
doi:10.1006/jsco.2000.0403
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2001) 31, 409–427

Decomposition Plans for Geometric Constraint
Problems, Part II: New Algorithms

CHRISTOPH M. HOFFMAN†§, ANDREW LOMONOSOV‡¶

AND MEERA SITHARAM‡‖

†Computer Science, Purdue University, West Lafayette, IN 47907, U.S.A.
‡CISE, University of Florida, Gainesville, FL 32611-6120, U.S.A.

We systematically design two new decomposition–recombination (DR) planners, geared
to perform well with respect to several performance measures. The DR-planning problem

and the performance measures were formally defined in Part I of this paper to closely

reflect specific requirements of CAD/CAM applications. As expected, in analysis and
comparison based on all of these performance measures, one of the new DR-planners, the
modified frontier algorithm (MFA), represents a significant improvement over existing
planners based on SR (constraint shape recognition) and MM (maximum matching) that

were analyzed in Part I. We also present salient heuristics and data structures used in
the implementation of MFA.

c© 2001 Academic Press

1. Preliminaries

We present two decomposition–recombination (DR) planning algorithms or DR-plan-
ners, a notion that was formally defined in Part I (Section 3) of this paper. The new
planners follow the overall structural description of a typical DR-planner, based on the
DR-solver S given in Part I (Section 1). Furthermore, the new DR-planners adopt and
adapt features of older decomposition methods such as SR (shape recognition) and MM
(generalized maximum matching) that were analyzed and compared in Part I (Section 4).
In particular, those methods as well as the new planners are based on degree of freedom
analysis of geometric constraint hypergraphs—these concepts are reviewed in Part I (Sec-
tion 3).

It should be noted that the SR- and MM-based algorithms (Owen, 1991, 1996; Hoff-
mann and Vermeer, 1994; Bouma et al., 1995), (Hoffmann and Vermeer, 1995; Latham
and Middleditch, 1996; Fudos and Hoffmann, 1996, 1997), (Serrano and Gossard, 1986;
Serrano, 1990; Kramer, 1992; Ait-Aoudia et al., 1993; Pabon, 1993), were being developed
even as the issue—of efficient decomposition of constraint systems for capturing design
intent in CAD/CAM—was still in the process of crystallization; in fact the DR-planning
problem has been precisely formulated for the first time in Part I (Section 3).

In contrast, our development of the new DR-planners is systematically guided by the

§Supported in part by NSF Grants CDA 92-23502 and CCR 95-05745, and by ONR Contract N00014-
96-1-0635.
¶Supported in part by NSF Grant CCR 94-09809.
‖Corresponding author: E-mail: sitharam@cise.ufl.edu

0747–7171/01/040409 + 19 $35.00/0 c© 2001 Academic Press

410 C. M. Hoffman et al.

new performance measures that were formally defined for the first time in Part I (Sec-
tion 3), to closely reflect several desirable characteristics C of DR-planners for CAD/CAM
applications that were informally discussed in Part I (Section 1).

Note. As we mentioned above, our methods are based on degree of freedom analysis. As
was described in Part I (Section 3), currently there are no known purely combinatorial
characterizations of solvable constraint systems. In fact there are known counterexam-
ples where degree of freedom analysis incorrectly characterizes a generically unsolvable
constraint system as a generically solvable one. In Part I (Section 3) we discuss this issue
and describe the scope of our methods.

An important building block of both the new DR-planners is the routine used to
isolate the solvable subsystems Si at each step i. (Recall the description S of the typ-
ical DR-planner in Part I (Section 1).) In both new DR-planners, the solvable subsys-
tem/subgraph Si is isolated using an algorithm developed by the authors based on a sub-
tle modification of incremental network flow: this algorithm, called “Algorithm Dense,”
first isolates a dense subgraph, and then finds a minimal dense subgraph inside it, which
ensures its solvability (see Part I (Section 3)). The interested reader is referred to earlier
papers by the authors: Hoffmann et al. (1997) for a description as well as implementation
results, and Hoffmann et al. (1998) for a comparison with prior algorithms for isolating
solvable/dense subgraphs. Here, we shall only note several desirable features of Algorithm
Dense.

(a) A useful property of the dense subgraph G′ found by the Algorithm Dense (in time
O(n(m+n))) is that the densities of all proper subgraphs are strictly smaller than
the density of G′. Therefore, when G′ corresponds to a well-constrained subsystem,
then G′ is in fact minimal, and hence it is unnecessary to run the additional steps
to obtain minimality. Ensuring minimality crucially affects completeness of the new
DR-planners.

(b) A second advantage of Algorithm Dense is that it is much simpler to implement and
faster than standard max-flow algorithms. This was borne out by our C++ imple-
mentation of Algorithm Dense both for finding dense and minimal dense subgraphs.
By making D—in the inequality defining dense subgraphs in Part I (Section 3)—a
parameter of the algorithm, our method can be applied uniformly to planar or spa-
tial geometry constraint graphs. Furthermore, the new algorithm handles not only
binary but also ternary and higher-order constraints which can be represented as
hyperedges.

(c) A third specific advantage of our flow-based algorithm for isolating dense subgraphs
(solvable subsystems) is that we can run the algorithm on-line. That is, the con-
straint graph and its edges can be input continuously to the algorithm, and for each
new vertex or edge the flow can be updated accordingly. This promises a good fit
with interactive, geometric constraint solving applications, i.e. criterion (viii) of C
discussed in Part I (Section 1) of this paper.

