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Abstract

We present a parameter synthesis algorithm for planar, higher pair mechanical
systems. The input is a parametric model of a mechanical system (part shapes
and configurations) with nominal values and tolerance intervals for the parameters.
The output is revised parameter ranges that guarantee correct kinematic function
for all system variations. Nominal values are changed when possible and tolerance
intervals are shrunk as a last resort. The algorithm consists of a three-step cycle
that detects and eliminates system variations with incorrect kinematic function.
The first step finds points in parameter space whose kinematic variation is maximal.
The maximums of the higher pairs are derived by contact zone construction and are
then combined into system maximums. The second step tests the points for correct
kinematic function using configuration space matching and kinematic simulation.
The third step adjusts the parameter ranges to exclude the points that fail the test.
The cycle repeats until every point exhibits correct function. We demonstrate the
algorithm on five real-world examples.
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1 Introduction

We present a parameter synthesis algorithm for planar, higher pair mechanical
systems. Parameter synthesis is a central part of kinematic synthesis, which
is the task of designing a mechanical system that performs a specified kine-
matic function. Kinematic synthesis is an iterative process in which designers

∗ Corresponding author, phone: 1-765-494-9026; fax: 1-765-494-0739
Email addresses: kyung@ajou.ac.kr (Min-Ho Kyung), eps@cs.purdue.edu

(Elisha Sacks).

Preprint submitted to Elsevier Science 17 February 2006



select a design concept, construct a parametric model, and assign parame-
ter ranges in the form of nominal values plus tolerance intervals. The goal
of parameter synthesis is to derive parameter ranges that guarantee correct
kinematic function at a minimal cost. Overly tight tolerances can necessitate
expensive manufacturing processes, whereas overly loose tolerances can lead
to unreliable products.

The kinematic function of a system is the coupling between its part motions
due to contacts between pairs of parts. A lower pair has a fixed coupling that
can be modeled as a permanent contact between two surfaces. For example,
a revolute pair is modeled as a cylinder that rotates in a cylindrical hole. A
higher pair imposes multiple couplings due to contacts between pairs of part
features. For example, gear teeth consist of involute patches whose contacts
change as the gears rotate. The system transforms driving motions into out-
puts via sequences of part contacts.

Manufacturing variation causes the actual system to deviate from the nom-
inal design, which causes incorrect kinematic function. One type of incor-
rect function is excessive deviation from the nominal part motion, such as a
cam/follower that deviates by 5% from its prescribed path. A second type
is a failure mode due to an unintended part contact, such as gears that jam
because two pairs of teeth drive in opposite directions. System variation is
modeled by generalizing the nominal design to a parametric family of designs.
The part shapes and configurations are given in terms of symbolic parame-
ters, such as lengths and angles, whose nominal values specify the nominal
system. The allowable manufacturing variation is specified as tolerance inter-
vals around the nominal parameter values. The parameter synthesis task is to
assign parameter ranges that prevent incorrect kinematic function.

We formulate parameter synthesis as parameter space search [1]. The parame-
ter space is an n-dimensional Euclidean space whose ith axis measures the ith
design parameter. A point in parameter space represents a design instance.
The parameter ranges define a hyper-box in parameter space that is centered
at the nominal instance and that contains the allowable system variations.
The synthesis task is to construct the largest possible hyper-box that is free
of failure instances. We employ the robust design strategy [2,3] of first varying
nominal values, which does not increase cost, and of tightening tolerances only
as a last resort.

We present a parameter synthesis algorithm for planar, higher pair systems.
We address these systems because they are common in applications, yet re-
ceive little attention in prior parameter synthesis research. The input to our
algorithm is a parametric model with an initial parameter hyper-box. The al-
gorithm searches the hyper-box for points that cause incorrect function. It ex-
cludes these points by revising the hyper-box. Following the robust paradigm,
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the hyper-box is moved when possible and is shrunk as a last resort.

We cannot guarantee that all incorrect points are found because a complete
search of the parameter hyper-box is prohibitively slow. Typical systems have
tens to hundreds of parameters. Tiny steps are required because the kinematic
function can vary suddenly or even discontinuously. Instead we search the
portion of the parameter hyper-box where problems are most likely. We repeat
the search/revision cycle until no incorrect points are found.

Incorrect function is most likely at points that maximize the variation of one
or more contacts. Each contact generates a part of the kinematic function. A
maximal variation in one contact represents a maximal deviation in its part
of the kinematic function. A maximal variation in two or more contacts rep-
resents a maximal likelihood for unintended interactions among them. These
heuristic arguments are the rationale for our parameter space search algorithm.

The paper is organized as follows. Section 2 reviews prior work. Section 3
specifies the input to our algorithm. Section 4 defines kinematic function for
higher pair systems. Section 5 describe our algorithm and Section 6 validates it
on five real-world examples. The validation shows that the algorithm finds and
corrects incorrect kinematic function with a moderate number of iterations.
The paper concludes with a discussion of our results.

2 Prior work

Algorithmic support for parameter synthesis is limited. Commercial packages,
such as CATIA and IDEAS, support construction and visualization of para-
metric designs. Prior research provides synthesis algorithms for linkages [4,5]
and cams [6,7], but does not address general higher pair systems. Most pa-
rameter synthesis research focuses on tolerance analysis algorithms [8]. The
analysis falls into three increasingly general categories: small displacement
analysis, large displacement analysis, and contact change analysis.

