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Abstract

Geometric computation software tends to be fragile and fails occasion-
ally. This robustness problem is rooted in the difficulty of making unambigu-
ous decisions about incidence and nonincidence, fundamentally impairing
layering the geometry software reliably. Additionally, geometric operations
tend to have a large number of special and singular cases, further adding
to the difficulty of creating dependable geometric software. We review the
problem origins and ways to address it.

1 Introduction

Good software development uses the fundamental strategies of layering and fold-
ing. The purpose of layering is to manage complexity and to achieve reuse of
code components. The purpose of folding special cases is to achieve more com-
pact code and to reduce thereby the opportunity for errors. These activities are
so fundamental that most developers no longer think about them and consciously
consider more the derived aspects such as complexities of code interdependence
etc., as described for instance by Lakos [1]. In the development of geometric
software, however, we are required to review the code development fundamentals
as part of the algorithmic strategy, and must re-examine assumptions that have
become automatic.

�Work supported in part by ARO Contract 39136-MA and by NSF Grant CCR 99-02025.
yNot a member of ASME
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1.1 Ordinary Layering and Folding

In the case of polyhedral intersection, the code layers range from the very generic,
usable by most geometric computations, to the specialized, tailored to particular
ways of representing solids and carrying out Boolean operations on them. The
layers might look as follows:

1. Memory management and basic system services, foundational data struc-
tures such as graphs and lists.

2. Simple operations such as vector addition and subtraction, inner product,
ordering collinear points, and more.

3. Composite operations such as determining a plane from points, point on
plane test, line/plane intersection, and so on.

4. Higher utilities such as face/face intersection, boundary traversal, topology
management.

5. Component operations such as shell intersection, and, building on it, the
intersection algorithm itself.

Proper structure lets us use much of these internals for other purposes as well, and
related algorithms, such as polyhedral union and difference, are easily added at
the higher levels. It goes without saying that the lower levels must be absolutely
reliable. All contingencies that can arise during execution of those operations
must be fully accounted for in the data structures and in the logic of the code.

For polyhedral intersection, a number of special cases should be folded into
one. General strategies here might include using homogeneous coordinates that
eliminate problems with infinite coordinates. Dimensional fusing can be used;
for instance, an intersection method is laid out largely dimension-independent so
that such cases as coplanar face intersections and containment tests can be treated
recursively in the same way as shell intersection and point-in-solid tests. The
strategies here are more specific to the data structures, coordinate conventions, and
the nature of the geometric operations. When adding curved geometry, additional
issues arise such as singularity treatment, single-edge face boundaries, and faces
that topologically are not disks.

The bottom line is that the two strategic activities of layering and folding,
so useful in code development in general, are not as easy to implement in the
case of geometric computations. The problem arises from the close interaction of
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numerical computation, on the one hand, with the logic of geometric reasoning
and with the data structures that reflect the conclusions of that reasoning, on the
other hand. This interplay is the source of difficulty for geometric computation.
The more intricate the interaction between numerics and reasoning, and the more
sophisticated and informative the data structures, the more arduous is the software
development and the less reliable the resulting codes tend to be. Basically, the
lower layers of the code remain fragile and not fully dependable.

CAD systems are among geometry software with the highest complexity. They
are used widely by designers and manufacturing engineers in discrete product de-
sign. By now, those systems have become extremely large measured by the func-
tionality offered to the user, and the CAD houses have consolidated to a handful
because of the complexity and cost of evolving and maintaining those systems.
The robustness of CAD systems varies, and is achieved by the software houses,
to the extent observed, by an elaborate and proprietary set of heuristics, that have
been developed mostly by trial and error and may no longer be clearly understood.

The academic community began to consider the robustness problems of geo-
metric computations in the 1980s. One of the earliest papers was Hopcroft and
Hoffmann [2] in which the nature of the problem was clearly articulated. How-
ever, the problem was recognized well before then, although not necessarily for-
malized. Several general approaches can be distinguished, some addressing only
the robustness problem, others trying to reduce, at the same time, the number of
special cases and their complexities. The emerging consensus in academics is that
exact computations offer the best hope of remedying fully the robustness prob-
lem. Unfortunately, this proposition is not practical in many situations, and the
fact remains that the particular operation heavily influences the implementation
details.

2 The Robustness Problem: Why and What

We illustrate a typical failure of a geometric computation, and then articulate the
precise nature of the robustness problem. With this formulation we can measure
what has been accomplished by a proposed approach. The example of failure is
drawn from polyhedral intersection. Some concepts of solid representations are
needed to understand the example and are explained first.
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2.1 Representations of Solids

It is customary, though not necessary, to restrict to solids that are contained in a
finite volume. When infinite objects are manipulated, they are usually limited to
those infinite bodies that have a finite boundary.1 Furthermore, the surface of a
solid is required to be smooth in the topological sense, excluding, for example,
fractal structures.

Modeling and manipulating solid bodies is one of the basic issues in geome-
try. There are implicit, unevaluated representations, such as CSG, which express a
solid body symbolically using a few primitives and basic operations such as rigid
body motion and the (regularized) Boolean operations of union, intersection and
difference; e.g., Hoffmann [3], chapter 2. While such representations can be said
to be fully correct in all cases, they simply defer the problem to the computations
that interrogate this representation for rendering, location queries, mass proper-
ties, and the like. Still in use in some military systems, CSG has largely lost
presence because of inherent inflexibilities when used for design of sculptured
shapes.

An explicit boundary representation (Brep) represents the surface of the solid
using vertices, edges and faces. Roughly speaking, a face might be a topological
disk, an edge a topological segment, and a vertex a point.2 Adjacency of the
boundary elements is maintained by a graph structure. Variants of that structure
are in use that embody different trade-offs. The conflicting requirements include
on the one hand the desirability of minimal redundancy, and, on the other, the
need to quickly access adjacent parts of the boundary. The variants also resolve
differently the question whether an edge should be adjacent to exactly two faces,
or whether there could be more adjacent faces. In the latter interpretation, separate
volumetric components of the solid may share a common edge.

It is obvious that adjacency data is highly structured, and that algorithms
should assume correct structure. After all, the structure is never manually defined,
and always created by higher-level design operations carried out conscientiously.
It is therefore a catastrophic event when adjacency data is inconsistent, and we
now explain how such an inconsistency could arise. This would be a source of
failure for a high-level algorithm manipulating a solid.

1An exception are algebraic half spaces defined asf(x; y; z) � 0. Their surface,f(x; y; z) =
0, may be infinite. A planar half space,ax+ by + cz + d � 0, is a common object of this kind.

2But note that this convention necessitates more than one face to represent the curved surface
of a cylinder and leads to artificial “seams.”
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2.2 How Intersection May Break

Suppose we want to intersect the two polyhedra shown in Figure 1. Conceptually,
we intersect the two surfaces identifying edge loops that arise from face/face in-
tersections. We partition the surface of the two polyhedra, and then sew together
the relevant parts into a new surface. The sewing relies heavily on traversals of
adjacency structures of the intersections. When we intersect the faces of the two
solids, we will also locate the intersection points of edges of one solid with the
faces of the other solid, because that is where a face/face intersection ends.

In our example, assume that the front edge of the tetrahedron cuts the top face
of the cube at a steep angle and the front face of the cube at a shallow angle.
When carried out numerically, it is therefore possible that we deem the edge in-
tersection with the top face to be in the face interior, owing to the steep angle and
the resulting better numerical conditioning of the linear system that determines
the coordinates of the intersection. Nevertheless, the intersection with the front
face may be deemed to lie on the edge of the face. After all, the shallow angle of
the edge with the front face results in a linear system that has a poorer condition
number and therefore yields coordinate values with a greater errors. The partition
of the top and the front faces that would result from these incidence decisions is
shown in Figure 2. The two partitions are logically inconsistent, because the edge
of the tetrahedron now intersects the top face twice, atA and atB. This will
break the sewing part of the algorithm in all likelihood, as the designer would not
anticipate that a line intersects a plane in two separate points. The intersection
algorithm would fail as a consequence.