As will be seen in Sections 2 and 3, the main difference between the two new planners,
however, lies in their simplifier maps Ti, i.e. the way in which they abstract or simplify
a solvable subgraph Si once it has been found (recall Part I (Section 3)).

Decomposition of Geometric Constraints II 411

main results and organization

In Section 2, we use the new performance measures to guide the systematic develop-
ment of two new DR-planners CA (condensing algorithm) and MFA (modified frontier
algorithm), which use—as a crucial building block—a fast method based on network flow
for locating solvable subgraphs of constraint graphs. This method was presented by the
authors in Hoffmann et al. (1997) and compared with existing methods in Hoffmann et
al. (1998). One of the new DR-planners, MFA, represents a significant improvement over
existing decomposition algorithms with respect to all of the performance measures. Fur-
thermore, it performed well in initial implementations. Thus, it promises to develop into
a DR-planner with all of the nine characteristics C desirable for CAD/CAM applications,
which were laid out in Part I (Section 1) of this paper.

In Section 4, we sketch the important data structures and heuristics of the initial MFA
implementation.

As a prelude to the analysis of the new DR-planners CA and MFA in Sections 2 and 3,
we give a table below which extends the comparison between the SR and MM to the new
DR-planners CA and MFA. The performance measures in the left-most column were
formally defined in Part I (Section 3).

The “complexity” entries for the two new DR-planners are directly based on the com-
plexity of a building block Algorithm Dense (briefly discussed above) for isolating minimal
dense subgraphs Si. “Under-const” refers to the ability to deal with underconstrained
systems, “Design-dec” refers to the ability to incorporate design decompositions speci-
fied by the designer, “Solv.” and “Strict solv.” refer to (strict) solvability preservation,
“Worst and Best approx.” refer to the worst and best choice approximation factor.

Perf. meas. SR MM CA(new) MFA(new)

Generality No Yes† Yes Yes
Under-const No(Yes∗) No Yes Yes
Design-dec No(Yes∗,◦) No No(Yes◦) Yes
Validity No(Yes∗) Yes+ Yes Yes
Solv. No(Yes∗) Yes+ Yes Yes
Strict solv. No(Yes∗) Yes+ No Yes
Complete No(No∗) No Yes Yes

Worst approx. 0
(
O
(

1
n

)∗)
O
(

1
n

)
O
(

1
n

)
O
(

1
n

)
Best approx. 0

(
O
(

1
n

)∗)
O
(

1
n

)†
O
(

1
n

)
O
(

1
2

)
Church–Rosser No(Yes∗) Yes† Yes Yes
Complexity O(s2) O(nD+1s)† O(n3s) O(n3s)

Note. The variable s in the complexity expressions denotes the number of vertices, n,
plus the number of edges, m, of the constraint graph. Recall that D refers to the number
of degrees of freedom of a rigid object in the input geometry (in practice, this could be
treated as a constant).

As mentioned in Part I (Section 4), the superscripts “∗” and “+” refer to narrow classes
of DR-plans: those that require the solvable subsystems Si to be based on triangles or a
fixed repertoire of patterns, or to represent rigid objects that are fixed or grounded with
respect to a single coordinate system. The superscript “†” refers to results that were left
unproven by the developers of the MM-based algorithms (Ait-Aoudia et al., 1993; Pabon,

412 C. M. Hoffman et al.

a

f

e

d

c

b

Figure 1. Constraint graph with vertices of weight 2 and edges of weight 1. The minimal dense subgraph

{a, b} can be extended sequentially by the other elements, in alphabetic order.

1993) and proved in this paper through a crucial modification of MM described in Part I
(Section 4). The modification also results in the improvement of the complexity of the
best MM algorithm to O(n(s = n+m)).

The superscript “◦” refers to a strong restriction on the design decompositions that can
be incorporated into DR-plans by SR and the new DR-planner CA. In fact, the other
new DR-planner MFA also places a (however, much weaker) restriction on the design
decompositions that it can incorporate, as will be discussed in Section 2.1.

2. Condensing Algorithm (CA)

This DR-planner was already sketched by the authors in Hoffmann et al. (1998). The
authors’ flow-based algorithm discussed above (Hoffmann et al., 1997) is applied repeat-
edly to constraint graphs to find minimal dense subgraphs or clusters (which we know
to be generically solvable—see Part I (Section 3)) containing more than one vertex. CA
consists of two conceptual steps. A minimal dense cluster can be sequentially extended
under certain circumstances by adding more geometric objects one at a time, which are
rigidly fixed with respect to the cluster. After a cluster has been thus extended, it is
then simplified into a single geometric object, and the rest of the constraint graph is
searched for another minimal dense subgraph. The following example illustrates sequen-
tial extension. Consider the constraint graph G of Figure 1. We assume that all vertices
have weight 2 and all edges have weight 1. The geometry-dependent constant D = 3. The
vertex set {a, b} induces a minimal dense subgraph of G which could be chosen by CA
as the initial minimal dense cluster, which could be extended sequentially by the vertices
c, d, e, f , one vertex at a time, until it cannot be extended any further. The resulting
subgraph is called an extended dense subgraph or cluster.

The simplification of an extended cluster is taken to be a single geometric object with
D degrees of freedom. This is done as follows: an extended cluster A is replaced by a
vertex u of weight D; all edges from vertices in A to a vertex w outside A are combined
into one edge (u,w), and the weight of this induced edge is the sum of the weights of the
combined edges. After the simplification, another solvable subgraph is found, and the
process is continued until the entire graph is simplified into a single vertex.