Small displacement analysis, also referred to as tolerance chain or stack-up
analysis, is the most common. It consists of identifying a critical dimensional
parameter (a gap, clearance, or play), building a tolerance chain based on part
configurations and contacts, and determining the parameter variability range
using vectors, tensors, or matrix transforms [9,10]. Recent research explores
stack-up analysis with limited contact changes [11–13].

Large displacement analysis has been thoroughly studied in mechanical en-
gineering [4]. It consists of defining kinematic relations between parts with
a fixed contact topology, typically a linkage, and studying their kinematic
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variation [14]. Commercial computer-aided tolerancing systems include this
capability for planar and spatial mechanisms [15]. The kinematic variation is
computed by linearization, which can be inaccurate, or by Monte Carlo simu-
lation, which can be slow. Glancy and Chase [16] describe a hybrid algorithm
that computes the first two derivatives of the system function with respect
to the tolerance variables, calculates the first four moments of the system
function, and fits an empirical variation distribution.

Large displacement analysis is inappropriate for higher pair systems with many
contact changes, such as the examples in this paper. The user must enumerate
the contact sequences, analyze them with the software, compose the results,
and detect failures. We [17,18] developed the only general kinematic tolerance
analysis algorithm for higher pair planar systems.

Tolerance synthesis Robust parameter synthesis is related to tolerance
synthesis, which is the task of computing optimal tolerance intervals for a
given nominal design. Prior work on tolerance synthesis in mechanical systems
dates back to 1970, and proposes a variety optimization and modeling criteria
[8]. Most work concentrates on modeling the cost-tolerance relations and the
formulation of the optimization problem. The modeling limitations of these
systems are the same as those for tolerance analysis. In addition, cost and
manufacturing processes must be modeled. Dong and Gary [19] survey the
issues involved in automating cost tolerance modeling. A general framework,
the feasibility space approach, is proposed by Turner [20,21]. However, he
assumes that the functional model is given, which is impractical for most
mechanical systems. Several researchers develop functional model derivation
and optimization algorithms for planar linkages [22,23], and some commercial
CAT systems provide this capability [15]. We are unaware of prior work on
general tolerance synthesis algorithms for higher pair systems.

Our prior work Parameter synthesis is the latest step in our ongoing re-
search on algorithmic mechanical design with configuration spaces. Prior re-
search addresses kinematic analysis [24], kinematic simulation [25], kinematic
tolerance analysis [17], and kinematic synthesis [26]. That research provides
several analysis tools, described below, that are employed by our parameter
synthesis algorithm. However, neither our prior work nor any other published
work gives a parameter synthesis algorithm for higher pair systems. The closest
prior work is our kinematic synthesis algorithm, which interactively revises a
nominal parametric design to eliminate kinematic failures. The designer sug-
gests changes in kinematic function and the program achieves them by pa-
rameter space search. The current algorithm goes beyond that algorithm in
two ways: it works without user assistance and it simultaneously revises the
nominal design and the tolerances.
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Fig. 1. Cam/follower/lever mechanism.

3 Input specification

The input to our algorithm is a parametric model of a planar mechanical sys-
tem with initial tolerance ranges. The part shapes are simple loops of line and
circle segments that are specified in part coordinate frames. A line segment,
ab, is specified by the four shape parameters a = (xa, ya) and b = (xb, yb). A
circle segment is specified by five shape parameters: its center o = (xo, yo),
radius, start angle, and end angle. A part has three configuration parameters,
(x, y, θ), that represent its position and orientation in the system coordinate
frame. Each part has one degree of freedom: translation along a coordinate
axis or rotation around its reference point. The configuration parameter that
corresponds to this motion is called the part motion variable. This class of
inputs contains the vast majority of mechanisms [27].

Fig. 1 shows a sample input: a rotating cam that pushes a follower up and
down that raises and lowers a rotating lever. The part coordinate frames are
marked with dots. The cam is a circle whose center is (0, h) and whose radius
is r. The follower is a rectangle whose width is 0.75 cm and whose height is
m. The lever is a polygon parameterized by its arm length w. The cam rotates
by angle θ around (0, 0). The follower translates vertically with y equal to
the height of its reference point. The lever rotates by angle ψ around o. The
system motion variables are p = (θ, y, ψ). The input format appears below.
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name: cam
origin: (0, 0)
motion: rotation
shape:

1. circle: (r, h) to (−r, h)
center: (0, h) radius: r

2. circle: (−r, h) to (r, h)
center: (0, h) radius: r

name: follower
origin: (0.375, 0)
motion: vertical translation
shape:

1. line: (0, 0) to (0.75, 0)
2. line: (0.75, 0) to (0.75, m)
3. line: (0.75, m) to (0, m)
4. line: (0, m) to (0, 0)

The shape parameters and the non-motion configurations parameters com-
prise the design parameters, u1-un, which form the parameter vector u. The
nominal value of ui is ui. In our example, u = (r, h,m,w, xl, yl) and u =
(1.0, 0.1, 1.0, 1.0,−1, 2). Parameter ui is constrained to the tolerance interval
[ui − si, ui + ti] with si, ti ≥ 0. The elements si, ti form the vectors s, t. A
parameter vector v is feasible when ui − si ≤ vi ≤ ui + ti for all i. The set of
feasible vectors comprises the parameter hyper-box. Our task is to revise the
initial hyper-box to eliminate points with incorrect kinematic function.