Different strategies for determining the intersections lead to different types of
failure. Also, there is the possibility that the sequence in which the intersections
are made affects the outcome of the computation. Note that the face sequence in
the data structure is arbitrary and not controlled.

2.3 Problem Formulation

The following captures the basic difficulty making geometric computations robust.

In geometric computations, logical facts such as incidence, separa-
tion, tangency, etc., are deduced based on numerical calculations.
Further inferences are drawn from these deductions. The impreci-
sion of floating-point arithmetic makes the conclusions drawn from
the numerical calculations unreliable. In particular, the same logical
question may arise repeatedly, in the form of different floating-point
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computations giving contradictory answers. Unless this problem is
avoided, it is not possible to write fully correct/robust/reliable code
for geometric operations using standard floating-point arithmetic.

Note that it is difficult recognizing that a particular geometric question has al-
ready been asked before in a different formulation. In our example, the question
has been“do two edges intersect?”and that question has been answered inconsis-
tently. While this particular question might seem to be easy to settle consistently
in all cases, other questions might be hard to resolve consistently.

2.4 Tolerating Error

The severity of the robustness problem is a function of the intricacy of the data
structures manipulated and the sophistication of the geometric reasoning implied.
If we are to intersect simple structures such as line segments in the plane, we
might very well tolerate incorrect answers some of the time if the objective is
simply to find intersection points. When manipulating complex structures, such
as the topology of solid boundaries, the tolerance for error is significantly dimin-
ished. In a sense, robustness problems grow with the evolution to more sophisti-
cated geometric manipulations and reasoning. This is bad news because it impairs
progress.

2.5 Solution Approaches

We can immediately identify the following strategies to address the robustness
problem, partially or in whole:

1. Use exact arithmetic: This could be integer arithmetic, extended precision
arithmetic, nonstandard, or symbolic arithmetic.

2. Use symbolic reasoning: Based on the nature of the geometric problem,
we could symbolically reason, as part of the computation, which deduc-
tions have already been made, and which new ones need not be made anew,
from floating-point computations, because they are a consequence of al-
ready known facts.

3. Use reliable calculations: Using interval arithmetic, we can provably en-
close the result of an arithmetic calculation with a floating-point interval
within which the result of the corresponding infinite-precision exact com-
putation must lie.
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Those approaches will be considered in turn.

3 Exact Arithmetic

If floating-point computations are the root problem, why not use exact arithmetic?
More than 30 years ago, Macsyma implemented exact rational arithmetic, and we
can surely too. There are two problems that complicate this reasoning:

1. Proliferation: If the input to a geometric operation hask-digit precision, the
output may require higher precision.

2. Irrationality: Some operations result in coordinates that have no finite pre-
cision.

Both points can be demonstrated with simple examples.
For the proliferation problem, consider the intersection of two line segments.

Assume a fixed precision with which the endpoint coordinates have been spec-
ified. Figure 3 shows two such segments. The grid line represent the resolution
possible under the assumed precision. While some intersections are on grid points,
thus have representable coordinates, others are not. That is, while the input points
have a precision ofk digits, the intersection points require a multiple of that pre-
cision to be representable. When we define other segments that connect such
intersections, and we want to intersect them in turn, the precision needs to be in-
creased anew to represent the second-generation intersection points. Iterating this
process leads to an exponential growth in the required precision.

To see the irrationality problem, consider rotating the unit square, represented
by vertex coordinates, by45Æ. The new vertex coordinates now involve radicals
and are irrational.

Clearly, both problems can be solved in a general and expensive way, and such
solutions are familiar from symbolic computation systems such as Mathematica,
Maple, or Macsyma. However, how could we achieve the efficiency needed to
be competitive with an unreliable floating-point implementation? Getting it right
at the higher cost of exact arithmetic must ultimately find its justification in the
requirements of the application. The straightforward way of implementing an
infinite precision arithmetic package is rarely justified in practice.

Before dismissing exact computations from further consideration, let us con-
sider studies that limit the needed precision in the context of specific applications.
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3.1 Segment Intersection

We are given two segments by endpoints. SegmentS1 has the endpointsA1 =
(x1; y1) andB1 = (x2; y2); segmentS2 has the endpointsA2 = (x3; y3) and
B2 = (x4; y4).

3.1.1 Intersection Test

In the simplest case, we want to determine reliably whetherS1 andS2 intersect,
without computing the coordinates of the intersection. We describe an algorithm
by Gavrilova and Rokne [4].

The points on the segmentS1 are given parametrically byt1A1 + (1 � t1)B1

where0 � t1 � 1. If the segments intersect, then the linear system3

t1A1 + (1� t1)B1 = t2A2 + (1� t2)B2

has a solution subject to0 � t1; t2 � 1. If there is a solution, it has the form

t1 = D1=D0

t2 = D2=D0

where

D1 =

�������

1 x2 y2
1 x3 y3
1 x4 y4

�������
= 24(B1;A2;B2)

D2 =

�������

1 x4 y4
1 x2 y2
1 x1 y1

�������
= 24(B2;B1;A1)

D0 =

�������

1 x1 y1
1 x2 y2
1 x3 y3

�������
�
�������

1 x1 y1
1 x2 y2
1 x4 y4

�������
= 2(4(A1;B1;A2) �4(A1;B1;B2))

Note that the determinant values are proportional to the signed area of the triangle
spanned by the points. To test thatt1 and t2 have finite values and are in the
required ranges we evaluate the sign of the determinants and suitable differences
of them. That is:

1. If D0 = 0, then the line segments are parallel or collinear. The subcases are
3Ak andBk are vectors.
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(a) If D1 6= 0, then the two segments are not collinear, hence do not
intersect.

(b) If D1 = 0 andx1 = x2; i.e., if the segments are vertical, then there is
an intersection iffy1 � y3 � y2 or y1 � y4 � y2 or y3 � y1 � y4 or
y3 � y2 � y4.

(c) If D1 = 0 and the segments are not vertical, then compare thex-
coordinates as in case (1b), or else they-coordinates analogously, ac-
cording to the slope of the line segments.

2. If D0 6= 0, then the segments are not parallel. Assuming thatD0 > 0,
compute the value range oft1 as follows:

if (D1 < 0) assert(t1 < 0);
else if (D1 == 0) assert(t1 == 0);
else if (D1 - D0 <= 0) assert(0 < t1 <= 1);
else assert(t1 > 1);

If D0 < 0, then the code fragment must be suitably changed. The range of
t2 is determined analogously.

We observe that the decision process has been reduced to evaluating the sign of
determinants and the sign of the difference of determinants. Because of the form
of the determinants involved, all sign determinations are of the form

X
xkyk �

X
xjyj

If we assume input coordinates that are single-precision floating-point numbers,
the productsxkyk can be evaluated exactly with standard double-precision. The
ESSA algorithm evaluates the sign of such a sum exactly.

3.1.2 ESSA Algorithm

We determine the sign of a sum of the form

s =
mX
i=1

ai �
nX
i=1

bi ai; bi > 0

where the individual terms are double-precision and positive. The underlying
idea is to subtract the same quantity froma1 and fromb1 in a manner that does
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not change the sign ofs. The terms in each sum are ordered from the largest to
the smallest. The quantityu is chosen such that the differencesa1 � u andb1 � u
remain exact. Moreover, one of the terms is reduced to zero in one or more steps,
so that eventually the sums are transformed such that one or both of them are
empty. At that point the sign ofs is known.

The algorithm is shown in Table 1; see [4, 5].