This is illustrated by the sequence of simplifications of Figure 2. Initially all vertices
have weight 2, all edges have weight 1. The vertices connected by the heavy edges con-
stitute minimal or sequentially extended clusters. After four simplifications the original
graph is replaced by one vertex.

Decomposition of Geometric Constraints II 413

3

3

3

2

3 3

3

2

2 2

Figure 2. Sequence of simplifications from left to right.

defining subsystem simplifiers

We capture the transformations performed by the DR-planner CA by describing sim-
plifier maps (recall the definitions in Part I (Section 3)). Let G be the input constraint
graph; the first graph G1 in the DR-plan is the original graph G. Let Gi = (V,E) be the
current graph and let Si be a cluster found at the current stage. Let A be any subgraph
of Gi. Then Ti(A) is defined as follows.

• If A ∩ Si = ∅, then Ti(A) = A.
• If A ∩ Si 6= ∅, then Ti(A) = (VTA, ETA), where VTA is the set of all vertices of
A that are not vertices of Si plus one vertex ci of weight D which represents the
simplification of the cluster Si. The set of edges ETA is formed by removing edges
with all endpoints in Si, and combining edges with at least one endpoint outside
Si, (as well as their weights) as described earlier in this section.

performance analysis

In this section, we analyze the CA algorithm with respect to the various performance
measures defined in Part I (Section 3).

Claim 2.1. CA is a valid DR-planner with the Church–Rosser property. In addition, CA
finds DR-plans for the maximal solvable subgraphs of underconstrained graphs.

Proof. If the graph G is not underconstrained, then it will remain so after the replace-
ment of any solvable subgraph by a vertex of weight D, i.e. after a simplification step by
CA. Thus, if G = G1 is well-constrained, it follows that all of the Gi are well-constrained.
Moreover, we know that if the original graph is solvable, then at each step, CA will in
fact find a minimal dense cluster Si that consists of more than one vertex, and therefore
Gi+1 is strictly smaller than Gi for all i. Thus the process will terminate at stage k when
Gk is a single vertex. This is independent of which solvable subgraph Si is chosen to be
simplified at the ith stage, showing that CA has the Church–Rosser property.

On the other hand, if G is underconstrained, since the subgraphs Si chosen to be
simplified are guaranteed to be dense/solvable, the process will not terminate with one
vertex, but rather with a set of vertices representing the simplification of a set of maximal
solvable subgraphs (such that no combination of them is solvable). This completes the
proof that CA is a DR-planner that can adapt to underconstrained graphs.

The proof of validity follows straightforwardly from the properties of the simplifier
map. 2

414 C. M. Hoffman et al.

S

E

F

H

I

J

K

L

M

G
C

A

B

D

E

F

G
H

I

J

K

L

M

O

N

Figure 3. Original and simplified graphs.

Claim 2.2. CA is solvability preserving.

Proof. The simplifier maps Ti do not affect subgraphs outside of Si. 2

Claim 2.3. CA is not strictly solvability preserving.

Proof. Consider the constraint graph of Figure 3. The vertex weights are 2, the edge
weights are 1, and the geometry-dependent constant D = 3. The graphs ABCDNO,
EFHGID and NMKLIJ are all dense/solvable. Suppose that first the cluster S1 =
ABCDNO was found and simplified into one vertex S of weight 3. Now the graph
SEFHGI = T1(EFHGID) is not dense/solvable anymore. 2

Intuitively, the reason why CA is not strictly solvability preserving is that the removal
of the vertices D and N loses valuable information about the structure of the solvable
graph.

Claim 2.4. CA is complete.

Proof. This is because CA finds minimal dense subgraphs at each stage. 2

Claim 2.5. Best-choice (and worst-choice) approximation factor of CA is at most
O(1/n).

Note. This proof mimics the MM approximation factor proof in Part I, except that now
the subgraph Si is not a strongly connected component.

Proof. To prove the bound on the best-choice approximation factor consider Figure 4.
The left and right columns contain n/2 vertices each. The weights of all the vertical edges
are 2, the weights of all other edges are 1, the weights of the vertices are as indicated,
and the geometry-dependent constant D = 3.

Note that all solvable subgraphs in Figure 4 could be divided into three classes. The
first class consists of the subgraphs CL1L2;CL1L2L3; . . . ;CL1L2, . . . , Ln/2−1Ln/2. The

Decomposition of Geometric Constraints II 415

2

2 2

3 3

3

3

33

3

3

C

R

R

R

R

R
n/2

L

L

L

L

L

1

2

3

n/2–1

n/2

n/2–1

3

2

1

Figure 4. Bad best-choice approximation.

second class consists of the subgraphs CR1R2;CR1R2R3; . . . ;CR1R2, . . . , Rn/2−1Rn/2.
The third class contains the solvable subgraphs that contain both L and R vertices. There
is only one element in this class—the entire graph CL1L2, . . . , Ln/2R1R2, . . . , Rn/2. There
is an optimal DR-plan of constant size that takes S1 = CL1L2, S2 = S1∪L3, . . . , Sn/2−1 =
Sn/2−2 ∪ Ln/2. After that it takes Sn/2 = CR1R2, Sn/2+1 = Sn/2 ∪R3, . . . , Sn = Sn−1 ∪
Rn/2. Finally, it takes Sn+1 = Sn/2−1 ∪ Sn.

