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We present an arrangement algorithm for plane curves. The inputs are (1) continuous,
compact, x-monotone curves and (2) a module that computes approximate crossing
points of these curves. There are no general position requirements. We assume that the
crossing module output is ǫ accurate, but allow it to be inconsistent, meaning that three
curves are in cyclic y order over an x interval. The curves are swept with a vertical
line using the crossing module to compute and process sweep events. When the sweep
detects an inconsistency, the algorithm breaks the cycle to obtain a linear order. We prove
correctness in a realistic computational model of the crossing module. The number of
vertices in the output is V = 2n+N+min(3kn, n2/2) and the running time is O(V log n)
for n curves with N crossings and k inconsistencies. The output arrangement is realizable
by curves that are O(ǫ + knǫ) close to the input curves, except in knǫ neighborhoods of
the curve tails. The accuracy can be guaranteed everywhere by adding tiny horizontal
extensions to the segment tails, but without the running time bound. An implementation
is described for semi-algebraic curves based on a numerical equation solver. Experiments
show that the extensions only slightly increase the running time and have little effect
on the error. On challenging data sets, the number of inconsistencies is at most 3N ,
the output accuracy is close to ǫ, and the running time is close to that of the standard,
non-robust floating point sweep.

Keywords: arrangements; robust computational geometry.

1. Introduction

We present an arrangement algorithm for plane curves based on approximate com-

putation of curve crossing points. The arrangement of n curves with N crossings can

be computed in O((n + N) log n) time by sweeping. The analysis assigns unit cost

to geometric operations, such as partitioning a curve into x-monotone segments, in-

tersecting two curves, and sorting vertices along an axis. For semi-algebraic curves,

the operations reduce to constructing algebraic numbers and computing the signs

of polynomials at these numbers. The classical techniques for manipulating alge-
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braic numbers incur a computational cost that grows rapidly with degree and bit

complexity. The same problem arises in incremental insertion or in any other ar-

rangement algorithm.

The mainstream approach to this problem1 is to accelerate the geometric com-

putations via custom algorithms, constructive root bounds, and floating point fil-

ters. This approach has led to arrangement algorithms for lines, circles, conics,

and cubics. We present an alternate research direction that constructs arrange-

ments using approximate geometric computation via numerical equation solving.

The motivation is that numerical solvers are highly accurate and are orders of

magnitude faster than exact algebraic computation. The scientific computing com-

munity greatly benefits from numerical computation, so it is worth exploring its

applicability to computational geometry.

The first issue is that numerical solvers lack rigorous running time and er-

ror bounds, although their qualitative behavior is well understood. We take the

computer science approach to this issue: define a computational model, verify it

experimentally, and analyze algorithms in it. The definition appears in Sec. 3. We

assume that we can compute approximations to all real intersection points of any

pair of algebraic curves. The computation time is polynomial in algebraic degree.

The backward error is bounded on a bounded domain. Using this model, we define

a crossing module that computes the x values where curves cross and their y order

between crossings. The arrangement algorithm performs all geometric computations

with the crossing module.

The challenge is to reconcile the approximate nature of numerical computation

with Euclidean geometry. Approximate geometric computations can violate the

laws of geometry, just as floating point operations can violate the laws of algebra.

In our computational model, this problem arises when the crossing module assigns

three curves an inconsistent, cyclic vertical order. The canonical example (Fig. 1) is

curves a, b, c that form a triangle whose diameter is less than ǫ. The crossing module

computes the vertices p, q, r with ǫ accuracy, incorrectly places q to the left of p,

and correctly places r to the right of p. The curves are in cyclic order on (qx, px):

a is below b from the a/b output, b is below c from the b/c output, and c is below

a from the a/c output.

We construct arrangements with a sweep algorithm that handles inconsistencies

(Sec. 4). The inputs are (1) continuous, compact, x-monotone curves and (2) a

crossing module. There are no general position requirements. The curves are swept

with a vertical line using the crossing module to compute and process sweep events.

When the sweep detects an inconsistency, it breaks the cycle to obtain a linear

order. We prove correctness in the computational model of the crossing module.

The number of vertices in the output is V = 2n + N + min(3kn, n2/2) and the

running time is O(V log n) for n curves with N crossings and k inconsistencies. The

output arrangement is realizable by curves that are O(ǫ + knǫ) close to the input

curves. As in any backward error analysis, the realization curves are proved to exist,

but are not constructed. The quantities ǫ and k are not part of the algorithm; they
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Fig. 1. Inconsistency: (a) true geometry has px < qx < rx; (b) computed geometry has qx < px <
rx with cyclic vertical order (depicted with arrows) on (qx, px).

are used solely in our analysis of its speed and error.

The algorithm suffers from two weaknesses that reflect the gap between our

computational model and actual numerical computing. (1) The running time and

the error bound depend on k, which is O(n3), as shown below. In practice, k is

constant for generic input and is O(N) for degenerate input. (2) The error bound

does not apply in a knǫ neighborhood of the curve tails. We can fix this by extending

each curve to the left by a short horizontal line segment, called a telomere, but the

telomeres can cause O(n2) extra crossings. In practice, the error bound holds at tails

without telomeres, and using telomeres only slightly increases the running time.

We implement the arrangement algorithm for semi-algebraic curves (Sec. 5). The

only numerical operation is computing the roots of a system of two polynomials

with floating point coefficients. We obtain mean/max ǫ values of 10−16/10−12 on the

unit box −1 ≤ x, y ≤ 1 for curves of degree 1–10, including the highly degenerate

ones described next. Finding the roots of two polynomials of degree d takes cd4

time with c = 6 microseconds on a 2.2GHz AMD Athlon. The running time and

the error bound are independent of the number of inconsistencies, k, across the test

data. Singular and nearly singular input curves can exhibit larger ǫ values.

We validate the software on the core operations of curve fitting and curve inter-

section. Any system that models with planar curves needs these operations. Exact

methods are impractical because iteration generates points and curves of unbounded

bit complexity: fit curves to points, intersect these curves to generate new points, fit

curves to these points, and so on. The operations are challenging for approximate

methods because degeneracy is common. One source of degeneracy is three curves

that meet at a point by design, whereas three random curves meet with probability

zero. Another source is nearly identical curves. It is common to generate a copy of

a curve by fitting a second curve to a set of its points. The two curves will differ

because of rounding error in the fitting algorithm. Typically, the curves are nearly

identical and their crossings are degenerate. We show that our software handles

these types of degeneracy. The number of inconsistencies is at most 3N , the out-

put accuracy is close to ǫ, and the running time is close to that of the standard,

non-robust floating point sweep.
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2. Prior work

We discuss prior work on arrangement algorithms that employ exact geometry,

perturbation, and numerical approximation. Halperin2 surveys arrangements with

a focus on linear objects.

2.1. Exact methods

Exact Computational Geometry employs custom geometric algorithms, constructive

root bounds, and floating point filters to compute correct combinatorial structures.

Yap1 surveys the approach. The main results are as follows.

Keyser3 computes arrangements of non-degenerate rational parametric curves

with an O(n2) algorithm. Arranging 12 curves of degree at most 4 with 80 bit

coefficients takes 1142 seconds on a 400MHz Pentium 2.