Our models are well suited to kinematic design research because they are
simple, yet are flexible enough to model realistic design spaces for complex
mechanical systems. Other types of models are common in engineering prac-
tice. We discuss how the two main ones relate to our models.

Variational models A richer class of parametric models, called variational
models, is common in shape design. A variational model defines part shapes
and configurations via geometric constraints. Example definitions are the point
where two given lines intersect, the line through a given point and parallel to
a given line, and the circle through two given points with a given radius.
The designer specifies the constraints via a graphical interface and a solver
constructs the corresponding segments. For example, we can define a line
segment with endpoints t = (1, 0) and h = (xh, yh), using the variational
constraints that points a = (q1, q2) and b = (q3, q4) lie on the segment. The
values q1–q4 are specified by the designer. The solver formulates the equations

(a− t)× (h− t) = 0

(b− t)× (h− t) = 0

and solves for h.

Our parameter synthesis algorithm works with variational models. We employ
parametric models in which the shape and configuration parameters are given
as algebraic expressions in a separate set of design parameters. The only effect
of this generalization is that we must use the implicit function theorem to
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compute the derivatives of shape and configuration parameters with respect
to design parameters, whereas the chain rule suffices for our original models.
We do not employ this capability in this paper, so we refer the reader to
our cited work for a full description. The algebraic input format also allows
designers to specify couplings between segment tolerances.

GDT models GDT tolerance specifications are common in mechanical de-
sign. Part variation is specified by tolerance envelopes around nominal shapes.
The semantics are only partially formalized [28]. It is straightforward, but te-
dious for a trained person to convert GDT specifications into our parametric
ones. An automated translation tool would make our algorithm more accessi-
ble to the design community. Constructing such a tool is a research task in its
own right.

4 Kinematic function

The next step is to define kinematic function for higher pair systems. We
present the standard definition for fixed contact systems, generalize it to higher
pairs, and characterize correct and incorrect kinematic function. The material
in this section is a review of prior work that underlies the parameter synthesis
algorithm. We explain and illustrate the main concepts; the technical details
appear in our cited journal articles.

4.1 Fixed contact systems

The kinematic function of a fixed contact system is a functional relationship,
C(p) = 0 among its motion variables. The system configuration at any point in
the work cycle is determined by the values of these variables. The kinematic
function of a parametric system, C(p,u) = 0, is a functional relationship
among its motion variables and its design parameters. The nominal function is
C(p,u) = 0. In our example (Fig. 1), the nominal kinematic function projects
to the bold curve in the graph on the right.

A kinematic variation is the kinematic function, C(p,v) = 0, generated by
a point v in the parameter hyper-box. The set of kinematic variations forms
a band around the nominal kinematic function. A kinematic variation is in-
correct when its distance from the nominal function exceeds a threshold. The
error metric can specify the Euclidean distance between the curves at sample
points and can also bound the distance between their derivatives.
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In our example, the dashed lines bound the maximum kinematic variation
for the tolerances intervals si, ti = 0.02 mm. The error metric is that the
lower/upper variation in ψ is at most 0.15/0.2 radians at the system config-
urations (0, 2.1, 0.1), (π/2, 2.0, 0.0), (π, 1.9,−0.1), and (3π/2, 2.0, 0.0). These
bounds appear as vertical intervals around the nominal ψ values. The toler-
ance ranges allow incorrect kinematic function: the upper variation is too large
at π/2 and the lower variation is too large at π.

4.2 Higher pairs

The kinematic function of a higher pair, a/b, consists of multiple functions in
their motion variables, ma and mb. A contact between part features fa and
fb generates a function in the manner described above, but this function only
applies in the portion of (ma, mb) space where fa and fb are in contact. The
a/b kinematic function consists of the sequence of these functions that occur
throughout the work cycle.

We represent higher pair kinematic function with configuration spaces [24].
The configuration space of a pair is a two-dimensional manifold whose co-
ordinates are the two part motion variables. Points in configuration space
correspond to configurations of the pair. The configuration space partitions
into blocked space where the parts overlap, free space where they are sepa-
rate, and contact space where they touch. Free and blocked space are open
sets whose common boundary is contact space. Contact space is a closed set
comprised of subsets that represent contacts between part features.

We illustrate these concepts on a Geneva pair comprised of a driver and a
wheel (Fig. 2). The Geneva pair is a canonical example that we employ in
several prior publications. We reuse it here because it shows the key concepts
of our research in a simple setting. The driver consists of a driving pin and
a locking arc segment mounted on a cylindrical base. The wheel consists of
four locking arc segments and four slots. The wheel rotates around axis A and
the driver rotates around axis B. Each driver rotation causes an intermittent
wheel motion with four drive periods where the driver pin engages the wheel
slots and with four dwell periods where the driver locking arc engages the
wheel locking arcs.

The configuration space coordinates are the part orientations θ and ω in radi-
ans. The pair is displayed in configuration (0, 0), which is marked with a dot.
Blocked space is the gray region, contact space is the black curves, and free
space is the channel between the curves. Free space forms a single channel that
wraps around the horizontal and vertical boundaries, since the configuration
at ±π coincide. The defining equations of the channel boundary curves express
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Fig. 2. Geneva pair and its configuration space.

the coupling between the part orientations. The horizontal segments represent
contacts between the locking arcs, which hold the wheel stationary. The diag-
onal segments represent contacts between the pin and the slots, which rotate
the wheel. The contact sequences of the pair are the configuration space paths
in free and contact space. In a typical sequence, the driver rotates clockwise
(decreasing θ) and alternately drives the wheel counterclockwise with the pin
(increasing ω) and locks it with the arcs (contact ω).