However all DR-plans found by CA will have size O(n). The reason for this is that CA
is unable to simplify solvable subgraphs on the left of Figure 4 independently from the
solvable subgraphs on the right. More formally, let S1 be the first subgraph simplified
by CA under some DR-plan Q. If S1 belongs to the third class of solvable subgraphs
then the size of Q is O(n). Otherwise, without loss of generality, we can assume that
S1 belongs to the first class. According to the definition of CA, T1(S1) is a single vertex
of weight 3 that replaces several vertices including vertex C. Now for any graph A that
belongs to the second class, T1(A) is not solvable anymore (it has density −4). Hence
there is an Si in Q such that R1R2, . . . , Rn/2 ⊂ Si. Hence the size of Q is O(n). 2

Next, we consider the last performance measure discussed in Part I (Section 3).

Observation 2.6. In general, CA cannot incorporate a design decomposition of the in-
put graph for reasons similar to those given for the SR algorithm in Part I (Section 4).
It can incorporate a design decomposition, only if every pair A and B of subgraphs in the
decomposition are either completely disjoint or A ⊆ B or B ⊆ A.

2.1. frontier algorithms (FA and MFA)

Intuitively, the reason why CA is not strictly solvability preserving is that the sim-
plification of a minimal or extended dense cluster into a single vertex loses valuable
information about the structure of the cluster. The algorithms described in this section
preserve this information at least partially by designing a simplifier that keeps the struc-
ture of the frontier vertices of the cluster, i.e. those vertices that are connected to vertices
outside of the cluster. However, the way in which the minimal dense clusters and their

416 C. M. Hoffman et al.

I

D

N

Figure 5. The simplified graph after three clusters have been replaced by edges.

sequential extensions are found is identical to that of CA—i.e. by using the authors’
Algorithm Dense from Hoffmann et al. (1997).

Informally, under FA, all internal (i.e. not frontier) vertices of the solvable subgraph
Si found at the ith stage are simplified into one vertex called the core ci. The weight of
ci is equal to the geometry-dependent constant D. The core vertex is connected to each
frontier vertex v by an edge whose weight is equal to that of v. All other edges of Si are
removed. This is repeated until the solvable subgraph Sm found is the entire remaining
graph Gm.

If the solvable subgraph Si has only two frontier vertices, then all internal vertices of
Si should be removed and no new core vertex created. Instead, the two frontier vertices
of Si should be connected by an edge whose weight w is chosen so that the sum of the
weights of the two frontier vertices less w is equal to the constant D. This ensures that the
graphs Gi become steadily smaller as i increases. For instance, Figure 3 is such a special
case, where every cluster has only two frontier vertices. Hence after three iterations it
would be simplified by the FA into Figure 5.

defining the subsystem simplifier

We capture the transformations performed by the FA DR-planner by describing sim-
plifier maps (recall the definitions in Part I (Section 3)).

Let Si be the solvable subgraph of Gi found at stage i, SI be the set of inner vertices
of Si, FI be the set of frontier vertices of Si, and A be any subgraph of Gi. Then the
simplifier map Ti(A) is defined as follows.

• Ti(Si) = ci, where the weight of ci is equal to the geometry-dependent constant D.
• If A ∩ Si = ∅, then Ti(A) = A.
• If A ∩ Si 6= ∅ and A ∩ SI = ∅, then the image of A under the map Ti is A minus

those edges that A shares with Si.
• If A ∩ SI 6= ∅, then Ti(A) = (VTA, ETA), where VTA is the set of all vertices of A

that are not vertices of SI, plus the vertex ci representing the simplification of Si.
The set of edges ETA is formed by removing edges of A that have both endpoints
in Si and creating new edges of A that have one endpoint in SI and another in FI
as described earlier in this section.

The following observes that FA suffers from the same drawback as CA.

Observation 2.7. FA is solvability preserving but not strictly solvability preserving.

Decomposition of Geometric Constraints II 417

A
2

2

2

2

D

1 1

1

1 1 2 2

1 1

3

2 2

2

B
C

D

A

B

C

Figure 6. Density of ABC is destroyed by transformation of BCD.

Proof. See for example Figure 6. 2

To correct this shortcoming, we will modify the FA algorithm.

modified frontier algorithm (MFA)

Once a minimal or extended dense cluster Si is discovered, as in FA, the subgraph
induced by its internal vertices is contracted into one vertex (the core vertex) ci. However,
this core vertex is connected to each frontier vertex v of Si by a combined edge whose
weight is the the sum of the weights of the original edges connecting internal vertices
to v. The frontier vertices, edges connecting them, and their weights remain unchanged.
The weight of the core vertex is chosen so that the density of the entire simplified cluster
is exactly equal to −D where D is the geometry-dependent constant. This process of
finding solvable Si and simplifying them is repeated, until the solvable Sm found is the
entire remaining graph Gm.

defining subsystem simplifiers

We capture the transformations performed by the MFA DR-planner by describing
simplifier maps (recall the definitions in Part I (Section 3)). Let Si be the solvable
subgraph of Gi found at stage i, SI be the subgraph induced by the inner vertices
of Si, FI be the subgraph induced by the frontier vertices of Si, A be any subgraph of
Gi. The mapping Ti(A) is defined as follows.

• If A ∩ SI = ∅, then Ti(A) = A.
• If A ∩ SI 6= ∅, then Ti(A) = (VTA, ETA), where VTA is the union of all vertices

of A \ SI and all vertices of FI plus the core vertex ci. The set of edges ETA is
the union of all the edges of A and of all the edges of Si, with the exception of
edges that have at least one endpoint in SI. Edges that have at least one endpoint
outside SI are combined (their weights are combined as well) as described in the
previous subsection. Edges that have all endpoints in SI are removed completely.

• The weight assigned to ci is such that the density of Ti(Si) becomes exactly −D.