LEDA4 and CGAL5 compute arrangements of line segments via generalizations

of Bentley’s sweep algorithm that employ filtered rational arithmetic. Wein6 ex-

tends the CGAL arrangement algorithm to conics. Arranging 20 random conics

takes 2 seconds on a 450MHz Pentium 2. Berberich7 extends the LEDA arrange-

ment algorithm to conics. Arranging 60 random conics with 50 bit coefficients takes

49 seconds on a 846MHz Pentium 3. Eigenwillig8 extends the LEDA arrangement

algorithm to cubics. Arranging 60/90/120/250 random cubics with 100 bit coeffi-

cients takes 20/60/110/180 seconds on a 1.2GHz Pentium 3. Geismann9 computes

arrangements of special quartics (used to compute arrangements of 3D quadratics)

with a sweep algorithm. Arranging 3 quartics with 30 bit coefficients takes 186 sec-

onds on a Pentium 700. Wolpert10 computes arrangements of nonsingular algebraic

curves by a sweep algorithm, which is not implemented.

Mourrain11 computes arrangements of 3D quadratics by a plane sweep algo-

rithm, which is not implemented. Geismann9,12 computes arrangements of 3D

quadratics. Keyser13 computes arrangements of low-degree sculpted solids without

degeneracies.

Our algorithm far outperforms these exact algorithms. We have tested it on

degree 10 curves, versus degree 3 for prior work. The output accuracy exceeds 10−9

even for highly degenerate inputs. It is much faster than any prior algorithm. For

example, we can arrange 1000 cubics in 100 seconds, versus about 2000 seconds

for the best published result (assuming that running time scales quadratically with

input size and adjusting roughly for processor speed).

2.2. Perturbation methods

Halperin and Leiserowitz14 compute arrangements of circles by a perturbation

method that need not compute the correct combinatorial structure. They perturb

the input so that each floating point computation is guaranteed to be correct with

respect to the perturbed circles. Their method is useful when the perturbation is

much less than the manufacturing accuracy, although the output may be incorrect

for the input circles.
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Fig. 2. Collapsing triangle abc: (a) actual curves; (b) realization.

2.3. Numerical methods

Fortune15 surveys prior work on numerical methods for robustness in computational

geometry that attempts to make direct use of floating point in the spirit of numerical

analysis. He notes two major approaches. One approach16 formalizes geometric

rounding. Fortune points out that “the generalization to complex geometric objects

is not straightforward.” Triangles whose largest inscribed circle diameter is below

the floating point threshold (Fig. 1) can round to points. The realization error can

be large when the triangles are long and skinny (poor aspect ratio). For example,

collapsing triangle abc in Fig. 2 forces the realizations of lines d and e to intersect

even though the true lines are far apart.

We follow the other approach that Fortune15 outlines: “A second floating-point

approach is modeled on the error analysis of numerical methods, particularly linear

algebra. The goal is to show that a suitably implemented algorithm provides an

answer that is in some precise sense near the mathematically correct answer. Error

analysis of geometric algorithms requires consideration of both combinatorial and

numeric structure. Often it is easy to argue that an algorithm produces combina-

torially valid output. . . at least with suitably relaxed requirements. It has turned

out to be much more difficult to argue that the numerical error associated with

combinatorial structure is small. Full error analysis has been carried [out] only for

a few simple algorithms.”

Our research distinguishes itself from prior work by expressing the running time

and error in terms of the number of inconsistencies. We consider the approximate

computation as a separate module and treat the number k of inconsistencies that

it generates as an input property. We express the running time and the error in

terms of k. We demonstrate experimentally that k is small, hence that the algorithm

achieves “floating point speed with floating point accuracy.” Moreover, we handle

semi-algebraic curves, whereas prior work is restricted to linear objects.

3. Input specification

The input to the arrangement algorithm is a set S of curves and a crossing module.

A curve is a sub-manifold of the x, y plane that is the graph of a continuous function

y = f(x) : I(f) → ℜ with I(f) a compact interval. Let minx(f) = min(I(f)) and

maxx(f) = max(I(f)). The curve endpoints are tail(f) = (minx(f), f(minx(f)))



March 6, 2006 8:22 WSPC/Guidelines paper1

6 Victor Milenkovic and Elisha Sacks

xs xe

y

x

g

r1 r2 r3 r4

f

Fig. 3. Sample crossing list.

and head(f) = (maxx(f), f(maxx(f))).

The crossing module takes curves f, g and returns a crossing list

〈f, g, r1, r2, . . . , rm〉 where the ri approximate the roots of f(x) = g(x) at which

their vertical order changes (Fig. 3). Degenerate roots are discussed below. The ri

are in the interior of [xs, xe] = I(f)∩I(g). The order f, g indicates that f(x) < g(x)

for xs ≤ x < r1; otherwise the module returns 〈g, f, r1, r2, . . . , rm〉. The function

next(f, g, x) denotes the next crossing after x, the minimum element of {ri | ri > x},

and is undefined for x ≥ rm. The predicate f <x g denotes that f is below g at x

according to the crossing list. It is true for x ∈ [xs, r1) ∪ [r2, r3) ∪ [r4, r5) ∪ · · · and

is false elsewhere in [xs, xe]. This definition implies f <x g ≡ ¬(g <x f).

Curve endpoints and crossings are floating point numbers. The only operations

that the sweep algorithm performs on them are x < y and x = y, which are exact in

floating point. We assume that f <x g and next(f, g, x) are evaluated in constant

time. The actual cost as a function of algebraic degree is analyzed in Sec. 5.2.

3.1. Inconsistency

The crossing module is inconsistent for curves f, g, h at x when they are in cyclic

vertical order: f <x g, g <x h, and h <x f . The inconsistent x lies in the interval

[r, s) that is bounded by the closest crossings/endpoints r ≤ x and s > x in the

three lists. The curves f, g, h and the interval [r, s) comprise an inconsistency. Let

k denote the number of inconsistencies among all triples of input curves for all

x values. One could compute k by invoking the crossing module on all pairs of

curves and examining the results for each triple. Thus, k = O(cn3) for curves with

c crossings, where c = O(d2) for curves of algebraic degree d. Although four or more

curves also can be inconsistent, we show below that the number of triples governs

the performance of the arrangement algorithm.
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3.2. Degeneracy

Crossing lists cannot represent degenerate intersections where two curves touch

without crossing or are identical over an x interval. These cases are handled as

follows. Touching points are omitted. If f, g are identical over [xs, xe], their cross-

ing list is 〈f, g〉. If they are identical over one or more subintervals, each interval

is merged with an adjacent interval. The crossing list accuracy is unaffected by

these modifications because arbitrarily small perturbations of the curves make the

modified lists correct. Degenerate and nearly degenerate crossings are the main

cause of inconsistent crossing lists. The sweep algorithm detects and corrects them

efficiently, accurately, and without symbolic perturbation.

3.3. Accuracy

We assume that each f, g crossing, p, in the unit box −1 ≤ x, y ≤ 1 is connected

to an approximate crossing, q = (ri, qy), by a path that stays within ǫ of both

curves. The approximate crossing is ǫ close to both curves, but it can be far from

the true crossing. In numerical analysis terms, we bound the backward error, not

the forward error. The crossing list has the following properties.