4.3 Kinematic variation

We [17] model kinematic variation by generalizing configuration space to para-
metric parts with tolerances. Kinematic variation occurs in contact space. Each
feasible parameter space point generates its own contact space. The union of
these spaces over the parameter hyper-box defines a band around the nominal
contact space, called a contact zone, that bounds the worst-case kinematic
variation of the pair. The contact zone is the subset of the configuration space
where contacts can occur for some feasible point.

Fig. 8a shows the contact zone that our algorithm generates for a parametric
model of the Geneva pair. The zone is a detail of the portion of the config-
uration space in the box in Fig. 2. This portion is the interface between a
horizontal and a diagonal channel where the driver pin leaves a wheel slot and
the locking arcs engage. The two dark gray bands that surround the channel
boundary curves are the contact zone. The white region between the bands is
the subset of the nominal free space that is free for all feasible points.
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4.4 Incorrect kinematic function

Our algorithm detects and corrects two types of incorrect kinematic function
due to parameter variation. The first type, excessive deviation from the nom-
inal part motion, occurs in all types of mechanical systems. The second type,
failure modes due to unintended part contacts, is unique to higher pair sys-
tems. In both cases, the nominal kinematic function is compared to that of a
candidate feasible point.

Motion deviation The motion deviation test compares the nominal and
candidate motion paths of the driven parts using kinematic simulation [25].
The simulator steps the driving part through its work cycle and propagates
the motion through the system. The driving motion and the step are specified
as input. The output is a nominal and a candidate configuration for each
driven part at each driver configuration. The motion variation of a candidate
configuration is the minimal distance to a nominal configuration. The motion
variation of the candidate is the maximum over these minimal distances. A
candidate passes the motion test when the variation is below a specified limit.
Section 6.5 presents an example system that initially fails this test.

Failure modes The Geneva contact zone (Fig. 8a) reveals a possible failure
mode. The lower and upper bands overlap near where the horizontal and
diagonal channels meet. Some feasible point might yield a configuration space
in which the lower and upper contact curves intersect, block the channel, and
cause the mechanism to jam. Fig. 3 illustrates this failure mode. But contact
zone overlap does not guarantee a faulty feasible point. The contact zone is a
conservative estimate of kinematic variation that ignores dependencies among
contacts due to shared parameters. Hence, there might be no point that moves
both curves into the overlap region.

The failure mode test matches the nominal and candidate contact spaces.
The pairs match when the two spaces have the same structure: they have the
same number of components and each component in the first space matches
a unique component in the second space. Two components match when they
consist of equivalent curves in the same cyclic order. Two curves are equivalent
when they are generated by the same pair of part features. A failed match indi-
cates a difference between the nominal and the candidate kinematic functions,
which we interpret conservatively as a failure mode. The matching algorithm
is described elsewhere [26].

Fig. 4 illustrates matching on the nominal (Fig. 2) and jammed (Fig. 3) Geneva
configuration spaces. The match fails because the nominal contact space has
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two components, whereas the jammed space has one. The structural mismatch
is that curves b and c are disjoint in the nominal space, but intersect in the
jammed space.

5 Parameter synthesis algorithm

The parameter synthesis algorithm is summarized below. The algorithm con-
sists of three main steps: candidate selection, candidate testing, and parameter
range revision to exclude the candidates that fail the test. The cycle repeats
until every candidate passes the test. The user can also specify a maximum
number of iterations. The input and the two tests have already been described.
This section describes candidate selection and parameter revision.

Input: parametric system, initial parameter ranges.
1. Select candidate feasible points.
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Fig. 5. Candidate computation: (a) nominal kinematics; (b) one maximal variation;
(c) two maximal variations.

2. Test candidates for motion deviation and for failure modes.
3. If all candidates pass, return parameter ranges.
4. Revise parameter ranges.
5. Go to step 1.
Output: revised parameter ranges.

5.1 Candidate selection

The candidates are selected in two steps. Step 1 finds feasible points whose
contact spaces intersect the boundaries of the system contact zones. Each
point maximizes the kinematic variation in a single feature/feature contact of
a single higher pair. Step 2 forms the candidates from unions of step 1 points.
The candidates maximize the simultaneous kinematic variation of multiple
contacts, which is where incorrect function is likeliest to occur and is hardest
to detect.

Fig. 5 illustrates the two steps. Part a shows the configuration space of a nom-
inal pair with a free space channel. Part b shows the configuration space for
a step 1 point that maximizes the variation of the upper channel boundary;
the thin black curve is the new upper boundary and the lower boundary is
unchanged. The channel remains open, so the kinematic function is qualita-
tively correct. Part c shows the configuration space for a step 2 point that
maximizes the variation of both channel boundaries. The boundaries overlap,
which indicates incorrect kinematic function. A similar failure occurs in Fig. 3
and is detected in Fig. 4.

5.1.1 Step 1

Each higher pair is processed separately. The contact space of a pair consists
of contact curves that represent contact between feature pairs. Each curve is
processed separately. The computation is described in our kinematic tolerance
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analysis paper [17]. We summarize it here for completeness.