418 C. M. Hoffman et al.

2

2
E F

C

D

3

B

3

I

2

J

2

3

3

4

2

2
A

G

H

K
L

7

2

2
E F

C

D

3

3

I

2

J

3

3

2

2

G

H

K
L

7

6

M

Figure 7. Original graph BCDEIJK is dense, new graph MCDEIJK is not.

performance analysis

In this section, we analyze the MFA algorithm with respect to the various performance
measures defined in Part I (Section 3).

Claim 2.8. MFA is a valid DR-planner with the Church–Rosser property. In addition,
MFA finds DR-plans for the maximal solvable subgraphs of underconstrained graphs.

Proof. The proof is identical to the one used for CA. 2

Before we discuss the solvability preserving property of MFA, we would like to consider
the following example shown in Figure 7. All edges have weight 1, vertices as indicated.
Initially, the graph BCDEIJK is solvable. The graph ABCDEFGH is also solvable,
vertices A and B are its inner vertices, vertices C,D,E, F,G and H are its frontier
vertices. After ABCDEFGH has been simplified into the graph MCDEFGH, the new
graph MCDEIJK is no longer dense (edges MC,MD,ME,MH and MF have weight 2
now). However, note that according to the definition of the MFA simplifier map, the image
of BCDEIJK is not the graph MCDEIJK, but the graph MCDEFGHIJK which
is dense. This graph MCDEFGHIJK is well-overconstrained, since it has density −1
and it could be made well-constrained by say removing constraints FG and FH. Thus
the image of ABCDEFGH is also solvable.

In general, the following claim holds.

Claim 2.9. Let A and B be solvable subgraphs such that A∩B 6= ∅ and A∩B 6= v where
v is a single vertex of weight less than the geometry-dependent constant D, then A ∪ B
is solvable.

Proof. Since A is solvable, the density of A ∩ B, d(A ∩ B) ≤ −D (a solvable graph
cannot contain an overconstrained subgraph, unless it is a well-overconstrained graph in
which case it can be replaced by an equivalent well-constrained graph). Hence the density
of A ∪B, d(A ∪B) = d(B) + d(A \B) = −D + d(A)− d(A ∩B) ≥ −D. Equality occurs
when d(A ∩ B) = −D, otherwise A ∪ B is overconstrained. If A ∪ B is overconstrained

Decomposition of Geometric Constraints II 419

it is well-overconstrained, since it could be converted into well-constrained by reducing
weights of some edges of B \A or A \B. 2

This property can be used to show that:

Claim 2.10. MFA is solvability preserving as well as strictly solvability preserving.

Proof. Let B be a solvable graph, and suppose that the solvable graph Si was simplified
by MFA. Then B would only be affected by this simplification if B contains at least one
internal vertex of Si (recall that frontier vertices of Si remain unchanged). But then, by
the definition of the MFA simplifier, Ti(B) = Ti(B ∪ Si). Since Ti(B ∪ Si) is obtained
by replacing Si by solvable Ti(Si), and according to the previous claim, the union of two
solvable graphs is solvable, thus Ti(B) = Ti(B ∪ Si) is also solvable. 2

Claim 2.11. MFA is complete.

Proof. This is because MFA (just as CA) finds minimal dense subgraphs at each
stage. 2

Claim 2.12. MFA has worst-choice approximation factor O(1/n).

Proof. Consider Figure 8—the solvable constraint graph G. Initially MFA will locate
the minimal dense subgraph ABC (since this is the only minimal dense subgraph of
G). It will not be able to locate any dense subgraphs disjoint from ABC, or include
only frontier vertices of ABC. If it attempts to locate a dense subgraph that includes
the entire (simplified) cluster ABC, and does so by inspecting the other vertices in
the sequence A,B,C,H, I, . . . , F,E, (i.e. going counterclockwise), then MFA would not
encounter any dense subgraphs after ABC, until the last vertex of the sequence E is
reached. The minimal dense subgraph found at this stage is the entire graph G. Thus
the size of the DR-plan corresponding to this choice of vertices is proportional to n.
On other hand, there is a DR-plan of constant size. This DR-plan would first locate
the minimal dense subgraph S1 = ABC and simplify it. After that it would simplify
S2 = ABCE = S1 ∪ {E}, after that S3 = S2 ∪ {F}, etc. going clockwise until the vertex
H is reached. At every stage i, the size of Si is constant, hence the size of this DR-plan
is constant. 2

Claim 2.13. The best-choice approximation factor of MFA is at least 1
2 .

Proof. Let G be the weighted constraint graph. Let P be an optimal DR-plan of G, let
p be the size of P (i.e. the size of every cluster Si simplified under the optimal DR-plan is
less than p+ 1). We will show that there is a DR-plan P ′ that is “close to” P . Complete
resemblance (P = P ′) may not be possible, since the internal vertices of the cluster S

′

i ,
found by MFA at the ith stage, are simplified into one core vertex, thereby losing some
information about the structure of the graph. However we will show that there is a way
of keeping the size of P ′ within the constant D of the size of P .

Suppose that MFA is able to follow the optimal DR-plan up to the stage i, i.e. Si = S
′

i .
Suppose that there is a cluster Sj in the DR-plan P such that i < j and Sj contains

420 C. M. Hoffman et al.

I

H
1

F

E

C

B A

2

2 2

2

2

2

2

5

5

5 4

5

5

5

5
5

3

3

3

3

3

3

3

5

Figure 8. 1/n worst-choice approximation factor of MFA.

some internal vertices of Si. Therefore the simplification of Sj by MFA may be different
from simplification of Sj by P . However, since the union of Si and Sj is solvable, MFA
could use S

′

j = T
′

i (Si) ∪ Sj instead of Sj . The size of S
′

j differs from the size of Sj by
at most D units, where D is the constant depending on the geometry of the problem.
Hence the size of P ′ is at most p+D, and since p is at least D, the result follows. 2

Next, we consider the last performance measure discussed in Part I (Section 3).