Lemma 1. Let f <x g: (1) f(x) ≤ g(x) or ∃y for which dist((x, y), f) ≤ ǫ and

dist((x, y), g) ≤ ǫ; (2) if ∀i |x − ri| > ǫ, f(x) ≤ g(x) or dist((x, f(x)), g) ≤ 2ǫ and

dist((x, g(x)), f) ≤ 2ǫ.

Proof. The crossing list order is correct outside the intervals between true and

approximate crossings, so f <x g implies f(x) ≤ g(x) there. It remains to consider

the interval [px, qx]; the interval [qx, px] is similar. As a point, q′, traverses an ǫ path

from q to p, q′x covers [px, qx] (Fig. 4). For x = q′x, set y = q′y to prove (1). The

projections of q′ onto f and g, a′ and b′, cover [px, min(ax, bx)] where a and b are

the points of f and g closest to q. Since |a′b′| ≤ |a′q′| + |q′b′|, dist(a′, g) ≤ 2ǫ and

dist(b′, f) ≤ 2ǫ. This proves (2) because |qa| ≤ ǫ implies ax ≥ qx − ǫ and likewise

for b. If f is steep, qx − ax can be arbitrarily close to ǫ, as shown.

We give an informal mathematical estimate of the ǫ that is reasonable to expect

from a numerical solver. Curves f and g are subsets of the zero sets of bivariate

polynomials F (x, y), G(x, y) that have a common zero at p in the unit box. Every

solver generates a sequence, qi, for which F (qi) and G(qi) converge to zero. We

assume that floating point evaluation of the sequence converges to a q for which

|F (q)| < δ and |G(q)| < δ where δ is the polynomial evaluation accuracy. We expect

δ to be on the order of the floating point rounding unit (about 10−16 for ANSI

double float), assuming the polynomials have bounded degree and coefficients. As

|F (q)| converges to zero, the distance from q to the curve F converges to |F |/||∇F ||,

evaluated at q, where ∇F = (Fx, Fy) is the gradient and where subscripts denote

partial derivatives. Thus, the distances from q to F and G are bounded by δ/||∇F ||

and δ/||∇G||. The larger of these two quantities is ǫ.
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Fig. 4. Worst case for approximate intersection q: qx − px can be large, and the distance from
c = (qx, f(qx)) to g can also be large.

4. Arrangement algorithm

The arrangement algorithm is a vertical line sweep that uses the crossing module

to compute and process sweep events. When the module output is consistent, our

algorithm is equivalent to the Bentley-Ottman algorithm. Inconsistencies can create

two novel situations: (1) a swap event is encountered for two curves that are not

adjacent in the sweep list and (2) two curves become adjacent in the sweep and

their sweep order contradicts their crossing list order. The former is handled by

discarding the impossible swap. The latter is handled by swapping the curves to

bring them into crossing list order.

The algorithm employs two data structures.

(1) a list L of curves, called the sweep list, that represents the order of the curves

from lowest to highest along a vertical sweep line. L is implemented as a red-

black binary tree whose in-order traversal is the list order. The successor and

predecessor of f in L are denoted succ(f) and pred(f).

(2) a priority queue P of events: insert(f, x), remove(f, x), swap(f, g, x), and

check(f, g, x). Events are dequeued in increasing x order. Ties are broken ar-

bitrarily, except that removes come before other events and inserts come after

other events. P is implemented as a heap.

For each f ∈ S, the algorithm initializes P with insert(f, minx(f)) and

remove(f, maxx(f)). It then repeatedly dequeues and processes events from P .

• insert(f, x): Insert f into L: if f <x g at node g, go left else go right. If f is not

first in L, enqueue check(pred(f), f, x) into P . If f is not last in L, enqueue

check(f, succ(f), x).

• remove(f, x): Remove f from L. If f is neither first nor last in L, enqueue

check(pred(f), succ(f), x).

• swap(f, g, x): If g 6= succ(f), discard the event. Otherwise, swap f and g in L.

Enqueue check(g, f, x). If f is not last, enqueue check(f, succ(f), x). If g is not

first, enqueue check(pred(g), g, x).

• check(f, g, x): If g 6= succ(f) or maxx(f) ≤ x or maxx(g) ≤ x, discard the event.

If g <x f , enqueue swap(f, g, x). Otherwise, if the next crossing r = next(f, g, x)

is defined, enqueue swap(f, g, r).
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Event processing presupposes that curves can be located in L. Location is performed

by assigning every curve a pointer to its tree node, and every node a pointer to

its parent. The evolving sweep list is converted to an arrangement structure using

standard techniques. When P becomes empty, the sweep ends and the arrangement

is complete. Vertical line segments can be added to the output in linear time; we

omit the details.

4.1. Running time

The sweep defines an output crossing list for each pair of curves. Let L(r) denote the

state of L immediately after the algorithm finishes processing every event in P with

x ≤ r. Let f <′

r g denote that f precedes g in L(r). The f, g output crossing list is

〈f, g, r′1, r
′

2, . . . , r
′

m′〉 where the r′i are the x values where f and g swap in L. The r′i
are identical to the ri in the absence of inconsistency, but differ when swaps are dis-

carded or are added at non-crossings by check events. Due to inconsistency, it is even

possible that g <xs
f yet f <′

xs
g at xs = max(minx(f), minx(g)): the input cross-

ing list is 〈g, f, r1, r2, . . . , rm〉 and the output crossing list is 〈f, g, r′1, r
′

2, . . . , r
′

m′〉.

This can happen when g is inserted in the sweep on the incorrect side of f (from the

crossing list perspective) because an intervening segment prevents f, g from being

compared during the insertion. We have f <′

x g for x ∈ [xs, r
′

1)∪[r′2, r
′

3)∪[r′4, r
′

5)∪· · ·

and g <′

x f elsewhere in [xs, xe].

We show that the output crossing lists are consistent and have C = N +

min(3kn, n2/2) crossings for n curves with N crossings and k inconsistencies. This

implies that the arrangement has V = 2n + C vertices and that the running time

is O(V log n).

Lemma 2. The output crossing lists are consistent.

Proof. If f <′

x g and g <′

x h, f precedes g precedes h in L(x), so f precedes h and

f <′

x h.

Lemma 3. Immediately after insert(f, x) is processed, pred(f) <x f and

f <x succ(f).

Proof. After insertion and before balancing, f is a leaf. Its successor is the nearest

ancestor g whose left subtree contains f . The insertion went left at g, so f <x g.

Balancing the tree does not change the successor. Predecessors are analogous.

Lemma 4. If g = succ(f) in L(x), then f <x g.

Proof. Let [a, b) be a maximal interval on which g = succ(f) in L(x). Some event

at a establishes g = succ(f) and enqueues check(f, g, a). There can be many es-

tablishing and disestablishing events at a; only the end result matters. The fact

that g = succ(f) in L(a) implies that f <a g. Otherwise, the check would enqueue
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swap(f, g, a) and g = succ(f) in L(a) would be false. The value of f <x g next

changes at r = next(f, g, a). If r < b were true, swap(f, g, r) would be executed,

which contradicts the maximality of [a, b). Hence, r ≥ b and f <x g on [a, b).