A curve has a parametric equation C(p,u) = 0 where p denotes the config-
uration space coordinates, for example p = (θ, ω) in the Geneva pair. There
is one type of equation for every combination of features and motions, such
as rotating circle/translating line. For example, the driver/wheel locking arc
equation is (B + Rθm − A − Rωn)2 = (r − s)2 where B,A are the centers
of rotation, m,n are the arc centers in part coordinates, Rθ, Rω are rotation
operators, and r, s are the arc radii. The equation states that the distance
between the arc centers equals the difference of their radii.

The nominal curve, C(p,u), is discretized to a given accuracy (10−5 in the
paper). A maximal u is computed for each discretization point, p0, as follows.
The kinematic variation occurs along the normal vector, n, to the contact
space (Fig. 6). It has the form p0 + kn with k a function of u. The desired
u values maximize/minimize k to yield points p+/ p− on the upper/lower
boundaries of the contact zone. They are computed by solving a nonstandard
optimization problem with a custom algorithm.

If the parameter ui does not appear in the contact equation C(p,u) = 0, its
value does not effect the output u values. We say that ui is free for the contact.
For each output point, step 1 reports the free parameters and sets them to
their nominal values.

5.1.2 Step 2

Step 2 of the candidate selection algorithm appears below. The input, s, is
the step 1 output; the output, t, is the candidate feasible points. The output
consists of all unions of compatible points of s. Two points, u and v, are
compatible when for every i either ui is free, vi is free, or ui = vi. Their union,
w = u ∪ v, is defined as follows: wi is free when ui and vi are free, wi = ui

when vi is free, and wi = vi otherwise.

Input: list, s, of step 1 points.
1. t← s
2. f ← 0
3. for each si in s
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4. for each tj in t
5. if si and tj are compatible
6. d← si ∪ tj
7. if d is not in t
8. f ← 1
9. add d to t
10. if f = 1 go to Step 2
11. return t
Output: list, t, of candidate feasible points.

Line 1 of the algorithm initializes t to s. The first iteration of lines 3–9 adds to
t every compatible pair of s points, si∪ tj = si∪ sj . The second iteration adds
every compatible triple of s points, since ∪ is associative and commutative.
The kth iteration adds every compatible k tuple. The iteration ends when no
new compatible tuples can be formed.

We illustrate the algorithm on a simple, artificial input

s = {s1, s2, s3, s4} = {(1, 2∗, 3∗), (5∗, 4, 3∗), (7, 2, 3), (5∗, 4, 8)}

where x∗ denotes that x is free. The compatible pairs are s12 = s1 ∪ s2 =
(1, 4, 3∗), s14 = s1 ∪ s4 = (1, 4, 8), and s24 = s2 ∪ s4 = (5∗, 4, 8). The only
compatible triple is s124 = s12 ∪ s4 = (1, 4, 8), which is already in t, so the
iteration ends.

We accelerate the algorithm in two ways. We allow t points to contain at most
two s points per higher pair. Using three is pointless: the associated configura-
tion space is two-dimensional, so three contact curves cannot intersect (hence
cannot interact), except for rare degenerate cases. At step 7, we do not add d
to t if it is within ǫ of any member of t in the max norm. In our examples, set-
ting ǫ to 1% of the initial tolerance interval eliminates 75% of the candidates,
yet never misses one with incorrect kinematic function.

5.2 Parameter range revision

The parameter synthesis algorithm revises the parameter ranges to eliminate
the incorrect kinematic function revealed by the candidates. The revision con-
sists of two steps. Step 1 computes points that need to be excluded from the
parameter hyper-box. Step 2 excludes them by modifying u when possible and
by shrinking tolerance intervals otherwise.
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5.2.1 Step 1

Each failed candidate is processed separately to yield a critical point that
needs to be excluded from the parameter hyper-box. First, consider a system
with one parameter, u, and with failed candidate v. The same failure occurs in
a neighborhood of v because the system depends continuously u. Continuity
implies the existence of a critical parameter value, c, where the failure first
occurs: the kinematic function is correct on [u, c) and is incorrect on (c, v].
Parameter revision needs to exclude c to eliminate the failure; excluding v
alone leaves the failure interval in the parameter range. In higher dimensions,
c is the first failure point on the line segment [u,v], as shown in Fig. 7a–b.

The critical point is found by bisection search, as shown below. The initial
interval is [u,v]. At each iteration, the midpoint parameter point is tested.
If the kinematic function is correct the lower limit is replaced; otherwise the
upper limit is replaced. The iteration ends when the interval width reaches ǫ
(10−5 in the paper).

Input: u,v, ǫ.
1. s← 0, t← 1
2. m← 0.5(s+ t),w← u +m(v − u)
3. if t− s < ǫ return w

4. if w is correct s← m else t← m
5. go to Step 2
Output: critical point.

5.2.2 Step 2

Step 2 of the parameter revision algorithm modifies the parameter hyper-
box to exclude the critical points. The hyper-box is centered at u and its
width in the ith dimension is the tolerance interval of ui. We aim to move the
hyper-box minimally without shrinking the intervals, which means changing u

minimally without decreasing any si or ti. If this proves impossible, we aim for
an optimal combination of motion and shrinking. Finding the optimal revision
is computationally intractable, so we employ a greedy algorithm to obtain a
good revision quickly.