Observation 2.14. MFA can incorporate a design decomposition of the input graph if
and only if all pairs of subgraphs A and B in the given design decomposition satisfy: the
vertices in A ∩B are not among the internal vertices of either A or B.

Note. This condition on the design decomposition puts no restriction on the sizes of
the intersections of the subgraphs in the decomposition, and is far less restrictive than
the corresponding conditions for SR and CA in Part I (Section 4).

Proof. The proof is similar to the case of the SR algorithm. For the “if” part, we find
a topological ordering O of the given design decomposition P—which is a set of solvable
subgraphs of the input graph G, partially ordered under the subgraph relation—such
that O is embedded as a subplan of the final DR-plan generated by MFA; i.e. O forms a
subsequence of the sequence of solvable subgraphs Si, whose (sequential) simplification
gives the DR-plan.

We take any topological ordering of the given design decomposition P and create a
DR-plan for the first solvable subgraph A in P , i.e. while constructing the individual
DR-plan for A, we “ignore” the rest of the graph. This individual DR-plan induces the
first part of the DR-plan for the whole graph G. In particular, the last graph in this
partial DR-plan is obtained by simplifying A using the simplifier described in Section 2.1
(and treating each A exactly as MFA would treat a cluster Sj found at some stage j).
Let Gi be the last graph in the DR-plan for G created thus far. Next, we consider the
next subgraph in the ordering O, and find an individual DR-plan for it, treating it not as
a subgraph of the original graph G, but as a subgraph of the simplified graph Gi. This
individual DR-plan is added on as the next part of the DR-plan of the whole graph G.

The crucial point is that the simplification of any subgraph, say A, will not affect any of
the unrelated subgraphs B in P . This is because by the requirement on the decomposition

Decomposition of Geometric Constraints II 421

P , A and B share at most frontier vertices. As a result, by the functioning of the MFA
algorithm, when the core vertex for A is created, none of the solvable subgraphs inside
B are affected.

The process—of constructing individual DR-plans for subgraphs in the decomposition
P and concatenating them to the current partial DR-plan—is continued until a partial
DR-plan for the input graph G has been produced, which completely includes some
topological ordering of the decomposition P as a subplan. Again, let Gk be the last
graph in this partial DR-plan. The rest of the DR-plan of G is found by running the
original MFA on Gk.

For the “only if” part, we consider a DR-plan Q produced by MFA.
We first observe that the sequence of (original) solvable subgraphs whose sequential

simplification gives Q can never contain two subgraphs A and B such that A∩B contains
both internal vertices of A and internal vertices of B. This is because if, for instance, A is
simplified before B, then B (on its own) cannot be simplified at a later stage (although
A ∪ B could), since an internal vertex of B that is also an internal vertex of A will
disappear from the graph (will be replaced by a core vertex representing everything
internal to A), the moment A has been simplified.

Next, we consider the remaining case where A ∩ B contains some internal vertices
of A but only frontier vertices of B. In this case, potentially B could be simplified
before A, and A will not be affected, since the frontier vertices of B are unchanged
by the simplification. However, since a given design decomposition P could contain an
arbitrary number of overlapping subgraphs, we can choose decompositions P such that
all topological orderings of P are infeasible, i.e. no DR-plan can incorporate them as a
subsequence. For instance, if there are three subgraphs A, B and C in P such that A∩B
contains only frontier vertices of B but some internal vertices of A; B ∩C contains only
frontier vertices of C, but some internal vertices of B; and C ∩ A contains only frontier
vertices of A, but some internal vertices of C. This forces the DR-plan to simplify B
before A, C before B and A before C, which is impossible. 2

3. Implementation of MFA

Before sketching the data structures used in the implementation of MFA, we describe
certain heuristics that improve MFA’s performance.

3.1. key heuristics for MFA

• As in the case of CA, once a cluster A has been found, MFA checks whether there
are any sequential extensions of A, i.e. a neighboring vertex v s.t. A ∪ {v} forms a
cluster, in this case, the cluster A is replaced by the cluster A ∪ {v}.

• MFA checks whether there is another previously found cluster B such that A and
B share two or more frontier vertices in the 2d case, or three or more in the 3d
case. If such B exists then A ∪ B forms a cluster and the cluster A is replaced by
the cluster A ∪ B. Note that we may choose not to exercise both or either of the
above heuristics while incorporating input design decompositions.

• Every cluster A is assigned a value, the so-called depth, defined as

1 + max
k

depth(Bk),

where the Bk are the previously found clusters that comprise A. The depth of each

422 C. M. Hoffman et al.

vertex of the original graph G is equal to zero. The depth of a sequential extension
of the cluster A is equal to the depth of A.
The advantages of using the depth of a cluster are the following.

(1) The depth naturally defines the level of a cluster in the partial ordering (by
the subgraph relation) of the subgraph simplifications in a DR-plan. Thus, it
can be used to efficiently incorporate input design decompositions. Thus, as
mentioned in Part I (Section 3), one can view the depth as a priority rating
which specifies which component of the design decomposition has most influ-
ence over a given geometric object. In other words, a given geometric object
is first fixed/manipulated with respect to the local coordinate system corre-
sponding to the lowest level cluster containing it. Thereafter, the entire cluster
is manipulated in the local coordinate system corresponding to the next level
cluster containing it, etc. In fact, the notion of depth can be naturally extended
to include more general priority ratings as well.