3.1.3 Computing Intersections

With input coordinates in single-precision, the extra effort expended by the ESSA
algorithm achieves a reliable intersection test at modest cost. If we want to know
the intersection coordinates, however, then we need to do more work. Now we
require an exact summation of the products arising from the determinants, so the
ESSA algorithm is not enough. Instead, we need to implement at the very least an
exact summation of triple product terms.

Let p = (x; y) be the coordinates of the point we seek, and assume that the
segments intersect transversally. We will deal with the collinear case later. The
the pointp must satisfy both implicit line equations which, in terms of the segment
end points are

(y2 � y1)x+ (x1 � x2)y = x1y2 � x2y1
(y4 � y3)x+ (x3 � x4)y = x3y4 � x4y3

The solution of the system is

x = D1=D0

y = D2=D0

where

D1 =

�����
x1y2 � x2y1 x1 � x2
x3y4 � x4y3 x3 � x4

�����

D2 =

�����
y2 � y1 x1y2 � x2y1
y4 � y3 x3y4 � x4y3

�����

D0 =

�����
y2 � y1 x1 � x2
y4 � y3 x3 � x4

�����
We see that the quotients are formed from sums of triple productsxixjyk and
xiyjyk. Each sum has up to 8 terms. Therefore, if the input precision isk bits, the
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sums require3k+3 bits to be correctly evaluated when given in integer arithmetic.
Note that the integer grid of representable points is uniform, as shown in Figure 3,
but the grid of representable floating point numbers is distinctly different, as seen
in Figure 4.

Extended precision is needed to evaluate triple products exactly. If the exact
inner product for double-precision is implemented, then the summation of triple
products of single-precision floating point numbers can also be evaluated exactly.

Assume that we want to test whether two computed segment intersections are
identical. If we work with rational coordinates, i.e., with integers as line coeffi-
cients, then the comparison can be made by comparing numerator and denomi-
nators. If the coordinates are equal, then the reduced quotients must have equal
denominators and numerators. If we work with floating-point coordinates, then
the accumulator structure explained next can be used.

We excluded collinear intersections thus far. Aside from the trivial cases of
horizontal and vertical segments, we can first test collinearity as explained before,
and then locate the contained endpoint(s) by comparison of one of the coordinates.

3.1.4 Exact Inner Product

An IEEE single-precision floating point number has an 8-bit exponent and a 24-
bit mantissa. In the first implementation, we convert all legal single-precision
values into a fixed-precision mantissa for which roughly 280 bit integers suffice.
Allowing some additional bits to account for multiplications and additions within
reasonable length, an accumulator of some 40 bytes can compute an inner product
of moderate length accurately in almost all practical cases. The value held can
be extracted again into a single-precision floating-point value with rounding. So,
the intersection coordinates can be obtained as the quotient of two floats that are
accurate to 23 bits, yielding a result that is accurate to at least 22 bits mantissa
length.

There is no trick to implementing the exact inner product in this way. The
most expensive operation is the initialization; adding a product and extracting a
value is straightforward. Additional variables can be used to identify the nonzero
portion of the accumulator.

There is another implementation that uses more space for the accumulation
that is due to Kobbelt. It is appropriate when there is a lot of summation with only
occasional value extractions. The idea is to defer the addition of the summation
terms until a value needs to be extracted. The accumulator is an array A with size
equal to twice the exponent range. Initially, each entry of A is zero.
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When adding a number to the accumulator, we put a number x into position
A[2e], if e is the (biased) exponent of the number and the last mantissa bit is 0. If
the last mantissa bit is 1, then we put the number into position A[2e + 1]. Thus,
we “know” the last bit of the mantissa by position in the table. If the entry in A is
zero, nothing else happens. If the entry is not zero, then we add to x the value at
the proper position of A, zero out this entry, and repeat with the result at the new
position determined from the exponent and the last mantissa bit. By separating
numbers with a trailing 1 from numbers with a trailing zero in the mantissa, there
is no loss of information in this addition.

We can think of the accumulator A as a large staggered sum. When the current
value is extracted as a floating-point number, the summands are added up in a loop.
Summation begins with the highest two nonzero entries. They are added with a
side calculation determining the precise error in the addition. The error is re-
entered, done much as the addition before, each time increasing the gap between
the highest entry and the second highest. This diminishes the influence the second
largest entry has on the result, until the gap exceeds the mantissa length and the
“low-order” bits have no influence at all on the result. At this point, the accurately
rounded result is evident.

This implementation is fairly fast on accumulating values, but takes extra time
to extract current values. In some situations it is more efficient than the first im-
plementation, but not always.

3.1.5 Segment Intersection Summary

The segment intersection techniques presented do not concern the global strategy
that is used when many segments must be intersected. Instead, they only concern
the computation on two segments, a computation that one would like to implement
in a utility package and forget from then on. As we see, however, the intermediate
precision needed to get reliable answers is unexpectedly high: roughly double
for testing whether there is an intersection, and roughly triple to compute the
actual intersection coordinates. Textbook algorithms on segment intersection do
require testing the equality of intersection point coordinates; e.g.,deBerg et al. [6],
Chapter 2. but assume that the test is trivial. As we have seen, that is a poor
assumption.
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3.2 Polyhedral Intersection

So far, we have not addressed proliferation and irrationality. We discuss those
subjects in the context of polyhedral intersection. The intersection of two polyhe-
dra is an excellent test case, because it is a complex algorithm that relies heavily
on making incidence decisions correctly. It is also an ideal subject to discuss pro-
liferation, because the intersection is again a polyhedron, as well as irrationality,
which arises from rotations. Finally, a well-structured polyhedral intersection al-
gorithm can be reasonably easily extended to an intersection algorithm for curved
solids.

3.2.1 Sugihara’s Method

Sugihara and Iri [7] proposed an exact polyhedral intersection algorithm that ac-
counts for all sources of robustness problems. The geometric elements are rep-
resented without redundancy, giving only the coefficients of the plane equations
of the faces. Vertex coordinates are computed on demand in the manner of Sec-
tion 3.1.3. That is, with plane equations of the formax + by + cz + d, define

Dx = �
�������

d1 b1 c1
d2 b2 c2
d3 b3 c3

�������

Dy = �
�������

a1 d1 c1
a2 d2 c2
a3 d3 c3

�������

Dz = �
�������

a1 b1 d1
a2 b2 d2
a3 b3 d3

�������

Dw =

�������

a1 b1 c1
a2 b2 c2
a3 b3 c3

�������

Then the coordinates of the intersection of those three planes are

(Dx=Dw; Dy=Dw; Dz=Dw)

where we assume thatDw 6= 0, that is, that the plane normals are linearly inde-
pendent.
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It is important to realize that the representable polyhedra arenot restricted to
convex polyhedra only. This is because the vertex coordinates are computed when
needed, as intersection of adjacent face planes. Thus, edges can be represented
topologically, by the names of the incident vertices, and edge loops delimiting a
face can be defined purely topologically without any need for explicit coordinate
information. All coordinates can be derived from the face plane equations as
needed.

If we assume that the coefficients areB-bit integers, then roughly3B bits are
needed for vertex coordinates without division. It is, however, better to use coef-
ficientsd that have2B bits, as this leads to a more uniform grid of representable
planes. In that case, we need vertex coordinates that are roughly quadruple preci-
sion.

To test vertex/plane incidence accurately, we evaluate the plane equation with
the point coordinates exactly, for which quintuple precision is necessary.4 Inci-
dence means that the determinant vanishes:

���������

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

���������
= 0

Note that we do not need to compute vertex coordinates explicitly for this test.
A key observation settles concerns about digit proliferation. Although we do

require quintuple precisions to make reliable answers in the course of the compu-
tation, the output polyhedron inherits all surfaces from the two input polyhedra.
Therefore, the output polyhedron does not require a higher precision than the input
polyhedra, in order to be represented. That is, no digit proliferation takes place.
This is in contrast to segment intersection when the intersection points should be
used to define new segments.

