.

Proof. Suppose the projection of B is to the right of the left endpoint of the

projection of A. Replace A by its intersection, S, with a square that contains A

and B, and has the leftmost point of A on its left side (Fig. 5b). P stays the same

because a component of B that intersects A also intersects S. K stays the same

because A∩B = S∩B. O increases by C because the bottom of the square overlaps

C upper chains of B. F and T stay the same because there are no new facing chains

or embedded concave corners. By Thm. 1, P ≤ C + O − F − T ≤ K. For B ⊆ A,

P = K = 1 because A and B each have one component and A ∩ B = B. Since

P ≤ M ≤ K, M = 1 also.
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Fig. 5. (a) Counterexample to Thm. 1 for multiply connected A; (b) S for A and B.

B

a

n

m

A
q

p
p+n

q+n

p+mn

q+na
0

2

1

(a) (b) (c) (d)

Fig. 6. (a) Planar regions; (b) O − F segments; (c) T segments; (d) Monotonic convolution.

5. Monotonic convolution

If we replace B by −B+t, M becomes a function of the point t. The plane partitions

into open regions where M(t) is constant. Define the M segments to be the multi-set

of oriented segments on these region boundaries such that each segment is oriented

with larger M on the left and its multiplicity is the increase in M between the left

and right regions. We define the monotonic convolution to be the M segments. The

M segments have the property that for all t1, t2 not on any segment, the crossing

number (Sec. 3) from t1 to t2 is M(t2)−M(t1). The M segments plus the value of

M in one cell represent the function M(t).

To construct the monotonic convolution, we construct the O −F segments and

the T segments, analogously defined. The union of the O − F segments and the

−T segments (T segments with orientation reversed) is the monotonic convolution.

When constructing the union of multi-sets, the overlapping portion of segments

with opposite orientation is canceled. Suppose segments ab and cd are on the same

line or circle with overlapping domains ax < dx < bx < cx and with opposite

orientations. Their union is the ad portion of ab and the cb portion of cd. Fig. 6

illustrates monotonic convolution construction. The union of the O − F segments

q + n and p + n with the −T circle is the concave side of the M = 2 region.
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Fig. 7. Decomposition of region abcdef into Π shapes u−efar−, t−cds−, r+abct+, and s+deu+.

5.1. O − F segments

Define the Π shape of an upper chain, U , to be Π(U) = U ⊕ Y− where Y− =

{(0, y) | y ≤ 0} is the negative y-axis. Define the Π shape of a lower chain, L, to be

Π(L) = L ⊕ Y+ where Y+ = {(0, y) | y ≥ 0}. We chose the Π notation because the

region looks like a pedestal. The Π shape of an upper/lower chain is bounded by the

chain and by the downward/upward vertical rays at its endpoints. It is smoothed as

described in Sec. 2. Figure 7 shows the four Π shapes for the region abcdef : Π(efa)

has sides r− and u− and Π(de) has sides s+ and u+.

Minkowski sums commute with Π shapes. For upper chains U1 and U2, Π(U1)⊕

Π(U2) = U1⊕Y−⊕U2⊕Y− = (U1⊕U2)⊕(Y−⊕Y−) = (U1⊕U2)⊕Y− = Π(U1⊕U2).

Since Π(U1)⊕Π(U2) is a Π shape, it consists of all the cells of the convex convolution

Π(U1) ⊗c Π(U2), except for the uppermost cell. Define the crust to be the upper

envelope of the convolution oriented right to left. For lower chains L1 and L2, similar

arguments show that Π(L1)⊕Π(L2) = Π(L1 ⊕L2) and that the Minkowski sum is

bounded from below by the lower envelope of Π(L1) ⊗c Π(L2). Define the crust to

be the lower envelope oriented left to right.

Theorem 2. The O − F segments of regions A and B are the union of crusts of

pairs of upper/lower chains from A and B.

Proof. We discuss right chain endpoints (Fig. 8). A lower chain, c, and an upper

chain, d, of A meet at p. A lower chain, e, and an upper chain, f , of B meet at q.