(2) When MFA’s search for clusters to simplify is stratified by depth, i.e. when MFA
finds all clusters of depth 1 first, then those of depth 2, depth 3 and so on, it
allows the cluster Si selected for simplification to be uniformly distributed in the
constraint graph Gi−1, rather than “growing” new clusters around an initially
found cluster. In many natural examples of constraint graphs, this heuristic
often helps in keeping the size of Si small, and thus keeping the DR-plan close
to optimal.

3.2. finding and simplifying a cluster

Recall that MFA constructs a DR-plan of a constraint graph G by iteratively repeating
the following two steps.

• Find a new cluster Si by using the authors’ Algorithm Dense from Hoffmann et al.
(1997).

• Simplify Si as described in Section 2.

This section briefly explains the notion of “distribution” that Algorithm Dense relies
on. Informally, distributing an edge or a vertex in a graph is an operation that determines
whether there is a solvable subgraph that contains the given edge or vertex. A graph that
has been distributed is one where the weights of all edges have been distributed into (or
balanced off by) the capacities of the incident vertices to within the geometric constant
D (here the weights of the vertices are treated as capacities). This process involves
finding the maximum flow in a certain auxiliary graph. Thus, a graph that cannot be
distributed must contain a solvable graph, and vice versa, a vertex or an edge that cannot
be distributed are contained in a solvable graph.

The general framework for finding clusters is the same in MFA as in the algorithm
of Hoffmann et al. (1997). Let G be a weighted constraint graph G = (V,E), V =
{v1, . . . , vn}. A graph K1 is created, K1 = {v1}. Vertex v2 is distributed in K1. If there
are no clusters in the union of K1 ∪ {v2}, then K2 = K1 ∪ {v2}, vertex v3 is distributed
in K2, etc. If no clusters have been found when Kn = G is reached, then the algorithm
terminates. If the cluster Si has been located at stage i, then it should be simplified
and the simplification Ti(Si) should be represented appropriately in the graph Ki+1 and
iterations continue.

Decomposition of Geometric Constraints II 423

3.3. data structures

The major difference between MFA and CA is the way in which the clusters are
simplified and represented. While CA simplifies the cluster into a vertex, MFA uses the
simplifier described in Section 2 and simplifies the cluster into a graph consisting of a
core vertex and frontier vertices. Furthermore, MFA employs heuristics for incorporating
input design decompositions and stratification of clusters by depth. These features of
MFA are implemented by the following three sets of cluster structures and a new graph
structure F for bookkeeping.

Before we describe these structures, we additionally need to extend the notion of
distribution to simplified clusters as well. A simplified cluster C is distributed in graph
F if the only solvable subgraph in C ∪ F that contains any part of C is C itself. After
distribution, the cluster C is included in F .

Now we describe the three sets of cluster structures. The first is a set of simplified
clusters that have already been distributed, this set is implemented as a list of simplified
clusters and is denoted by ClustersInF. The vertices of the graph F are the core and
frontier vertices of the clusters in ClustersInF. The second set is a set of simplified
clusters that are still waiting to be distributed, and which have the same depth. This
set is denoted by CQueue and is implemented as a queue of clusters. The third set also
consists of the simplified clusters that are still waiting to be distributed: these have larger
depth than the clusters currently under consideration. This set is denoted by NewCQueue
and is also implemented as a queue of clusters.

These three sets of simplified clusters are used as follows. Initially CQueue contains
the vertices of the original weighted graph G, and the depth bound is set to 0. Every
simplified cluster C in CQueue is distributed in F , and is removed from CQueue.

• If distribution of a simplified cluster C has not yielded any solvable subgraphs of
C ∪ F , then C is added to F .

• If a solvable subgraph Si was located, then it is simplified and the depth of the
simplification Ti(Si) is computed as described in Section 3.1. MFA temporarily re-
moves the core vertex of Ti(Si) from the graph F , if the depth of Ti(Si) is greater
than the current depth bound. The cluster corresponding to Ti(Si) is added to the
NewCQueue. If the depth of Ti(Si) is no greater than the current depth bound,
then Ti(Si) is added to the ClustersInF and the core of Ti(Si) remains in F . When
all simplified clusters are removed from CQueue, the current depth bound is in-
cremented and the clusters in NewCQueue that have this new depth bound are
moved from NewCQueue to CQueue. The process repeats until both CQueue and
NewCQueue are empty.

The above description is altered slightly in order to incorporate an input design de-
composition, as will be described in the example that follows.

Note. The ith graph Gi in the output DR-plan (defined in the Part I (Section 3)), is the
union of frontier and core vertices of clusters in ClustersInF,CQueue, and NewCQueue,
at the ith stage.

In order to describe any single simplified cluster A the following data structure is used.

424 C. M. Hoffman et al.

1 4

9

10

11

12

13

14
15

16

2

B

A

2

2

9

B

2

2

2

I

1 4

5

6

7

8

9

10

11

12
14

15

16

2

A

G 5

1 4

9

12

13

14
15

16

2

B

A

2

2

C

2

2
3

G G G

G

G

1 2
3

11

1

2

3
4

5

6

7

8

9

10

11

12

13

14
15

16

3

2

G

9

15

16

2

B

2

2

10
8

9

14

2
B

2

2
3

2
2

H

E

3

3

H

14

13

Figure 9. The sequence of simplifications giving the output DR-plan.