Is the choice to represent only plane equations the key factor that eliminates
the growth of precision? Since the inheritance of the input planes by the output
polyhedron is a geometric fact, the answer must be no. Even though it would
appear that with a vertex-based polyhedral representation there is an exponential
precision growth, as is the case for segment intersection, the five-fold increase in
precision happens only once and never thereafter.

4To be precise, a few additional bits are needed to account for the summation.
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3.2.2 Representation under Rotation

We have seen that the intersection of two polyhedra can be done with exact arith-
metic completely correctly if the input polyhedra are correct. But are they? To
answer this question we need to consider where input polyhedra come from. In
particular, there is a problem with rigid body rotations.

The unit square is eminently representable, with minimal precision require-
ments. When rotated by45Æ about the origin, however, it no longer is: Neither
all line coefficients nor all vertex coordinates are rational numbers after the ro-
tation. Therefore, infinite precision would be needed. The implication is that
when a proper, representable polyhedron is rotated by an angle, then it no longer
needs to be representable. One expects that aroundingoperation should be used.
But as demonstrated by Sugihara, naive rounding can change the polyhedron into
an incorrect one with self-intersections. This happens when there are very small
features.

We could imagine using rotations by angles that preserve the rationality of
coefficients and coordinates. Such rotations correspond to the rational points on
the unit circle which are obtained with rational values fort from

x(t) =
1� t2

1 + t2

y(t) =
2t

1 + t2

Note that rational rotations do not form a group. That is, the composition of
several rational rotations need not be representable as a single rational rotation.

Sugihara and Iri avoid the problem as follows. To guarantee a legal polyhe-
dron, we need to guarantee that the rounding operation after a rotation preserves
correctness. This is trivial for trihedral polyhedra that have no small features, such
as cuboids that are larger than a minimum size. When a complex polyhedron is
represented in dual form, by recording both the boundary structure needed to do
Boolean operations, and the CSG tree by which the polyhedron was constructed,
then we may apply the rotation to the trihedral primitives and reconstruct the ro-
tated polyhedron from the CSG representation. Although not cheap, doing so
guarantees that all polyhedra are correct, a requirement to have a fully robust in-
tersection algorithm with exact arithmetic.
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3.2.3 Fortune’s Method

A different strategy for polyhedral intersection has been proposed by Fortune [8].
The idea is to avoid exact computation when floating-point computation is suffi-
ciently accurate.

Again, the primary geometry representation is the implicit plane equationax+
by + cz + d = 0, where the coefficients areB-bit integers except ford whose
precision is2B. In contrast to Sugihara and Iri, Fortune tolerates self-intersection
in polyhedra as the result of a rigid-body motion, but subsequently extracts the
core, always a legal polyhedron. Figures 5–7 illustrate the concept.

Call a numerical primitive computation apredicateif its value impacts the flow
of control of an algorithm, and aconstructorif its value is used to define geometric
data. The evaluation of predicates usually only requires sign determination but
must be correct. The evaluation of constructors may tolerate some error in view
of the rounding scheme that extracts the core.

Both predicates and constructors are integer polynomials. A preprocessor pro-
vides an implementation of the evaluation of those polynomials; Fortune and Van
Wyk [9]. By considering the degree and form of the polynomial, as well as the
precision of its coefficients, the preprocessor determines whether a floating-point
evaluation is sufficiently accurate to evaluate the polynomial without uncertainty.
Based on the determination, the preprocessor generates a C++ code fragment that
implements the evaluation.

At the time, Fortune’s experiments indicated that the running time increased
by about a third due to the times that exact arithmetic was used, in less than 10% of
the cases. We conclude that exact evaluations are costly, but that they are needed
only some of the time. Thus, an implementation that uses exact evaluation only
when needed has a clear advantage over an implementation that always evaluates
exactly.

3.3 Curved Geometric Primitives

In the case of planes and polyhedra, we saw that quintuple precision is needed
to evaluate incidence exactly. Already for quadratic surfaces, exact point/surface
tests become daunting. Consider the quadratic surface

ax2 + by2 + cz2 + dxy + eyz + fzx + gx+ hy + iz + j = 0
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where the coefficients are integers and

�L � a; b; c; d; e; f � L
�L2 � g; h; i � L2

�9L3 � j � 9L3

Using Sturm sequences, Yu derives in his thesis [10] an estimate ofL720 for the
precision required to separate two intersections of quadric surfaces. This clearly
eliminates a straightforward, exact-arithmetic strategy for curved geometric prim-
itives from further consideration.

The pessimistic bound reflects of course the manner in which the computation
separates near, but unequal, points accurately. There is reason to believe that, as
in the linear case, certain applications permit much more efficient exact methods.

4 Symbolic Reasoning

A key issue in geometric computations is to achieve consistent evaluation of pred-
icates and constructors as stated in Section 3.2.3. It has been observed that the
predicates answer geometric questions. Therefore, the problem of recognizing
that such a decision is implied by earlier decisions already made lies in the do-
main of geometric reasoning. It is held that we can tolerate an incorrect decision
in a borderline case as long as it is consistent with all other decisions. An exam-
ple of that concept has been developed fully for Voronoi diagram computations
by Sugihara [11]. The algorithm may well produce an incorrect diagram but it
always computes correct topological data structures and will never fail.

There is a rich literature on geometric reasoning, but its tools are very general
and have been developed to prove geometric theorems. This suggests that it is
better to specialize reasoning to focus only on the predicates and their interaction
that arise in a particular geometric application. We illustrate this thought with the
case of polyhedral intersection.

4.1 Incidence Decisions in Polyhedral Intersection

As we have seen before, polyhedral intersection ultimately rests on incidence
predicates that test whether the intersection of three planes is on a fourth plane,
or, more symmetrically, whether four planes meet in a common point. Recon-
sidering the example of Figure 1, when the two edges are close, we could decide
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either intersection or nonintersection. As long as the decision is made consis-
tently, it should lead to consistent data structures. Either choice can be defended
on grounds that the input data is probably not accurate as given and that there is
no way to know the “right” decision.5

To make consistent incidence decisions requires posting an incidence choice
to all affected other intersections. Thus, when we decide, on the front face of the
cube in Figure 1, that the front edge of the tetrahedron intersects the edge of the
cube, then we should make that decision known to the top face as well where the
same question is asked for a second time. The difficulty is that we have no control
over the sequence in which the faces are examined, so that incidence in the front
face may well be investigatedafter it has been decided in the negative on the top
face. So, rather than posting nonincidence, which degrades performance because
of its volume, we need a way to undo a nonincidence decision previously made.

Another consideration is to minimize the occurrence of equivalent predicates
and to reduce all decisions to as few a set of predicates as possible. Doing so re-
duces opportunities for unrecognized inconsistencies. Therefore, in the following
list of different types of incidence decisions, we reduce some of them to a set of
primary decisions. The following two decisions are considered primary and are
computed from the geometric data.

1. v \ f : The vertexv must be sufficiently near the face plane off , an
�-judgement.

2. e \ e0: e ande0 must be sufficiently close. Intersecte with one face plane
adjacent toe0 and ascertain that the intersection is on all other face planes
adjacent toe0.

The expression preceding the colon is the one we test for, the description following
describes how we implement the predicate and why. If we restrict, furthermore,
the geometric data to face plane equations only, then the implementation of the
two primary predicates consists in each case of one or more tests whether four
planes meet in a common point.

In addition, we have the following secondary predicates whose implementa-
tion is reduced to the primary ones. Again, the expression describes the condition
we test for, and the text explains what to do and why.

3. v \ e: Let f be a face adjacent toe. The vertexv must be incident to the
face plane of each adjacent facef .