This lemma shows that adjacent curves in L(x) are in crossing list order. We

generalize this local consistency property to sublists of L(x). The list H = h1, . . . , hp

with p ≥ 2 is locally consistent when hi <x hi+1 for i < p. It is minimal when remov-

ing any of h2, . . . hp−1 yields an inconsistent sublist, which implies that hi+2 <x hi

for i < p − 1. Although non-adjacent curves in L(x) need not be in crossing list

order, they can be linked by a minimal locally consistent list of length at most

kx + 2 with kx ≤ k the number of inconsistencies at x.

Lemma 5. If f <′

x g, there exists a minimal locally consistent list from f to g of

length at most kx + 2.

Proof. The list h1 = f, h2 = succ(h1), . . . , hp = g is locally consistent by Lemma 4.

If hi <x hi+2 for some i < p − 1, delete hi+1 to obtain a locally consistent list of

length p − 1. Repeat this process as long as possible to obtain a minimal list of

length l. Each of the l − 2 triples of consecutive list elements is inconsistent at x,

so l − 2 ≤ kx and l ≤ kx + 2.

Lemma 6. If f <′

x g and g <x f , then f, h2, h3 are inconsistent at x for some

h2, h3 ∈ S.

Proof. Form the minimal locally consistent list from h1 = f to hl = g. We have

l > 2 because g <x f , so h1 = f, h2, h3 are inconsistent at x.

Lemma 7. The algorithm executes at most C = N + min(3kn, n2/2) swap events.

Proof. Let the crossing list for f, g ∈ S be 〈f, g, r1, . . . , rm〉, so f <x g is constant

on the m + 1 intervals (−∞, r1), [r1, r2), [r2, r3), . . . , [rm−1, rm), [rm,∞). The only

time swap(f, g, x) is executed is when g = succ(f) and g <x f . This makes g =

succ(f) false, so no further swaps are enqueued in the current interval. Therefore,

at most one swap is executed in each of the m + 1 intervals.

If a swap is executed at a < r1, it is swap(g, f, a), since f <a g, and g precedes

f in L before the swap. Suppose f is inserted later than g and let b = minx(f). If

b = a, Lemma 3 implies that f cannot be inserted as succ(g). Inserts are processed

after deletes and swaps, so the intervening curves persist in L(a) and f, g cannot

swap at a. We conclude that b < a, g <′

b f , and f belongs to an inconsistency

according to Lemma 6. Charge the extra crossing to this inconsistency. Each curve

can have n − 1 crossing lists, hence n − 1 extra crossings, and each inconsistency

involves 3 curves. The k inconsistencies are charged at most 3k(n−1) times. There

can be at most one extra crossing for each of the n(n − 1)/2 pairs of curves.
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Theorem 1. The arrangement has at most V = 2n+C vertices and the sweep has

running time O(V log n).

Proof. Swaps generate at most C vertices by Lemma 7, insertions and deletions

generate 2n vertices, and checks generate no vertices. This proves the vertex bound

of V . Each insert, remove, and executed swap enqueues up to three checks. Each

check enqueues at most one swap. Therefore, the total number of events is a constant

times the number of insert, remove, and executed swaps, which is bounded by V .

An event is processed by updating L and P in O(log n) time.

4.2. Realizability

The sweep algorithm constructs a combinatorial arrangement with one vertex per

insert, remove, and executed swap. It determines the vertex x coordinates, but not

their y coordinates. We prove that this combinatorial structure is realized by curves

that are close to the input. The proof consists of three steps: (1) define offset curves

that realize the sweep output; (2) show that the realization is δ accurate when the

output crossing lists are δ realizable; and (3) prove δ realizability.

Lemma 8. For every x ∈ I(f), dist((x, y), f) is zero at y = f(x) and increases

monotonically as y moves away from f(x).

Proof. The distance is zero at y = f(x) because (x, y) is on f . Given p and q

with px = qx and py > qy > f(px), we show that dist(q, f) < dist(p, f). Let p′ be

a point of f nearest to p. If p′y ≤ qy, then dist(q, f) ≤ |qp′| < |pp′| = dist(p, f).

If p′y > qy, we know f(px) < qy and f(p′x) = p′y > qy. By the intermediate value

theorem, there exists x ∈ (px, p′x) such that f(x) = qy. Let q′ = (x, f(x)). Hence,

dist(q, f) ≤ |qq′| = |qx − q′x| < |qx − p′x| = |px − p′x| ≤ |pp′| = dist(p, f).

Lemma 8 proves the existence of curves y = f+δ(x) and y = f−δ(x) at distance

δ > 0 above and below f for x ∈ I(f). Using them, we realize each f ∈ S with

f̂(x) = max
e <′

x f
e−δ(x).

The condition e <′

x f is shorthand for e ∈ S, x ∈ I(e), and e <′

x f . We define f <′

x f

for x ∈ I(f), so f−δ(x) is included in the maximum. The function f̂(x) is possibly

discontinuous when {e | e <′

x f} changes, which can only happen at f crossings. We

define f̂ to be the continuous curve that results from filling in the discontinuities

with vertical line segments.

Figure 5 shows the realization of line segments f and g near crossing r. The

segments f−δ and g−δ are parallel to f and g. The realization curve f̂ (shown

with bold dashes) consists of four line segments. In segment 1, f̂(x) = f−δ(x)

because f <′

x g. In segments 3 and 4, f̂(x) = max{f−δ(x), g−δ(x)} because g <′

x f .

The crossing r causes the discontinuity in f̂ that is bridged by segment 2. The

realization curve ĝ is g−δ.
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Fig. 5. Realization of curves f and g near crossing r.

Lemma 9. f <′

x g implies f̂(x) ≤ ĝ(x).

Proof. By Lemma 2, e <′

x f and f <′

x g imply e <′

x g. Therefore f̂(x) is the max-

imum of a subset of the elements that define ĝ(x) and f̂(x) ≤ ĝ(x).

Lemma 9 shows that vertical order of f̂ and ĝ equals the output crossing list

order. The domain of f̂ equals that of f . Thus, the f̂ realize the output crossing lists.

The vertical segments are a consequence of the discontinuity in f <′

x g at output

crossings. They can be eliminated by a local perturbation to obtain realization

functions that are equal at crossings.

Definition 1. The f, g output crossing list is δ realizable at x if f <′

x g implies

f−δ(x) ≤ g+δ(x).

Lemma 10. if all the output crossing lists are δ realizable at x, then f−δ(x) ≤

f̂(x) ≤ f+δ(x).

Proof. Since f−δ(x) is one of the elements in the definition of f̂ , f−δ(x) ≤ f̂(x).

For each e with e <′

x f , e−δ(x) ≤ f+δ(x) by δ realizability, so f̂(x) ≤ f+δ(x).

It remains to prove that each f, g output crossing list is δ realizable, except near

xs. The geometric intuition behind the proof is as follows. Suppose f is below g at

x in the output order (f <′

x g). If f is below g according to the crossing module

(f <x g), then by Lemma 1 (1) either f is truly below g (f(x) ≤ g(x)) or the curves

are ǫ close to a point (x, y). In the latter case, a downward offset of f is below an

upward offset of g (f−ǫ(x) ≤ g+ǫ(x)). If there is no such x, we form a minimal

locally consistent list (MLCL) from f to g. Using Lemma 1 (2), we find a chain of

points on these segments such that each consecutive pair is correctly ordered in y

or within 2ǫ. This chain implies a bound on the f, g realization error.