The optimal revision for a single critical point, v, is easy to compute. Find
the perpendicular distance, d, from v to a hyper-box face along its inward
normal, n. The normal is a unit vector whose ith element is ±1 and whose
other elements are 0. Incrementing u by dn excludes v from the hyper-box
(Fig. 7c). The face that minimizes d yields the optimal revision. The second
closest face yields the next best revision and so on.

We exclude multiple critical points by combining their optimal revisions. Two
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revisions, a and b, can be combined when they are compatible: aibi ≥ 0 for all
i. Their combination, c = a ∪ b, is defined as ci = max(ai, bi) when ai, bi ≥ 0
and as ci = min(ai, bi) otherwise. Fig. 7d–e show two ways that compatible
points combine. Fig. 7f shows how an incompatible pair is handled by shrinking
the parameter hyper-box, as explained below. The following theorems establish
the relevant properties of combination.

Theorem 5.1 If a excludes v and a is compatible with b, a ∪ b excludes v.

Proof. There exists some vi that a moves out of its tolerance interval, since
otherwise a would not exclude v. Suppose a moves it out the right side, so
vi > ui + ai + ti. Let c = a ∪ b. We have ci = max(ai, bi) ≥ ai, which implies
vi > ui + ci + ti, so c moves vi out the right side. The proof is similar when a

moves vi out the left side of its tolerance interval.

Theorem 5.2 If a excludes v, b excludes w, and a is compatible with b, then
a ∪ b excludes v and w.

Proof. Follows from Theorem 5.1 and the symmetry of compatibility and of
the ∪ operator.

The parameter revision algorithm is shown below. The revision, a, is initialized
to the zero vector. Each critical point, w, is processed in turn. If possible, a

is updated to a ∪ b with b the smallest compatible w revision. Otherwise,
a tolerance interval is shrunk to exclude w. We select the tolerance interval
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[ui − si, ui + ti] whose left or right endpoint minimizes the distance to wi and
replace it with [wi, ui + ti] or with [ui− si, wi] accordingly (Fig. 7f). We set ui

to the midpoint of the revised interval.

Input: u, s, t, critical points.
1. initialize a to zero vector
2. for each critical point w

3. if w in the parameter hyper-box
4. sort the w revisions in increasing d order
5. for each revision b

6. if a is compatible with b

7. a← a ∪ b

8. go to Step 2
9. shrink parameter hyper-box to exclude w

Output: revised parameter hyper-box.

The algorithm output depends on the order in which the critical points are
processed. We employ the heuristic of processing them in decreasing d order
where d is the distance to the closest face of the initial parameter hyper-box.
In our test cases, the algorithm never generates a suboptimal revision.

6 Results

We demonstrate the parameter synthesis algorithm on two common higher
pairs from the engineering literature, on one custom pair, and on two systems
comprised of three custom pairs apiece. In prior work, we have used these
five examples to demonstrate kinematic analysis (nominal and toleranced)
with configuration spaces. Here, we move beyond analysis to synthesis. Our
synthesis algorithm detects and corrects intermittent failure modes in all five
examples. It never shrinks a tolerance interval, so the revised nominal val-
ues are in the initial tolerance intervals. Yet these small changes eliminate
hundreds of incorrect kinematic functions to produce robust designs. We use
symmetric initial tolerance intervals for simplicity; the algorithm handles gen-
eral intervals.

6.1 Geneva pair

The first example is a Geneva pair (Fig. 2) from an encyclopedia of mechanisms
[29]. The pair has 26 design parameters. We assigned initial tolerances of
±0.02 mm to the length parameters (line segment coordinates, circle center
coordinates, circle radii) and ±1◦ to the angle parameters (circle segment start
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Fig. 8. Detail of Geneva pair contact zone: (a) initial; (b) final.

and end angles). The contact zone shows possible jamming (Fig. 8a).

The first iteration of the parameter synthesis algorithm is as follows. Step 1
of candidate selection (Sec. 5.1.1) finds 44 maximal parameter sets and step 2
(Sec. 5.1.2) generates 137 candidates. Candidate testing finds that 21 of these
points have incorrect kinematic function; this is the jamming mode shown in
Fig. 8a. Parameter revision finds the corresponding 21 critical points (Sec. 5.2.1)
and excludes them by moving the parameter hyper-box (Sec. 5.2.2).

There are three more iterations in which five, two, and one incorrect points
are found. The algorithm terminates after the fifth iteration because every
candidate has correct kinematic function. The maximum change in any nom-
inal parameter value is 8% of its tolerance interval. The contact zone for the
output parameter hyper-box (Fig. 8b) is overly conservative. The lower and
upper channel boundaries overlap slightly, but there is no feasible point that
realizes both boundary variations.