5Note, however, that on pragmatic grounds one could prefer decisions that do not lead to very
small structures in the result.
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4. v \ v0: The vertexv must be incident to each edge incident to the vertex
v0. That is,v must be on every face plane incident tov0 and, vice versa,v0

must be on every face plane incident tov.

5. e onf : The vertices on the edge must be incident to the face plane off .

6. e collinear withe0: Let f be a face adjacent toe. The vertices one0 must be
incident to the face plane of each adjacent facef . Conversely, the vertices
one must be on every face planef 0 incident toe0.

7. e \ f : Test if the edge intersects the face plane transversally, i.e., whether
the vertices ofe are on opposite sides off , or one of them is onf but the
other is not.

8. f \ f 0:
Every vertex inf must be incident to the face plane off 0, and every vertex
in f 0 must be incident to the face plane off .

Note the difference between cases (7) and (8).
We see now that there is a need to iterate incidence tests because, as ver-

tices are placed into faces and face planes, the incidence decision of the higher-
dimensional entities are affected and should be re-examined. Also, to establish
symmetry, some tests require multiple�-judgements. Every incidence test bene-
fits from working with the primary geometric data.

There is evidence in practice that a carefully engineered implementation ob-
serving these incidence definitions achieves a good measure of consistency. How-
ever, there is no proof that the resulting implementation is correct, and it is widely
held that this is not the case. The difficulty, from a reasoning perspective, is that
on close proximity it is entirely possible that some, but not all, vertices of a face
lie in another face. In this case we must reason about a line in which the two
face planes intersect and ascertain that the vertices above the other face plane are
all on one side of the line, and consistently for both planes. Worse, we now are
obligated to ensure also that all vertices, deemed to lie in the other plane, lie on
this intersection line as well.

Considerations of this kind make it clear that it is not a trivial matter to prove
that an algorithm based on the reasoning approach is indeed fully cognizant of all
possibilities and therefore robust. There are examples where the reasoning about
“simple” point/line configurations appears to be equivalent to proving geometry
theorems; Hoffmann [3], Section 4.4.1. This indicates that, as the exact approach,
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there is a complexity barrier preventing us from relying solely on a reasoning
approach in geometric computation. However, Hopcroft and Kahn [12] prove
that it is possible to consistently intersect a convex polyhedron with a planar half
space.

A central difficulty for the reasoning approach is that deductions about geo-
metric incidences are based on a notion of “nearness” or “epsilontics.” As such,
they must follow unfamiliar logical rules. For example, let us fix a threshold dis-
tance below which we judge that points are coincident. We may find that pointA
is coincident with pointB and pointB coincident with pointC, but that pointA
is not coincident with pointC. See also Figure 8.

Another example of the strangeness of reasoning about nearness is shown in
Figure 9. Here the vertexv is determined by computation to lie on both adjacent
face planes, yet it cannot be placed on the common edge because the distance, in
each face plane, is too great. Such a situation might be resolved by arguing that
there should probably an object simplification that eliminates such small, slender
features from the input polyhedra.

Finally, we stress that when the algorithms are based on floating-point arith-
metic, it is advisable to use, where possible, numerically stable and precise algo-
rithms developed by the numerical analysis community. For instance, determining
the coordinates of the intersection of three planes from the determinants of Sec-
tion 3.2.1 is less precise than using, say, the QR method; e.g., Golub and van Loan
[13], Section 7.5.

5 Interval Computation

We pretend to compute with real numbers in the design of geometric algorithms.
In reality, however, we compute with finite approximations of numbers. In the
case of integer arithmetic, the approximation is exact and the only problem we
have to face is overflow. Rational arithmetic is also exact because it is derived
from exact integer arithmetic. As we have seen, rational arithmetic is an unsat-
isfactory solution in the nonlinear case, because the needed precision is too large
and some results are not rational. In the linear case rational arithmetic does bet-
ter, especially when, due to specific properties of the application, simplifications
ensue that allow us to get away with limited precision.

Floating-point arithmetic creates an illusion of real arithmetic. By nature,
floating-point numbers are peculiar rational numbers with a peculiar range of rep-
resentability, as illustrated in Figure 4. How can we work with real numbers, and

20



do so economically?
Symbolic algebraic computation systems work with real algebraic numbers.6

An algebraic numberr is represented by a polynomial (whose rootr is) and by a
separating interval (a pair of rational numbers of arbitrary precision) that contains
r and no other root of the polynomial. This very general approach cannot deliver
the performance needed for geometric computations, but the interval idea can
be adapted to deliver a useful tool — at least that is the expectation. Instead
of rational interval bounds we will discuss the use of floating-point intervals. A
floating-point interval is denoted

[x] = [x; x]

wherex andx are floating-point numbers andx � x. The interval[x] represents
all real numbersr between the interval bounds:

[x] = fr 2 R j x � r � xg
Thus, we may compute with real numbers using precisely defined approximations
and automatically retain the knowledge of how closely we have delimited the
value of a real numberr that would be the true result of a computation with real
numbers. We will use the notation of Hammer et al. [14]. The key objective is to
come up with an interval enclosure that is as tight as possible.

5.1 Interval Basics

We begin with a few elementary definitions for the real intervals[x] where the in-
terval bounds,x andx, are real numbers. All arithmetic operations are assumed to
be exact at first. We explain later what changes are necessary when implementing
these concepts and operations using floating-point numbers and operations. We
stress that the implementation has to make sure that the machine arithmetic used
does not violate the enclosure property. Only then do we have a solid foundation
on which to build.

5.1.1 Real Intervals

The (absolute)diameterof the interval[x] is d([x]), the radius is r([x]), and the
midpointism([x]), where

d([x]) = x� x r([x]) =
x� x

2
m([x]) =

x + x

2
6And with a few special transcendental numbers
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Thesmallestandgreatest absolute valueof an interval is

h[x]i = minfjxj j x 2 [x]g
j[x]j = maxfjxj j x 2 [x]g = max(jxj; jxj)

Note that0 2 [x] iff h[x]i = 0. The relative diametertells us the quality of an
approximation by interval. It is defined by

drel =

8>><
>>:

d([x])
h[x]i if 0 62 [x]

d([x]) otherwise

Basic arithmetic with interval is as follows:

[x] + [y] = [x + y; x + y]
[x]� [y] = [x� y; x� y]
[x] � [y] = [minfxy; xy; xy; xyg; maxfxy; xy; xy; xyg]

Division requires that the interval by which to divide does not contain zero.
When computing functions of real variables, we can extend the function to

interval arguments under certain circumstances. Specifically, let� : D � R! R

be a real-valued function that is continuous on every closed interval in its domain
D. We extend� to interval arguments by

�([x]) = f�(x) j x 2 [x]g

The extension is called theinterval extensionof �. Because of continuity,�([x])
is again an interval. In particular, the following extensions are of interest:

[x]2 = [h[x]i2; j[x]j2]q
[x] = [

p
x;
p
x] 0 � x

e[x] = [ex; ex]

log([x]) = [log(x); log(x)]

The real power functionxn extends as

[x]n =

8>><
>>:

[xn; xn] if 0 < x or n odd

[0; j[x]jn] if 0 2 [x] andn even

[xn; xn] if x < 0 andn even
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The basic problem in interval arithmetic is to compute the range of the interval
extension of a functionf on an interval[x]. A natural approach in the cases where
f is defined by an expression or a similar computation would be to substitute[x]
for x in the computational steps, that is, to do aninterval evaluationof f (denoted
by f[]). For example, if we take a polynomial function

f(x) = a0 + a1x + a2x
2 + � � �+ anx

n

the interval evaluation would then be

f[]([x]) = [a0] + [a1][x] + [a2][x]
2 + � � �+ [an][x]

n

where[ak] (in abuse of the notation) is thethin interval [ak; ak]. We observe the
containment

f([x]) � f[]([x]) (1)

Usually, the straightforward interval evaluation overestimates the true range of the
interval extension. This is a key problem in interval arithmetic: The tightness of
an enclosure is a measure of the quality of information we have about the true
solution. Loose enclosures provide little information.