The first step in the proof is to define a sequence of x candidates. Let x = x0

be a value such that f <′

x0
g and select an MLCL from f to g at x0. Let x1 be
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the minimal value such that this list is an LCL for x ∈ [x1, x0). If f and g do not

swap or start at x1, select an MLCL at x = x−

1 , the largest floating point value less

than x1. Let x2 be the minimal value such that this list is an LCL for x ∈ [x2, x1).

Similarly, construct x3, x4, . . .. Let lj+1 denote the length of the LCL in the interval

[xj+1, xj).

Lemma 11. lj ≤ k + 1 − j.

Proof. By construction, f and g do not start or swap at xi, i = 1, 2, . . . , j. Since

xi is the leftmost value at which the MLCL at x−

i−1 remains an LCL, some other

segment in the LCL must start at xi or some pair of consecutive segments in the

LCL must have a crossing at xi. Therefore, xi is at or to the left of the beginning

of one of the inconsistencies in the MLCL. (The left endpoint of this inconsistency

might be to the right of xi because the LCL is not necessarily minimal at xi.) Since

each x−

i is to the left of a different inconsistency, the number of inconsistencies in

the interval [xj+1, xj) is at most k − j. The result follows from Lemma 5.

We say that an interval [xj+1, xj) is long if xj − xj+1 ≥ 2(lj − 1)ǫ. Our strategy

for analyzing the realizability of f and g at x0 depends on whether there is a long

interval. We use Lemma 13 to handle the case where there are no long intervals

and use Lemma 14 to handle long intervals.

Lemma 12. Let p = (x, y1) and q = (x, y2) with y1 ≤ y2. If dist(p, f) ≤ δ and

dist(q, g) ≤ δ, then f−δ(x) ≤ g+δ(x).

Proof. By Lemma 8, f−δ(x) ≤ py and qy ≤ g+δ(x).

Lemma 13. If f <x g, then f and g are |x0 − x| + ǫ realizable at x0.

Proof. By Lemma 1, either f(x) ≤ g(x) or ∃y with dist((x, y), f) ≤ ǫ and

dist((x, y), g) ≤ ǫ. If f(x) ≤ g(x), set p = (x0, f(x)) and q = (x0, g(x)). Since

(x, f(x)) lies on f , dist(p, f) ≤ |x0 − x|. If f(x) > g(x), set p = q = (x0, y), for

which δ(p, f) ≤ |x0−x|+δ((x, y), f) ≤ |x0−x|+ǫ. Similarly, dist(q, g) ≤ |x0−x|+ǫ

in both cases. By Lemma 12, f and g are |x0 − x| + ǫ realizable (Def. 1) at x0.

Lemma 14. If [xj+1, xj) is long, f and g are x0 − xj + (2lj − 1)ǫ realizable at x0.

Proof. Set x = xj − (lj − 1)ǫ. Since xj − xj−1 ≥ 2(lj − 1)ǫ by definition of long,

xj − x = (lj − 1)ǫ and x − xj−1 ≥ (lj − 1)ǫ.

Let h0, . . . , hlj be the MLCL from f = h0 to g = hlj selected at x−

j . We will

place points p0, . . . , plj on h0, . . . , hlj such that either pi−1
x = pi

x and pi−1
y ≤ pi

y or

such that |pi−1pi| ≤ 2ǫ for i = 1, . . . , lj . In either case, |pi−1
x − pi

x| ≤ 2ǫ.

If lj is even, for i = lj/2, set pi = (x, hi(x)). By Lemma 1(2), either hi(p
i
x) ≤

hi+1(p
i
x) or dist(pi, hi+1) ≤ 2ǫ. If the former, set pi+1 = (pi

x, hi+1(p
i
x)). If the latter,
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set pi+1 to be the point on hi+1 closest to pi. Repeat for i = lj/2 + 1, . . . , lj − 1.

Similarly, for i = lj/2 again, set pi−1 equal (pi
x, hi−1(p

i
x)) or the point of hi−1 closest

to pi, and repeat for i = lj/2 − 1, . . . , 1.

If lj is odd, again set i = lj/2, even though this is half-integral. If hi− 1

2

(x) ≤

hi+ 1

2

(x), set pi = (x, (hi− 1

2

(x) + hi+ 1

2

(x))/2), pi− 1

2 = (x, hi− 1

2

(x)), and pi+ 1

2 =

(x, hi+ 1

2

(x)). (Since i = lj/2 is half-integral, i− 1
2 and i+ 1

2 are integers.) Otherwise,

set pi = (x, y) from Lemma 1(1) and set pi− 1

2 and pi+ 1

2 to the points of hi− 1

2

and

hi+ 1

2

closest to pi. By the lemma, either pi
x = p

i+ 1

2

x and pi
y ≤ p

i+ 1

2

y or |pipi+ 1

2 | ≤ ǫ =

2(1
2 )ǫ. In either case, |pi

x − p
i+ 1

2

x | ≤ 2(1
2 )ǫ. Similarly for i − 1

2 . For i = (lj + 1)/2 +

1, . . . , lj and for i = (lj − 1)/2 − 1, . . . , 0, set pi using Lemma 1(2) as for even lj .

Both even and odd lj create plj/2, but for odd lj , it does not lie on any hi because

lj/2 is half-integral.

This process fails if we apply Lemma 1(2) too near to an approximate root of

some pair hi−1, hi, i = 1, . . . , lj. However, the farthest points from x to which we

apply the lemma are p1 and plj−1. Telescoping the bounds on |pi−1
x −pi

x|, we obtain

|p1
x − p

lj/2
x | ≤ 2ǫ(lj/2− 1) = (lj − 2)ǫ and similarly, |p

lj−1
x − p

lj/2
x | ≤ 2ǫ(lj/2− 1) =

(lj−2)ǫ. Since x is (lj−1)ǫ distant from xj−1 and xj and since the MLCL is an LCL

in that interval, p1
x and p

lj−1
x are ǫ distant from a crossing of p0, p1 and plj−1, plj ,

and the lemma applies.

Now that p0, p1, . . . , plj are defined, define points p and q as follows. If p0
y ≤

p
lj/2
y , set p = (x0, p

0
y), else set p = (x0, p

lj/2
y ). If p

lj
y ≥ p

lj/2
y , set q = (x0, p

lj
y ),

else set q = (x0, p
lj/2
y ). Clearly, py ≤ p

lj/2
y and qy ≥ p

lj/2
y and hence py ≤ qy.

To finish the proof, we just have to show dist(p, f) ≤ x0 − xj + (2lj − 1)ǫ and

dist(q, g) ≤ x0 − xj + (2lj − 1)ǫ and apply Lemma 12.