The 11 parameters that change are described below. We work in a coordinate
system whose origin is the driver center of rotation and whose x axis lies on
the line between the driver and wheel centers. Parameter a is the x coordinate
of the driver pin. Parameter b is the x coordinate of the driver locking arc
center, c is its start and end angle, and d is its radius. Parameter e is the x
coordinate of the wheel center. Parameters f and g are the slot width and
depth. Parameter h is the vertical distance between the wheel center and the
slot bottom. Parameters i and j are the x and y coordinates of the center of
one locking arc and k is the radius. The other three arcs have centers (i,−j),
(−i, j), and (−i,−j).
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name initial value final value name initial value final value

a 5.451074 5.433074 g 4.235842 4.253842

b -0.142998 -0.160998 h 1.235858 1.253858

c 0.798530 0.780530 i 5.471301 5.489301

d 4.505872 4.523872 j 5.471301 5.471154

e 8.032096 8.014096 k 4.401504 4.383504

f 1.052529 1.034529

6.2 Reciprocating cam/follower pair

The second example is a reciprocating cam/follower pair (Fig. 9a) from an
encyclopedia of mechanisms [29]. The cam rotates around an axis on the frame
and the follower translates horizontally. When the cam rotates clockwise, its
three fingers alternately push the upper and lower slanted segment of the
follower right and left. Fig. 9b shows the configuration space: θ is the cam
angle and y is the follower displacement. The red curve marks the motion
path. The pair has 11 design parameters with initial tolerances of ±0.02 mm.

The initial contact zone shows overlap (Fig. 10a). The parameter synthesis
algorithm eliminates this overlap in 9 iterations (Fig. 10b). In each iteration,
candidate selection finds 45–57 points. Candidate testing finds 15 incorrect
points in the first iteration and 5 in the second. The maximum parameter
change is 40% of the initial interval. The parameters that change are the
cam finger length and width, and the vertex coordinates of the two triangular
bulges on the inner follower profile.

frame

follower θ

cam

x

x

θ

(a) (b)

Fig. 9. (a) Reciprocating cam pair; (b) configuration space.
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Fig. 10. Detail of reciprocating cam pair contact zone: (a) initial; (b) final.

6.3 Optical filter pair

The third example is a custom cam/follower pair in an optical filter mechanism
developed by Israel Aircraft Industries (Fig. 11a). The parts are attached to
a fixed frame with pin joints. Rotating the cam counterclockwise causes its
pin to engage the follower slot and drive the follower clockwise. The follower
motion ends when the cam pin leaves the slot, at which point the follower
filter covers the lens. As the cam continues to rotate, its locking arc aligns
with the complementary follower arc and locks the follower in place. Rotating
the cam clockwise returns the filter to the initial state. Fig. 11b shows the
configuration space: θ is the cam angle, ω is the follower angle, and the free
space structure is similar to that of the Geneva pair. The pair is parametrized
by 17 parameters with tolerances of ±0.02 mm. We derived the model and the
initial tolerances from proprietary engineering drawings.

The initial contact zone shows overlap between the channel boundary curves
(Fig. 12a). The synthesis algorithm eliminates this overlap in 19 iterations
(Fig. 12b). In each iteration, candidate selection finds 75 maximal parameter
sets that generate 700 points. Candidate testing finds 146 incorrect points in
the first iteration, and this number decreases linearly to zero over the 19 iter-
ations. The maximum parameter change is 0.0271, which moves one nominal
value just outside its initial interval. Although the relative change is large, the
kinematic variation is slight.

6.4 Camera shutter mechanism

The fourth example is a camera shutter mechanism comprised of a driver, a
shutter, and a shutter lock (Fig. 13). The user advances the film (not shown),
which engages the driver film wheel and rotates the driver counterclockwise.
The shutter tip follows the driver cam profile, which rotates the shutter clock-
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Fig. 11. (a) Cam/follower pair; (b) configuration space.

ω

θ
−2.107

1.201

1.325

−2.238

(a)

ω

θ

1.325

1.201

−2.238 −2.107

(b)

Fig. 12. Detail of cam/follower contact zone: (a) initial; (b) final.

wise, which extracts the shutter pin from the shutter lock slot. When the pin
leaves the slot, a torsional spring rotates the shutter lock clockwise until its
tip engages the driver slotted wheel. The mechanism is parametrized by 22
parameters with tolerances of ±0.09 mm. We constructed the model by reverse
engineering a camera. The initial tolerances are an estimate of the variation
of the molding process.

In the first synthesis iteration, candidate selection generates 1673 points. All
the points pass the failure mode test, but 40 exhibit excessive motion varia-
tion. The shutter angle reaches a minimum value (furthest clockwise) that is
too small for its pin to clear the shutter lock. The problem is fixed in seven
iterations. The maximum change is in the y coordinate of the cam axis, which
is moved 0.1577mm.

Fig. 14 shows the nominal and incorrect motion paths in the configuration
spaces of the shutter/lock and driver/lock kinematic pairs. The nominal shut-
ter/lock motion (the thick line) follows the contact space from right to left
(1) as the shutter rotates clockwise, leaves the free-space mouth and drops
vertically (2) when the shutter pin clears the shutter lock slot, and moves
right and down (3) when the torsional spring rotates the shutter lock clock-
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Fig. 13. Camera shutter mechanism.

wise. The incorrect motion follows the contact space from right to left, but
does not reach the left side of the mouth, hence cannot drop vertically. The
correct driver/lock motion path starts with a horizontal segment in free space
(1) where the driver rotates counterclockwise and the lock is held away from
the driver by the shutter. It continues with a vertical segment (2) where the
shutter lock tip rotates into contact with the driver, a horizontal segment (3)
where the driver rotates and the tip follows its circular profile, and a sec-
ond vertical segment (4) where the tip engages the driver slot. The incorrect
motion path consists solely of the first horizontal segment, since the shutter
prevents the lock from rotating.