A general technique to reduce this overestimation is thecentered form, derived
from the mean-value theorem. Assume thatf is differentiable onD, and that
c; x 2 [x], wherec is fixed. Then

f(x) � f(c) + f 0([x])([x]� c)

The righthand side is the centered form.

5.1.2 Extended Intervals

We extend the interval concept to permit infinite bounds. Intervals with one or
both infinite bounds are calledextended intervals. Elementary operations with
extended intervals are as expected. In the case of division, the following cases
arise if0 2 [y]:

[x] = [y] =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

[�1;+1] if x < 0 < x or [x] = 0 or [y] = 0

[x=y;+1] if x � 0 andy < y = 0

[�1; x=y] [ [x=y;+1] if x � 0 andy < 0 < y

[�1; x=y] if x � 0 and0 = y < y

[�1; x=y] if 0 � x andy < y = 0

[�1; x=y] [ [x=y;+1] if 0 � x andy < 0 < y

[x=y;+1] if 0 � x and0 = y < y
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The first case in the division is due to the fact that we have no information on the
quotient0=0, hence there is no information on the result.

In the special case thatx is a thin interval, i.e., the lower and upper bound are
the same, and[y] has at least one infinite bound, we have

x � [y] =

8>><
>>:

[�1;+1] if [y] = [�1;+1]

[�1; x� y] if [y] = [y;+1]

[x� y;+1] if [y] = [�1; y]

5.1.3 Floating Point Arithmetic

We implement interval computations with floating-point numbers. To maintain
the strict enclosure of real results, however, we must make sure that the arithmetic
operations on the floating-point numbers are rounded properly.

Rounding upof the real numberr means the nearest machine-representable
floating-point number4(r) � r that is not smaller thanr. If r can be represented
exactly, then of course4(r) = r. Similarly, rounding downmeans the nearest
machine-representable floating-point number5(r) � r that is not greater thanr.

It is crucial that the arithmetic operations with floating-point intervals round
up or down such that the resulting interval is guaranteed to include all real num-
bers that would be the result with exact arithmetic. For the lower bound com-
putations this means rounding down, for the upper bound computations it means
rounding up. Let+4 and+5 denote machine addition that rounds the result up
or down, and similarly�4 and�5 for subtraction. Then we have to implement,
for example,

[x] + [y] = [x +5 y; x +4 y]

[x]� [y] = [x �5 y; x �4 y]

The standard mode of rounding floating-point numbers is to round the magnitude
of the number. This is useless for interval implementation because employing
such operations invalidates the enclosure property and re-introduces uncertainty
into the operations. Many floating-point units (FPU) allow mode change to the
appropriate rounding type. This necessitates some assembler code so directing the
FPU. One should be careful that the optimizer does not remove those directives
gratuitously.

We must also account for the fact the the decimal representation of floating-
point numbers, in the program input and output, is inexact. Where necessary, this
may mean the I/O of hexadecimal numbers, or equivalent techniques that permit
precise control over the resulting representation.
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5.2 Univariate Root Finding

Univariate root finding comes up a lot in geometric computations, and is consid-
ered in principle a solved problem. The solver by Jenkins and Traub [15] is often
cited as a comprehensive solution. Many other techniques are available as well,
and Press et al. [16] explains several of them. The more general and reliable the
root finder, the more complex and delicate the algorithm. The great complexity of
the comprehensive methods is due to the intrinsic capriciousness of floating-point
arithmetic.

For many practitioners, Newton iteration is considered a good stand-by that
is not very complicated and, when started up carefully, usually finds one of the
roots. In some situations Newton iteration is inapplicable. In particular, as every-
one knows, multiple roots defeat Newton iteration. Another issue is that Newton
iteration finds only one rootx�, and repeated division of the polynomial by(x�x�)
accumulates imprecise coefficients.

In fact, this need not be, and the univariate Newton algorithm is an example
that showcases the potential that interval computation can have in conjunction
with the exact inner product. We explain first how to evaluate polynomials accu-
rately, and then describe an interval Newton algorithm.

5.2.1 Polynomial Evaluation

The Horner scheme is known to be an efficient and stable evaluation procedure
for polynomials with floating-point arguments. The polynomial

f(x) = a0 + a1x + a2x
2 + � � �+ anx

n

is evaluated by a loop in the order:

(� � � ((anx+ an�1)x+ an�2)x+ � � �+ a1)x + a0

Evaluation of a polynomial near a higher order root exhibits low-order mantissa
bit errors that, when taken literally, would yield a multiplicity of sign changes near
the actual root. It is therefore not reliably possible to narrow the interval enclosing
a root using evaluation in its neighborhood, nor could we so isolate several roots
with small separation.

As an example, consider the evaluation off(x) = x4�8x3+24x2�32x+16 =
(x � 2)4 near the quadruple root 2. 61 evaluations are conducted, both using the
Horner scheme and using an interval-based polynomial evaluation described in
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Hammer et al. [14], Section 4.2. The latter uses the exact inner product in a matrix
iteration. The steps are as small as possible in the representation, determined as
shown in Table 2.

At the rootr = 2, the next representable doubler0 is computed giving the
separation from above,Æ = r0 � r. Definea = r � nÆ and b = r + 2nÆ,
wheren is a user input. Then evaluate the polynomial froma to b, stepping
through all representable floating-point numbers in-between, and observe the sign
of the computed value. In the case of the quartic polynomial, 40 evaluations
are made on either side of the (4-fold) root 2, froma = 0x3fffffff ffffffd8 to
b = 0x40000000 00000028. In the case of the cubic polynomial(1�x)3, there are
also 40 evaluations on either side of the (triple) root 1, froma = 0x3fefffff ffffffd8
to b = 0x3ff00000 00000028. The results forn = 20 are shown in Table 2. Note
the many sign reversals suffered by the Horner evaluation.

It is apparent that the Horner evaluation is not able to evaluate floating-point
arguments in the vicinity of multiple roots, even for low-degree polynomials as
the ones used here. Note, however, that the exact inner product plays an critical
role in the interval evaluation because it allows accurate evaluations for the matrix
iteration.

5.2.2 Interval Newton

We considerf(x) = 0 wheref is continuously differentiable over the reals. This
is true for univariate polynomials. By the mean value theorem,

f(m([x]))� f(x�) = f 0(�) � (m([x])� x�) x�; � 2 [x]

We assume thatx� is a zero off(x). Define

N([x]) = m([x])� f(m([x]))

f 0([x])

Then

x� = m([x])� f(m([x]))

f 0(�)
2 N([x]) (2)

This means that the zerox� is both in[x] and inN([x]) and therefore in the in-
tersection of these two intervals. Beginning with a starting interval[x](0), we can
iterate

[x](k+1) = [x](k) \N([x](k)); 0 62 f 0([x](k)) and k = 0; 1; 2; ::: (3)

26



Since all intervals are contained in the initial interval[x](0) the method cannot
diverge. This is in contrast to traditional Newton iteration that suffers from this
problem near a multiple root.

The geometric interpretation of an iteration step is closely analogous to the
geometric interpretation of the classical Newton iteration, and is shown in Fig-
ure 10. We assume thatf 0([x](k)) = [g; g] and that the lines with the bounding
slopes intersect thex-axis atl andr, respectively. That is,N([x](k)) = [l; r]. If
the intersection in a Newton step is empty, then we know for certain that there is
no root off in the interval[x](k).