Each step in the sequence p0, . . . , plj/2, . . . , plj is either straight up in y or less

that 2ǫ in distance. (If lj is odd, and lj/2 is half-integral, the distance bound

for p(lj−1)/2, plj/2 and plj/2, p(lj+1)/2 is ǫ since the index increases by 1
2 .) So if

p0
y ≤ p

lj/2
y , dist(p, f) ≤ (x0−xj)+(xj −x)+ |x−p0

x|+dist(p0, f) ≤ (x0−xj)+(lj −

1)ǫ+2ǫ(lj/2−0)+0 = x0−xj+(2lj−1)ǫ. The third term comes from telescoping the

bounds on |pi−1
x − pi

x| and the fourth term from the fact that f = h0. If p0
y > p

lj/2
y ,

then |p0plj/2| ≤ 2ǫ(lj/2 − 0) = ljǫ since the ultimate change in y is negative and

so the steps up in y do not add to the error. Hence, dist(plj/2, f) ≤ |plj/2p0| ≤ ljǫ,

since p0 lies on f . Finally, dist(p, f) ≤ (x0 − xj) + (xj − x) + dist(plj/2, f) ≤

(x0 −xj)+ (lj − 1)ǫ+ ljǫ = x0 −xj +(2lj − 1)ǫ. The bound on dist(q, g) is obtained

similarly.

Theorem 2. If x0 ≥ max(minx(f), minx(g)) + Kǫ, then f and g are (K + 1)ǫ

realizable at x0 for K = min(k(k + 1), 2 min(k, n − 2)min(k, n + N)).

Proof. Consider the sequence x0 > x1 > · · · > xm such that m ≤ k: the sequence

might be longer, but we stop at m = k. If the sequence has no long intervals, then
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x0−xm < 2(l0−1)ǫ+2(l1−1)ǫ+· · ·+2(lk−1−1)ǫ ≤ 2ǫ(k+(k−1)+· · ·+1) = k(k+1)ǫ

by Lemma 11. On the other hand, an MLCL can have at most n elements and hence

lj − 1 ≤ min(k, n − 2). Each x−

j is to the left of the left end of an inconsistency,

which is either a segment left endpoint or crossing, and there are min(k, n + N) of

those. Since xj − xj+1 < 2(lj − 1), x0 − xm < 2 min(k, n− 2)min(k, n + N). Hence,

x0 −xm < Kǫ, and since x0 ≥ max(minx(f), minx(g))+Kǫ, neither segment starts

at x = xm and f <′

x−

m

g is defined. If f <′

x−

m

g is true, m = k (otherwise we would

not have stopped at m) and lm = 1 by Lemma 11. This means that f, g are adjacent

on x ∈ [xm+1, xm), so f <xm
g by local consistency. If g <′

x−

m

f , the arrangement

algorithm must have swapped f and g at x = xm, so f <xm
g as a post condition.

By Lemma 13, f and g are |x0 − xm| + ǫ ≤ Kǫ + ǫ = (K + 1)ǫ realizable at x0.

If the sequence has a long interval, let [xj+1, xj) be the long interval nearest

to x0 (smallest j). All intervals to the right of xj must be short and therefore

|x0 − xj | ≤ 2(l0 − 1)ǫ + 2(l1 − 1)ǫ + · · · + 2(lj−1 − 1)ǫ. By Lemma 14, f and g are

|x0−xj |+(2lj −1)ǫ ≤ 2(l0−1)ǫ+2(l1−1)ǫ+ · · ·+2(lj−1−1)ǫ+2(lj−1)ǫ realizable

at x0. Since j < m, j ≤ k − 1 and the argument of the previous paragraph bounds

this sum by Kǫ.

Trimming Kǫ off the left end of each segment f means restricting its domain to

[minx(f)+Kǫ, maxx(f)]. Let f t denote the trimmed segment. The following corol-

lary underlies our practical solution to the lack of an error bound near curve tails.

We add a short horizontal “telomere” line segment to the tail of each segment, cal-

culate the arrangement, and then trim off the telomeres. In cell biology, a telomere

at the end of a strand of DNA loses a few base pairs every time the cell divides.

The telomere does not encode any genes: it merely acts to protect the genes from

loss of information. Analogously, our telomere segments protect the input segments

from insertion error in the arrangement algorithm.

Corollary 1. Let each segment, f , be horizontal for x ∈ [minx(f), minx(f) + Kǫ].

Trim Kǫ off every segment. For all x such that f t <′

x gt, f t and gt are (K + 1)ǫ

realizable at x.

Proof. Given a horizontal segment ab (ax < bx and ay = by) and a point

p such that px ≥ bx, dist(p, ab) = |pb|. Therefore, if f is constant for x ∈

[minx(f), minx(f) + Kǫ] and if px ≥ minx(f) + Kǫ, then the point (x′, f(x′)) of f

closest to p must have x′ ≥ minx(f) + Kǫ. Therefore, dist(p, f) = dist(p, f t).

By definition of trimming, f t <′

x gt implies x ≥ max(minx(f), minx(g)) + Kǫ

and hence f and g are (K + 1)ǫ realizable at x: there exists p and q such that

px = qx = x, py ≤ qy, dist(p, f) ≤ (K + 1)ǫ, and dist(q, g) ≤ (K + 1)ǫ. By the

previous paragraph, dist(p, f) = dist(p, f t) and dist(q, g) = dist(q, gt), and hence

f t and gt are (K + 1)ǫ realizable at x.
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Fig. 6. Algebraic curves.

5. Implementation

This section describes our implementation of the arrangement algorithm for semi-

algebraic curves and our validation on generic and degenerate inputs.

5.1. Semi-algebraic curves

Semi-algebraic curves are defined in terms of algebraic curves. An algebraic curve is

the zero set of a polynomial F (x, y). A curve point is regular when ∇F is nonzero

and is singular otherwise. The regular points partition into 1D manifolds, called

branches, that are topological circles or lines. Two or more branches meet at a

singular point. We specify an input curve as a compact, x-monotone segment of a

branch. Every compact semi-algebraic curve can be expressed as a finite disjoint

union of such curves.

Figure 6 shows two algebraic curves that cross at r and s. Curve 1 consists of

three branches: a topological circle and two topological lines (the left/right loops

of a horizontal figure 8) that meet at singular point c. Curve 2 consists of two

unbounded branches. The dots mark the singular and critical points, which delimit

the allowable input curves.

5.2. Crossing module

The crossing module decomposes each input algebraic curve into an arrangement of

x-monotone branch segments. The vertices are the singular points and the turning

points. The singular points are computed by solving Fx = Fy = 0 and returning

the roots where F = 0. The turning points are computed by solving F = Fy = 0.

The number of edges that are incident on a vertex is determined by the signs

of polynomials in Fx, Fy, Fxx, Fxy, Fyy. A standard sweep computes the branch

structure from this local information. The local analysis assumes that the turning

points and the singular points are non-degenerate. A degenerate point can have

arbitrarily many incident edges. Computing its local branch structure is a hard

problem for which numerical methods are ill suited.
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Given a segment f of F and an x0 ∈ [minx(f), maxx(f)], the crossing module

computes f(x0) by solving F (x0, y) = 0 for y then using the branch structure to

choose the correct root in y. The crossing module constructs the crossing list for f, g

on F, G by solving F = G = 0, assigning the crossings to the monotone segments

of each algebraic curve, and sampling midway between crossings to determine the

vertical order. We store crossing lists to avoid recomputing them.

Correctness of these three algorithms is straightforward in exact arithmetic.

We make no robustness claims about our floating point implementations. The sole

numerical operation is computing the roots of a system of one or two polynomials

with floating point coefficients.