6.5 Gear selector mechanism

The fifth example is a gear selector mechanism that is part of an automatic
transmission with tens of moving parts (Figure 15). The mechanism consists
of a cam, a piston, a pin, and a valve body. The valve body is fixed to the
frame. The pin is attached to the valve body by a flexible rod that acts as
a torsional spring. The piston length is 108.9 cm, the tips of the triangular
cavities in the cam bottom are 55.1–55.6 cm from its center, and the distance
between the pin and its center of rotation is 92.3 cm. When the driver moves
the gearshift (not shown), the cam rotates, which slides the piston along the
valve body via a pin that engages a slot in its left side. When the driver
releases the gearshift, the torsional spring rotates the pin clockwise until it
engages between two adjacent cam teeth. There is one engagement position
for each gear setting (1, 2, 3, D, N, R, P).

We obtained the nominal part geometry from Ford Werke AG, Cologne. We
constructed a parametric model by adding variation parameters to the func-
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Fig. 15. Gear selector mechanism.

tional features of the parts. For the cam, we toleranced the line segments that
form the tooth sides and the circular pin that engages the piston. For the
piston, we toleranced the two vertical segments that are in contact with the
cam pin. For the pin, we toleranced the single, circular feature. To account
for uncertainties in the position of the rotation axes, we also toleranced the
centers of rotation of the cam and the pin. We chose the piston as the reference
part, so there was no need to tolerance its translation axis. There are a total
of 34 parameters with tolerances of ±0.02 cm.
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Fig. 16. Piston/cam contact zone: (a) initial; (b) final.

The tolerancing problem is to ensure that the piston closes the correct valves in
gear setting 1. The other settings are analogous. Correct function is obtained
by bounding the motion variation of the piston and the cam. Fig. 16a shows the
initial piston/cam contact zone space. The nominal contact space is a diagonal
channel bounded by two lines labeled with arrows that mark typical contact
configurations. The motion path follows the left/right channel boundary when
the cam rotates counterclockwise/clockwise. The allowable motion variation is
0.08 cm translation for the piston and 0.001 radians rotation for the cam (the
solid box in the contact zone). The dashed box is a conservative bound on the
motion variation that we obtain by composing the piston/cam and pin/cam
contact zones [17]. The fact that the dashed box is larger than the solid box
suggests possible motion variation failures.

The first iteration of the synthesis algorithm finds 331 motion variation failures
out of 715 candidates. The number drops to 17 after 10 iterations. Another 149
iterations are required to obtain correct tolerances. Fig. 16b shows the con-
tact zone for the output tolerances. Although the conservative bound (dashed
box) still suggests possible motion variation failures, the synthesis algorithm
rules them out. It also rules out the possible kinematic failure modes that are
suggested by the overlap between the lower and upper channel boundaries.

7 Conclusion

We have presented a parameter synthesis algorithm for higher pair mechan-
ical systems based on configuration spaces. The algorithm is given nominal
values and tolerance intervals for the system design parameters. It searches
the parameter space for revised nominals and tolerances that ensure correct
kinematic function. The search is an iterative process in which candidate fail-
ure points are generated, tested, and excluded. Nominal parameter values are
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changed when possible and tolerance intervals are shrunk otherwise. We have
demonstrated the algorithm on a range of mechanisms.

Prior work does not address parameter synthesis for general higher pair sys-
tems. Our prior work provides analysis tools for higher pairs. Other prior work
provides parameter synthesis algorithms for linkage mechanisms and for cams.
We build on this work to obtain a practical parameter synthesis algorithm. The
five examples show that it efficiently detects and corrects kinematic failures
in complex mechanical systems.

We have implemented the algorithm for planar parts with fixed motion axes.
The components that impose this restriction are contact zone construction and
configuration space matching. Spatial pairs with fixed motion axes require a
straightforward extension to the contact zone module. General planar pairs
are harder because their configuration spaces are three-dimensional. General
spatial pairs are far harder yet because their configuration spaces are six-
dimensional. We expect that the first two cases are worth pursuing, whereas
the third is impractical.

Mechanical design involves non kinematic constraints that influence parame-
ter synthesis. Driving forces need to overcome friction and inertia. Structural
elements need to resist bending and vibration. Non functional design goals can
constrain functional parameters. Each type of constraint is handled separately:
rigid-body simulation for dynamics, finite-element analysis for structures, and
other types of optimization. Integrating this analysis with kinematic param-
eter synthesis could shorten the design cycle and improve product quality.
Although pure kinematic analysis is less effective than an integrated analysis,
it is worthwhile in designs where kinematics play a major role, which is the
norm in applications.

Our algorithm can share parameters with other algorithms. The initial tol-
erances can express any constraint. As long as our algorithm only tightens
tolerances, it maintains these constraints. Moving a nominal value outside its
initial interval can invalidate a non kinematic constraint. We can forbid these
revisions or we can flag them, so the designer can recheck the constraints with
the final parameter values.

Another research direction is to integrate an objective function, which encodes
design quality, into our synthesis algorithm. A first step would be to allow the
algorithm to loosen tolerances, which is the main way to reduce cost. One
strategy would be to expand the parameter box to touch the closest failure
point outside it. Combining expansion and contraction raises convergence is-
sues that would need to be researched.

An orthogonal research task is to enhance the configuration space matching
algorithm. The current matching criterion is structural: same number of com-
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ponents, same number of curves per component, and same contact per curve.
A geometric matching algorithm would yield a richer understanding of the
kinematic variations. One idea is to use computational geometry to identify
kinematic features, for example Voronoi diagrams for channels.
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