Using extended interval arithmetic, we can dispense with the restriction that
0 62 f 0([x](k)). If the intervalf 0([x](k)) contains zero, we obtain extended intervals
for N([x](k)), namely

N([x](k)) = [�1; r] [ [l;1]

Intersection with[x](k) results in up to two regular (finite) intervals

[x](k+1) = [x(k); r] [ [l; x(k)] (4)

This is illustrated in Figure 11. In summary, the following is true:

Let f : D � R ! R be a continuously differentiable function, and
let [x] � D be an interval in the domain off . Then

N([x]) = m([x])� f(m([x]))

f 0([x])

has the following properties:

1. Every zerox� 2 [x] of f satisfiesx� 2 N([x]).

2. If N([x]) \ [x] = ;, then there is no zero off in [x].

3. If N([x]) is contained in the interior of[x], then there exists a
unique zero off in [x] and hence inN([x]).

For a proof see, e.g., Neumaier [17]. Based on these facts, we can implement
an interval Newton solver that reliably finds the roots of polynomials. While the
solver does not miss root enclosures, it may fail to sufficiently refine computed
intervals so that isolated roots can be separated. Moreover, there appears to be
no reliable way to determine the multiplicity of roots using the interval Newton
algorithm.
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As an example, we find roots for the polynomial

(x� 1)(x� 2)2(x� 3)3(x� 4)4 =
27648� 110592x+ 192384x2 � 192832x3 + 123852x4

� 53428x5 + 15715x6 � 3118x7 + 400x8 � 30x9 + x10

All roots are found without trouble.

5.3 Intervals in Geometric Computations

In Section 4 we explained the difficulties devising a logic by which to reason with
tolerances. Since intervals are tolerances, computing with them is subject to sim-
ilar problems, except that, with careful implementation of interval operations and
theorems such as the one expressed by Equation 1, we do obtain automatic enclo-
sures of a “true” result. We have to take “true” in a technical sense as meaning
the result of real arithmetic when the input data is exact as written. For simpler
geometric problems, such as segment intersection, the assumption “exact as writ-
ten” is easy to defend. For complex data structures it poses some questions. For
instance, suppose that the input is a polyhedron with polygonal faces. Is it reason-
able to assume that the vertices of each face are coplanar when their coordinates
are so understood? Fortunately, we can relax the vertex coordinates to be inter-
vals, and the same is true for the coefficients of the plane equations. Nevertheless,
there is an issue that has to be accounted for.

Assuming we have satisfactorily established such assumptions, the main work
now focuses on the following:

1. Devise an efficient evaluation of the geometric problem.

2. Determine a proper course for interpreting enclosures that cannot be refined,
or results that cannot be guaranteed.

In the case of the univariate interval Newton algorithm, for instance, we may be
unable to determine the multiplicity of a root that was successfully enclosed by
the computation. Clearly, a key question regarding the second point is how error
propagates geometrically in various constructions.

An example of such an investigation is how to enclose the evaluation of the
Bézier curveC(t). Interval Bézier curves were discussed in Sederberg and Farouki
[18]. The concept was further developed by Hu et al. [19] with an emphasis on
robust evaluation. We explain here the more general approach by Wallner et al.
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[20]. We will first look at this problem in a general way, when the control points
are known to lie in a convex tolerance region, and then consider the special case
when the control points are enclosed in 2-dimensional envelopes.

5.3.1 Convex Sets

Convex sets have been widely studied. We summarize here a few of the properties
needed to consider the B´ezier curve evaluation with convex sets as control points.
A setK is convex if, for any two points inK, the segment connecting those points
is contained inK. The planeE is asupport planeof K if K andE have a point in
common andK is contained in one of the (closed) half spaces defined byE, i.e.,
if K lies on one side of the plane. Some examples are shown in Figure 12 withK
an ellipse.

The support functionsK is a function that maps each unit vectorn to the
(unique) planesK(n) that is orthogonal ton and is a support plane ofK. If we fix
a coordinate system and definesK(n) as the distance of this support plane from
the origin of the coordinate system, then the support planes have the equation
x � n = sK(n). WhenK is understood, we omit the subscript. Evidently, the
points inK satisfy

p 2 K () p � n � s(n) 8n
We define arithmetic operations with convex sets much the same way in which we
defined operations on intervals. Note that intervals are just 1-dimensional convex
sets. In particular, for a numbert, we definetK as the set of pointstx wherex is
inK. The set(1�t)K1+tK2 is anaffine combinationof K1 andK2; if 0 � t � 1,
then it is aconvex combination. The setK1 +K2 is theMinkowski sumof K1 and
K2.

A support function satisfies the following properties. Ifs(n) is the support
function ofK, thens0(n) = ts(n) is the support function ofK 0 = tK, in par-
ticular s0(n) = s(�n) is the support function ofK 0 = �K, understanding point
coordinates as position vectors.

If s1 ands2 are the support functions ofK1 and ofK2, and if0 � t � 1, then
the convex combinationK = (1� t)K1 + tK2 is also convex and has the support
function s = (1 � t)s1 + ts2. The key is that the coefficients(1 � t) andt are
nonnegative. More generally,

K =
X
tj>0

tjKj +
X
tj<0

tjKj =
X
tj>0

tjKj +
X
tj<0

(�tj)(�Kj)
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so that the support function of such a linear combination is

s(n) =
X
tj>0

tjsj(n) +
X
tj<0

(�tj)sj(�n)

The distance between the support planes with normaln and with�n is thedi-
ameterdn of the convex set. IfK is a convex combinationK =

P
tjKj, then

the support function is too, so that the diameters are also,dn(K) =
P
tjdn(Kj).

Based on these basic properties, we can analyze the evaluation of many types of
parametric curves and surfaces.

5.3.2 B́ezier Curves

Recall the definition of a B´ezier curve; e.g., Farin [21].

C(t) =
nX
i=0

PiB
n
i (t)

where thePi are the control points and theBn
i (t) are the (degreen) Bernstein-

Bézier basis functions. The curve points are usually evaluated using the DeCastel-
jau algorithm, illustrated in Figure 13.

The sign of the ordinary Bernstein basis function is given bysgn(Bn
i (t)) =

sgn(t)n�isgn(1� t)i. Therefore, the support of the convex bodyK =
P
Bn
i (t)Ki

is s(n) =
P
Bn
i (t)s

�
i (n), where

s�i (n) =

8>>>>>><
>>>>>>:

si(n) if t < 0; n� i even, or
t > 1; i even, or
0 � t � 1

�si(�n) if t < 0; n� i odd, or
t > 1; i odd, or

Based on this information, we can evaluate a toleranced function value given tol-
eranced control point values using the basis-function form of the curve definition.

Figure 15 shows an evaluation of a B´ezier curve with circular tolerance re-
gions, and the resulting tolerance for the curve point evaluated in this manner. The
grey stripe is the resulting “toleranced” curve. Using the DeCasteljau algorithm,
note that the tolerance zone bounds are defined by the inner and outer tangents, as
shown in Figure 14.

When the parametric domain is extended, as shown in Figure 16, then the
error increases substantially outside the standard range0 � t � 1. This is consis-
tent with well-known analytical results that the accuracy when evaluating in the
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Bernstein-Bézier basis is greatest in the standard range; e.g., Farouki and Rajan
[22].

5.3.3 Interval Control Points

As a special case, we assume that the coordinates of the control points are inter-
vals. The tolerance regions for control points are thus rectangles. Since rectangles
are convex, the results of the previous section hold, justifying the interval exten-
sion evaluation of individual curve points. Again, as before with disks, the toler-
ance region of the value is governed by the inner and outer tangents, as shown in
Figure 17.