Root finding is a core numerical analysis task with several practical solutions.

Although good univariate solvers are available,17 provable robustness is an open

problem.18 One multivariate root finding strategy19 is to construct a homotopy

from the input system to a start system that is easily solvable. Each input system

root (xr, yr, 1) is linked to a start root (xs, ys, 0) by a branch in (x, y, t) space. The

branches are traced from the start roots to the input roots, typically by a pre-

dictor/corrector integrator. Another approach20,21 is to construct matrices whose

eigenvectors are the system roots then to compute the eigenvectors with a linear

algebra package. We adopt this method because it has proved accurate and fast.

5.2.1. Speed

We measured the running time for two curves of degree d. Theory ensures a poly-

nomial bound. Experiments on random and degenerate inputs yields cd4 time with

c = 6 microseconds on a 2.2GHz AMD Athlon. Half the time goes to matrix setup

in C and the rest to eigenvalue computation with LAPACK.22 A further factor of

2–4 speedup may be possible by using BLAS in matrix setup and by optimizing the

LAPACK implementation.

5.2.2. Accuracy

We estimated ǫ accuracy on 10,000 pairs of algebraic curves of degree d with random

coefficients in [−1, 1]. We sampled the crossing lists on the unit box with uniform

spacing of 0.01 in x. We bound the perpendicular error, which determines ǫ, by

the vertical error. For f <x g, the vertical error at x is min(0, f(x) − g(x)). The

mean/max vertical errors over 10,000 pairs are 10−16/10−12 for degree 1–10. The

arrangement algorithm validation provides similar ǫ estimates.

We expect the same accuracy for any input, except near singularities. Accuracy

drops at isolated singularities. Intervals of singularity cannot be handled by any

known numerical solver. Two such curves are identical or share a component. Float-

ing point computation converts these into approximate properties. Nearly identical

curves yield accurate crossing lists no matter what crossings the solver computes.

Shared components defeat our program. Nearly identical curves arise from standard
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curve fitting operations, but shared components do not.

5.2.3. Inconsistencies

The crossing module generates no inconsistencies on 100,000 triples of algebraic

curves of degree 1–10 with random coefficients in [−1, 1]. We replaced each curve

F (x, y) with F (x, y) − F (0.1, 0.2), so that all the curves meet at (0.1, 0.2) except

for rounding error. Independently of degree, 6% of the curve triples are inconsistent

on an interval of average length 10−15 near (0.1, 0.2). We added a random constant

in [0, 10−14] to each polynomial and obtained no inconsistencies. The arrangement

algorithm validation yields at most 3N inconsistencies for highly degenerate ar-

rangements with N crossings.

5.3. Arrangement algorithm validation

The arrangement algorithm validation has several goals. The algorithm handles

inputs with many localized degeneracies: many vertices incident on many algebraic

curves. It handles evil twins: multiple versions of the same algebraic curve with

slightly different coefficients. The accuracy is within a factor of two of the limit

imposed by the root solver. The number of calls to the crossing module, which take

over 90% of the running time, is within a few percent of the minimum for any sweep

arrangement algorithm.

5.3.1. Generating Arrangements

We validate our algorithm on inputs with many degeneracies and near degeneracies,

which are the hardest cases for any algorithm. To create such an input, generate

random sets of points in the unit box and fit polynomials to them until there are

10 segments. Calculate the arrangement of these segments. Select random sets of

vertices from this arrangement and fit polynomials to them until there are 90 more

segments. Calculate the arrangement of the 10+90 = 100 segments. Select random

sets of vertices from these arrangements and fit polynomials to them until there are

900 more segments. Calculate the arrangement of the 10+90+900 = 1000 segments.

This is the good arrangement. To generate an evil arrangement, generate only 400

instead of 900 segments in this manner. Generate the remaining 500 segments as evil

twins of the 100 segments in the second arrangement. To do so, select at random one

of the polynomials of the first 100 segments. From the second arrangement, select

a random set of vertices that lie on one of the segments of that polynomial. Fit an

evil twin polynomial to those vertices. In exact arithmetic, the evil twin is identical

to the original polynomial. However, there is rounding error in the calculation of

the vertices and in the fitting to these vertices. Therefore, the evil twin is nearly

identical to the original. Add segments from evil twins until there are 500 evil twin

segments for a total of 10 + 90 + 400 + 500 = 1000 segments.
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Fig. 7. Input arrangements of degree 3.

Fitting is performed as follows. A polynomial F (x, y) of degree d is fitted to D−1

points, since it has D = (d+1)(d+2)/2 coefficients of which D−1 are independent.

The constant term is set to 1 and the other D − 1 coefficients are computed with

a standard linear solver. To avoid stressing the solver, we reject inputs where the

minimum distance between two points is less than 0.01. We subdivide the algebraic

curve F (x, y) = 0 into monotone segments then generate the maximal subsegments

that end at fit points or at turning points. We include segments that start at turning

points to obtain a realization error estimate at segment tails with very large slopes,

a situation where the error bound does not apply and we expect relatively large

errors. If we detect a singularity, we reject F . Our algorithm handles singularities,

but we validate on degeneracies only.

Figure 7 shows test arrangements with 10, 100, and 1000 segments of degree 3.

The following is the histogram of incidences of algebraic curves on vertices from 1

to 50: 30 91044 935 455 262 140 95 58 55 45 50 34 24 25 24 20 17 15 11 12 10 7 9

9 5 5 7 1 3 3 0 6 1 3 1 0 1 0 5 0 1 0 1 2 0 0 1 0 0 1. For example, 30 vertices are

incident on one algebraic curve. These include turning points, which are incident

on two segments but only one curve. Most of the 91044 vertices incident on two

curves are newly generated intersections. The evil twin arrangement (not shown)

is even more degenerate: 80 41595 6029 2595 1257 668 425 290 192 150 108 110 68

44 44 29 28 28 24 17 25 22 11 17 20 13 11 16 11 11 8 7 4 4 6 5 4 2 0 4 4 2 0 2 0 1 0

1 1 0 0 0 0 1.

5.3.2. Results

We ran ten experiments on arrangements of 1000 curves of algebraic degree 3–10.

Tables 1 and 2 show the results for good and evil arrangements.