The c + e crust meets the d + f crust at p + q. The analysis of left endpoints is the

same, but the orientations of the O segments and vertical F segments are reversed.

The O segment is the vertical line tx = px + qx with upward orientation, since

d overlaps −f + t in x to the left of this line. Chains d and −f + t are facing if d is

below −f + t along every vertical line, which is equivalent to Π(d)∩Π(−f + t) = ∅,

or t 6∈ Π(d) ⊕ Π(f), since Π(−f + t) = −Π(f) + t. Each crust segment is a −F

segment because −F is larger below than above. The upward vertical ray from

p + q, oriented downward, is a −F segment because the chains do not overlap on

the right and are facing on the left. Chains d and −f + t do not contribute the
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Fig. 8. (a) A and B; (b) A and −B + t; (c) O and −F segments.

downward vertical ray from p + q because the chains do not overlap on the left and

are not facing on the right. Chains −e + t and c contribute the c + e crust and the

downward ray from p + q to the set of −F segments.

The O − F segments are just the crusts because the O and F verticals cancel.

Consider the verticals at tx = px + qx (Fig. 8). When t crosses the vertical, O

increases by 1 because d overlaps −f + t in x. F also increases by 1: d faces −f + t

when ty > py + qy and −e + t faces c otherwise. Hence, O − F is unchanged.

5.2. T segments

The value of T for A and −B + t is the number of concave turning points p1 ∈ A

such that p1 ∈ −B + t plus the number of concave turning points p2 ∈ B such that

−p2 + t ∈ A. We have t ∈ p1 + B and t ∈ A + p2 respectively. The boundaries of

these regions are the T segments.

Each concave turning point becomes a convex turning point of an upper and

lower Π shape. These convex Π turning points generate convex convolution seg-

ments that can be O − F segments. All such O − F segments cancel with the

corresponding T segments. The monotonic convolution is a subset of the kinetic

convolution when all the convolution segments generated by turning points appear

as O − F segments, as in Fig. 6. In Fig. 9, concave turning point p on upper chain

pq generates convolution segment abc of which ab is an O − F segment, but bc is

not because it is below the envelope. The T segment is abcd of which ab cancels

with the O −F segment. Segment bc is in the monotonic convolution, but is not in

the kinetic convolution, which contains cd only.

6. Minkowski sum algorithm

The Minkowski sum of bounded, simply connected regions A and B is computed

as follows: form the O − F segments, form the −T segments, form their union to

obtain A ⊗m B, construct its arrangement, compute crossing numbers, and return
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Fig. 9. Partial cancellation: (a) regions; (b) O − F segments for pq; (c) M segments.

the edges that separate cells with zero and positive crossing numbers.

The O − F segments are formed from all pairs of upper or lower chains: (1)

smooth the chains at the endpoints, (2) find all segment pairs whose angle in-

tervals overlap; (3) sum the convexly compatible pairs; (4) compute the upper or

lower envelope. Step 1 takes O(s) time for two regions with s boundary segments.

Step 2 takes O(s + n) for two regions with n sum pairs.4 Step 3 takes O(n). Step 4

takes O(n logn) for line segments and O(nα(n) log n) for arcs with α(n) the inverse

Ackerman function.5

We symbolically perturb vertical input segments by labeling them as upper

or lower. A vertical segment that joins two upper/lower segments is labeled up-

per/lower. Otherwise, a vertical segment with a rightward/leftward normal is la-

beled upper/lower. Two upper/lower chains are summed as before with vertical

segments ignored. The endpoints of the sum are determined by summing corre-

sponding endpoints of the chains, including endpoints of vertical segments. Vertical

segments are added to bridge vertical gaps between the sum endpoints and the

envelope and within the envelope. These modifications take time linear in the input

plus output size.

The −T segments are generated. A turning point is defined to be the junction

of an upper and lower segment, including verticals. If p2 is a concave turning point

of B, generate a copy of the boundary of A translated by p2 with orientations

reversed. For segment e1 of A, generate e′1 with tail(e′1) = head(e1)+p2, head(e′1) =

tail(e1)+p2, and for an arc center(e′1) = center(e1)+p2 and radius(e′1) = radius(e1).