5.3.4 Semantics

Do these constructions deliver tight bounds? Yes, but we have to be precise in
what we mean: Given a convex setK as control pointp, we interpret this to
mean that each Euclidean point inK may be chosen as control point. Thus the
“toleranced” curve is the union of exact curves obtained from all possible choices
of control points in the given sets. On geometric grounds, therefore, a DeCasteljau
point of such an exact instance curve belongs to the toleranced curve. By the
preceding analysis this means that the exact evaluation of the tolerance zones,
by the DeCasteljau algorithm, must deliver a correct set of curve points for the
particular (exact) parameter valuet.

Note, however, that there is no assurance that a computer implementation can
carry out an exact evaluation. Rather, a correct interval implementation of the
method, as sketched before, will deliver a guaranteed enclosure. Depending on
the degree of the curve and the valuet, the computed enclosure may be not as
tight as representationally possible.

6 Conclusions

Exact arithmetic offers significant advantages: it avoids uncertainty of incidences,
intersections, and so on, and it allows reducing special cases that arise other-
wise from the looseness with which predicates and constructors are evaluated
in floating-point arithmetic. For the mathematical-minded, the preciseness and
certainty is probably a great re-assurance, but in the practical setting the cost of
carrying out exact arithmetic becomes an issue almost immediately. A simple rule
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of thumb here would be that in the piecewise linear domain, the world of line
segments, polygons and polyhedra, the cost of exact arithmetic can be defended
in mission-critical applications. Exact arithmetic in the nonlinear domain is much
more costly and is not often afforded in practice. The paper by Keyser et al. [23]
describes an exact implementation of nonlinear surfaces.

An issue less prominently discussed when using exact arithmetic is the con-
siderable difficulty of getting the exact input data to be correct: When giving the
vertex coordinates of a polygon for example, coplanarity becomes an issue for
anything but triangles. When giving the coefficients of the support planes for
polygons joining at a polyhedral vertex, it is not automatic that all planes meet in
the same point when the vertex is not trihedral. Those seemingly innocent issues
will impact the correctness of the exact computation.

Another issue that must be addressed for exact arithmetic is the precision pro-
liferation and the possibility of transcendental coordinates. If the intersections
computed from a set of segments become, in turn, end points of segments to be
intersected, iteration of this process drives an exponential growth of precision.
When a polygon or a polyhedron is rotated by an angle, irrational coordinates can
ensue that either ruin the exactness of the representation, or else sharply drive up
the cost with additional constructs such as polynomial or transcendental function
manipulation.

Symbolic reasoning seeks to address the robustness problem by trying to make
sense of imprecise data and finding consistent interpretations. The logic of this
process, and a reasonable bound on its complexity, become the issues in this ap-
proach. Do several incidences imply a collinearity of other points? Perhaps we
are re-proving the theorem of Pappus. In certain cases such “theorems” have been
tested with random evaluations, as in the Cinderella implementation discussed in
Kortenkamp [24]. This brings us back to reasoning with an uncertain evaluation
mechanism, a foundation that may have a measure of robustness that depends in-
versely on the complexity of the geometric structure and construction, but not a
foundation that allows us to forget the lower software layers and take them for
granted. To-date, the attempts put forth to argue that symbolic reasoning can con-
fer absolute robustness have all met with skepticism in the community, in cases
where complex data structures are involved.

Loosely speaking, interval arithmetic provides guaranteed enclosures and so
can be thought of as computing with automatic tolerance estimates. In many cases,
such enclosures are sufficiently precise so that we can say with certainty whether
a predicate evaluates to true or to false. But there are cases where the enclosure
is not sufficiently tight, and then we again face the uncertainty of interpreting its
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implication. So, the key task is to look at the problem at hand and figure out how
to come up with the tightest enclosure possible at acceptable cost.

An interesting variation of the interval approach has been discussed by Agrawal
[25] in his PhD thesis. Agrawal adopts an approximate correctness notion to mean
that for the given numeric data there is a perturbation, within a tolerance limit,
such that the symbolic data with the perturbed numerical values is a valid repre-
sentation and is a correct result for analogously interpreted input data using exact
arithmetic. Thus, input with interval coordinates is processed by interval arith-
metic delivering interval-valued output coordinates that are correct in this sense.
Instead of analyzing the utility of the approach for a class of geometric problems,
as is normally done, Agrawal develops his method purely formally to a program-
ming model and proves correctness. Thus, as long as a geometric computation can
be expressed in the programming model (a given because the model is general),
Agrawal’s method succeeds in generating correct results. However, it is not clear
whether the output coordinates are enclosed with sufficient precision to be useful
in practice.

Each of these approaches has some intriguing techniques to showcase. Clever
setups of polyhedral intersection address the problem of exactness and precision
proliferation. Careful observation of the predicates can lead us to safely use
floating-point arithmetic without further safeguards. Common-sense reasoning
allows us to make algorithms more robust and, in cases such as Voronoi diagrams,
fully reliable. Exact inner product evaluation in conjunction with directed round-
ing can give enclosures for polygon evaluation down to single-bit errors.

To-date, nobody has put forth a general, winning approach that on the one hand
confers absolute robustness while, on the other hand, not costing prohibitively.
This means that we need to continue to practice a craft instead of an exact sci-
ence, and that we must pick and choose from the techniques developed so far
pragmatically according to the circumstances and the application.
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Table 1:ESSA Algorithm (Ratschek and Rokne)
E denotes the exponent ofa1, F the exponent ofb1. The terms are stored in
two lists of lengthm andn, one for each sum, and are ordered by decreasing
magnitude.

1. Termination
If m = n = 0 thens = 0; exit.
If m > n; n = 0, thens > 0; exit.
If n > m;m = 0, thens < 0; exit.
If a1 > n2F , thens > 0; exit.
If b1 > m2E, thens < 0; exit.

2. Initialization
Seta0; a00; b0; b00 all to zero.

3. Leading Term Analysis
If E = F , then
If a1 > b1, thena0 = a1 � b1,
elseb0 = b1 � a1.
If E > F , then
If b1 = 2F�1, then setu = 2F�1,
else setu = 2F .
Seta0 = a1 � u, a00 = u� b1.
If F > E, then
If a1 = 2E�1, then setu = 2E�1,
else setu = 2E.
Setb0 = b1 � u, b00 = u� a1.

4. Sort
Dropa1 andb1 from the lists.
Enter those of the valuesa0; a00; b0; b00 that are not zero,
respectively into thea- andb-lists.
Re-establish sorting order.

5. Loop
Updatem andn;
Go to Step 1.
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Method negative zero positive sign rev.

x4 � 8x3 + 24x2 � 32x+ 16
Horner 15 41 25 29
Interval 0 1 80 0

�x3 + 3x2 � 3x+ 1
Horner 25 41 15 9
Interval 40 1 40 1

Table 2: Polynomial evaluation on all representable doubles around multiple root;
40 doubles on either side (n = 20).
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Figure 1: Intersection of a cube with a tetrahedron

39



A

B

Top Front

Figure 2: Possible inconsistent face partitions
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Figure 3: The intersection of representable segments need not be representable
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Figure 4: The grid of floating-point numbers
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Figure 5: Ideal polyhedron
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Figure 6: The planes are perturbed towards each other, giving an improper poly-
hedron
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Figure 7: The core of the improper polyhedron is extracted.
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Figure 8: “Nearness” that implies coincidence is not transitive
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Figure 9: Canv be on both faces but not on the connecting edge?
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Figure 10: Interval Newton step when0 2 f 0([x](k), adapted from Hammer et al.
[14], wherec(k) = m([x](k))
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Figure 11: Interval Newton step when0 62 f 0([x](k), adapted from Hammer et al.
[14]
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Figure 12: Support lines of a convex set
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Figure 13: DeCasteljau algorithm for a B´ezier curve
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Figure 14: Tolerance zone for linear combinations of disks
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Figure 15: Bézier curve with toleranced control points
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Figure 16: Bézier curve with toleranced control points in extended domain
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Figure 17: Tolerance zone for linear combinations of rectangles
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