We estimate the realization error just to the left of each vertex. The rationale

is that the error should be maximal just before incorrectly ordered segments swap,

which occurs solely at sweep events. We examine the segments incident on the
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Table 1. Statistics for good arrangements. Columns divide into input, output, and telomere sec-
tions. Input: d is the algebraic degree, Nmed and Nmax are the median and maximum number of
crossing module crossings, kmed and kmax are the median and maximum number of inconsisten-
cies, and emed and emin are the median and minimum crossing list accuracy in bits. Output: t is
average running time in seconds, ta is the percentage of t spent outside the crossing module, ck is
the maximum number of output crossings due to inconsistencies, and er is the maximum ratio of
realization error to crossing list accuracy. Telomere data in percent: ∆t is the maximum increase
in t, ∆ck is the minimum decrease in ck, and ∆

−
er and ∆+er are the maximum decrease and

increase in er. Experiments were run on 2.2GHz AMD Athlon(tm) 64-bit processor with a 1M
cache running Linux 2.6 and LAPACK 3.0.

d 3 4 5 6 7 8 9 10

Nmed 104862 99787 91135 77704 63483 48498 39779 33971

Nmax 109218 110336 109687 97785 85436 60866 53025 35123

kmed 16354 37681 86897 46197 33346 18490 9998 5453

kmax 24700 74159 135842 70454 79474 19410 22515 7585

emed 42 41 40 39 38 39 38 36

emin 39 33 39 38 34 37 16 11

t 47 65 80 91 106 121 138 157

ta 1.2 0.9 0.8 0.5 0.4 0.2 0.2 0.1

ck 718 904 1706 702 726 403 343 175

er 1 1 1 1 1 1 1 1.3

∆t +12 +12 +12 +11 +9 +9 +8 +5

∆ck −97 −98 −98 −98 −97 −96 −94 −89

∆−er −58 −12 −0 −5 −19 −0 −6 −0

∆+er +9 +27 +0 +0 +6 +0 +0 +73

vertex and the two segments directly above and below them in the sweep list. We

estimate the error of each segment relative to every segment in the sweep list. For

f, g with f <′

x g, the estimate is the minimum δ for which f−δ(x) = g+δ(x), which

is zero when f(x) ≤ g(x) and is positive otherwise. The maximum over all pairs

and vertices is our estimate of the δ realizability of the output crossing lists. It is

at most 1.3ǫ for the good arrangements and at most 1.5ǫ for the evil ones. The

medians are of the ten maximum values.

We estimate the crossing list accuracy as the maximum δ over the adjacent pairs.

These pairs are in crossing list order by local consistency, so δ is the minimum offset

that realizes the crossing list order. This is a conservative estimate of ǫ because it

does not exclude ǫ intervals around crossings. The median accuracy slowly drops

from 42 bits to 34 bits as the degree rises from 3 to 10. The good arrangements

had bad accuracy on one degree 9 and one degree 10 test. The evil arrangements

had bad accuracy one one degree 7 and one degree 10 test. In each case, one root

is approximated poorly due to an ill conditioned eigenvalue problem.

Crossing time dominates total running time. At most 1.3% of the time is spent

outside the crossing module, and this percentage drops to 0.1% for degree 10. The
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Table 2. Statistics for evil arrangements.

d 3 4 5 6 7 8 9 10

Nmed 90359 101455 80612 81953 67704 49626 46178 34054

Nmax 96873 112373 116589 95050 77767 56596 59651 35072

kmed 60773 93111 111716 72183 55838 29102 21413 12205

kmax 72504 136861 245111 91522 95639 36098 29056 16388

emed 43 42 40 40 39 39 37 34

emin 41 38 32 37 14 33 30 11

t 47 75 88 102 120 137 163 174

ta 1.3 1.1 1 0.5 0.4 0.2 0.1 0.1

ck 1617 1490 3156 1159 1027 755 525 438

er 1.5 1 1 1 1 1.2 1.3 1.4

∆t +14 +13 +11 +10 +8 +7 +6 +4

∆ck −98 −98 −97 −96 −98 −98 −95 −91

∆−er −7 −13 −0 −0 −0 −0 −4 −0

∆+er +16 +0 +0 +9 +58 +12 +0 +187

number of crossings declines, presumably because higher degree curves leave the

bounding box faster. The number of inconsistencies, k, is bounded by 2N for good

arrangements and 3N for evil. The inconsistencies increase the number of crossings

by at most 2% for good arrangements and by at most 4% for evil arrangements.

The experiments were run with a telomere length of 212 rounding units. We chose

this length to make it roughly comparable to the maximum ǫ we had seen. Telomeres

increased the running time at most 14% and usually much less. They decreased

the number of extra crossings by 90–98%. They had little effect on accuracy, as

measured by er, which is close to the optimal value of 1 in most cases and is at

most 3.

6. Conclusions

We have presented a robust arrangement algorithm for plane curves based on an

approximate crossing module. Its performance is analyzed in terms of the number

of combinatorial inconsistencies, k, that occur due to the approximation error, ǫ.

The running time and output size match those of the standard sweep algorithm

with exact, unit-cost algebraic computation, plus a kn logn term with n the input

size. The output accuracy is ǫ + knǫ. We have presented experimental evidence

that inconsistencies increase the output size by at most 4% even on highly degen-

erate inputs. Hence, the performance matches a standard sweep with floating point

computation.

The only case where we found many inconsistencies is among triples of curves

that almost meet at a point. The curves form a tiny triangle with 4 inconsistent

vertex orders and 2 consistent orders. As the curve degree increases, the floating
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point resolution of the triangle decreases until the vertex order becomes essen-

tially random. Small triangles occur in some applications. For example, consider

the layout problem of cutting a maximum number of clothing parts from a strip of

fabric. Every part will touch two other parts (or the strip boundary) in an opti-

mal configuration, which implies that three contact curves cross in every three-part

configuration space. In mechanical design, redundancy and symmetry can generate

crossing triples of contact curves. Even so, the inconsistencies are confined to small

regions. We conjecture that if the k inconsistencies are pairwise ǫ separated, where

ǫ is the crossing module accuracy, then the running time is linear in k and the

output accuracy is ǫ.

Inconsistency sensitive analysis is a new computational geometry paradigm that

we plan to explore further. Our next goal is to construct and manipulate the con-

figuration spaces of rigid planar parts, which are key to algorithmic part layout,

mechanical design, and path planning. Another goal is solid modeling with explicit

and implicit surfaces. In both cases, the computational geometry task is to arrange

surface patches of high degree.

We also plan to develop iterative algorithms that cascade geometric computa-

tions, meaning that the output of each iteration is the input to the next iteration.

Many non-geometric numerical algorithms use cascading, for example Newton’s

method. We believe that geometric algorithms would also use cascading exten-

sively if there were an effective way to implement it. For example, Milenkovic uses

cascaded numerical geometric operations in part layout.23,24,25 However, one can

construct any algebraic expression by cascading two simple geometric constructions:

(1) join two points to form a line and (2) intersect two lines.26,27 This suggests that

exact geometric cascading is as hard as exact scientific computing, which is unten-

able. The shape modeling results suggest that our approach can make cascading

practical by replacing this exponential factor with a small constant.
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21. L. Buśe, H. Khalil, and B. Mourrain. Resultant-based method for plane curves inter-

section problems. In Proceedings of the Conference on Computer Algebra in Scientific

Computing, Volume 3718 of LNCS, pages 75–92. Springer, 2005.
22. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’

Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edi-
tion, 1999.

23. V.J. Milenkovic and K. Daniels. Translational polygon containment and minimal en-
closure using mathematical programming. International Transactions in Operational

Research, 6:525–554, 1999.
24. V. J. Milenkovic. Rotational polygon containment and minimum enclosure using only

robust 2d constructions. Computational Geometry: Theory and Applications, 13:3–19,
1999.

25. Victor J. Milenkovic. Densest translational lattice packing of non-convex polygons.
Computational Geometry: Theory and Applications, 22:205–222, 2002.

26. Behnke, Bachmann, Fladt, and Kunle. Fundamentals of Mathematics, Volume II:

Geometry. MIT Press, Cambridge, MA, 1974.
27. Victor J. Milenkovic. Shortest path geometric rounding. Algorithmica, 27(1):57–86,

2000.