Handle a concave turning point p1 of A analogously. The running time is O(sc) with

c = O(s) the number of concave turning points.

Segments are canceled. Gather all O − F and −T segments with the same line

or circle. Sort the segment endpoints by x and cancel backwards intervals against

forward intervals. Generate new segments with the same curves using the vertices

whose x-coordinates bound uncanceled intervals. The running time is O(n + sc)

using hashing, since there are O(n) O − F segments and O(sc) −T segments.

The arrangement of A⊗m B is computed in O(m2) time with m = O(n+sc) the

number of convolution segments. An output sensitive bound is no better because

the arrangement size can be Ω(m2) when the Minkowski sum size is constant. When
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(1) (2) (3) (4) (5) (6)

Fig. 10. Test profiles.

the regions have a bounded number of turning points and inflection points, m is

O(s). The arrangement has O(s) size because it consists of a bounded number

of monotone chains, which intersect O(s) times. The kinetic convolution contains

Ω(s) chains. Fig. 1 shows that the size of its arrangement is Ω(s2). Assign crossing

numbers and compute A ⊕ B as described in Sec. 5.

If A and B are bounded and simply connected, let a and b be the leftmost and

rightmost vertices of A; define c and d for B likewise. If bx−ax ≤ dx−cx, then A⊕B

is the entire plane. Otherwise, proceed as before, but assign crossing number 1 to

the unbounded cell in accordance with Cor. 1. If A and B are multiply connected,

construct the sum of the outer loops and the sum of each outer loop with each inner

loop of the other region. A⊕B is the intersection of the resulting sums. For general

A and B, the union of the sums of all pairs of connected components is A⊕B. The

running time is linear in the arrangement size in all cases.

7. Experimental results

We compare the monotonic convolution to the kinetic convolution on six industrial

part profiles (Fig. 10). The number of boundary segments without smoothing arcs is

s = 64, 10, 23, 24, 22, 96. We tested all 21 pairs of profiles. The tests were performed

with robust floating point algorithms that will be reported separately.

Figs. 11 and 12 show two typical pairs and Table 1 summarizes the results for

all 21 pairs. The average number of kinetic, convex, and monotonic convolution

segments is 821, 486, and 516; the average number of arrangement edges is 2342,

1469, and 902; and the percentage of edges in the Minkowski sum is 6, 10, and 16.

The monotonic convolution is 37% smaller than the kinetic convolution and only 6%

larger than the convex convolution. Its arrangement is 61% smaller than the kinetic

arrangement and 37% smaller than the convex arrangement because envelopes are

more compact than convolution segments. The Minkowski sum computation time

is 42% smaller with the monotonic convolution than with the kinetic convolution.

We conclude that the monotonic convolution provides crossing numbers like the

kinetic convolution, while matching the simpler convex convolution in complexity

and beating its arrangement complexity and computation time.

The monotonic convolution is not a subset of the kinetic convolution when

convex convolution segments involving concave turning points do not become O−F

segments, and hence the corresponding −T segments are not canceled (Figs. 9, 11,
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(a) (b) (c) (d)

Fig. 11. Pair 2/2: kinetic (a), convex (b), and monotonic (c) convolutions; (d) Minkowski sum.

(a) (b) (c) (d)

Fig. 12. Pair 5/5: kinetic (a), convex (b), and monotonic (c) convolutions; (d) Minkowski sum.

and 12). Although cancellation helps in some cases, such as in Figs. 1 and 6, it

might hurt on average. We can define an alternate convolution consisting of the

O − F segments alone. Its crossing number at t is M ′(t) = O(t) − F (t) by Thm. 2.

If A or A is bounded and simply connected and so is B, this crossing number is

positive when A intersects −B + t and is zero otherwise. If they intersect, M > 0,

which implies M ′ > 0 because T ≥ 0. If not, M = 0 by Thm 1 and T = 0 by

definition, so M ′ = 0. We plan to investigate the theoretical and practical value of

this convolution.
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