P

P

P P

3

2 41

Figure 10. Partial ordering of the input design decomposition P .

Vertex Core;
Vertexlist FV; list of frontier vertices
Edgelist EInner; list of edges between core and frontier vertices
Edgelist EOuter; list of edges between pairs of frontier vertices
Clusterlist CP; list of previously found clusters comprising A
Vertexlist OV; list of the vertices of the original graph

comprising A
(this may be useful for satisfying characteristic (v) of C
described in Part I of this paper)

Int Depth;

3.4. example

We will demonstrate how MFA generates a DR-plan for an example constraint graph
G and design decomposition P , by describing various stages of simplification of Figure 9.

The weight of all vertices in G = G1 is equal to 2, the weight of all the edges is equal
to 1, the geometric constant D is equal to 3.

Suppose that the following input design decomposition P is given, P={P1,P2,P3,P4}
where P1 = {1,2,3,4}, P2 = {2,5,6,7,8,9}, P3 = {1,2,3,4,10,11,12,13,14}, P4

= {9, 14, 15, 16}.
Then the corresponding partial ordering O of P is shown in Figure 10.

Decomposition of Geometric Constraints II 425

The tables below contain information about the current cluster Si and the queues
of clusters CQueue, NewCQueue as well as ClustersInF at the ith stage. Recall the
definitions of Si.Core, Si.FV , Si.CP , Si.OV and Si.Depth from the preceding section.

Note. For every component Pi of the input design decomposition P , a copy of each of
ClustersInFi, CQueuei, NewCQueuei is created. These copies are induced in the natural
way, for example, initially CQueue = {1, 2, . . . , 16}, CQueue1 = {1, 2, 3, 4}.

i Si.Core(weight) Si.FV Si.CP Si.OV Si.Depth

1 ∅ {1, 2, 3} {1, 2, 3} {1, 2, 3} 1
2 A (2) {1, 2, 4} {S1, 4} {1, 2, 3, 4} 1
3 B (4) {2, 9} {2, 5, 6, 7, 8, 9} {2, 5, 6, 7, 8, 9} 1
4 ∅ {1, 10, 11} {1, 10, 11} {1, 10, 11} 1
5 C (3) {1, 12} {S4, 12} {1, 10, 11, 12} 1
6 ∅ {12, 13, 14} {12, 13, 14} {12, 13, 14} 1
7 D (2) {12, 14, 4} {S6, 4} {12, 13, 14, 4} 1
8 H (5) {2, 14} {S2, S5, S7} {1, 2, 3, 4, 10, . . . , 14} 2
9 ∅ {14, 15, 16} {14, 15, 16} {14, 15, 16} 1
10 E (3) {14, 9} {S8, 9} {14, 15, 16, 9} 1
11 I (5) {2, 9} {S9, S10} {1, 2, 3, 4, 9, . . . , 16} 3
12 J (3) {∅} {S11, S3} {1, . . . , 16} 4

i ClustersInF CQueue NewCQueue

1 {1, 2, 3} {4, 5, . . . , 16} ∅
2 {1, 2, 4} {5, . . . , 16} {S2}
3 {1, 2, 4, 9} {10, . . . , 16} {S2, S3}
5 {1, 2, 4, 9, 12} {13, . . . , 16} {S2, S3, S5}
8 {2, 9, 14} {15, 16} {S3, S8}
10 {2, 9, 14} {∅} {S3, S8, S10}
11 {2, B, 9} {∅} {S11}

MFA will proceed as follows.

First MFA constructs a DR-plan for P1.
Vertices 1–3 are distributed and cluster S1 = {1, 2, 3} is discovered. Vertex 4 forms a

sequential extension of cluster S1, together they form the cluster S2 = P1. There are no
further sequential extensions of S2, so S2 is added to NewCQueue. The DR-plan for P1

has been found (so data structures of P1 could be removed at this stage).

Now MFA constructs a DR-plan for P2.
After vertices 5–9 are distributed, cluster S3 = {2, 5, 6, 7, 8, 9} = P2 is discovered. Since

S3 has no sequential extensions, it is added to NewCQueue. Note that some weights in
the graph F have changed. The weight of the vertex B is 4, the weights of the edges
(B, 2) and (B, 9) are 2. The DR-plan for P2 has been found.

Now MFA constructs a DR-plan for P3.
After vertices 10 and 11 are distributed, cluster S4 = {1, 10, 11} is discovered. Vertex

426 C. M. Hoffman et al.

S2=P1

S8=P3

S3=P2

S10=P4

S

S

SSS
S9

1

5
S

7

4

11

S
12

6

32 1 1110 1

5 86 7 92

13 14 15 16

412

12

4

14

9

Figure 11. Partial ordering of the Si in the output DR-plan.

12 forms a sequential extension of cluster S4, together they form cluster S5. Cluster S5

is added to NewCQueue.
After vertices 13 and 14 are distributed, cluster S6 = {12, 13, 14} is discovered. Vertex

4 forms a sequential extension of cluster S6, together they form a cluster S7. Cluster S7

is added to NewCQueue.

Since CQueue3 is now empty, Depth3 is incremented and is set equal to 1 (Depth
for the entire DR-plan remains 0). The new CQueue3 = {S2, S5, S7},NewCQueue3 =
{∅},CQueue = {S2, S5, S7, 15, 16},NewCQueue = {S3}.

After the clusters S2, S5 and S7 are distributed, cluster S8 = {S2, S5, S7} = P3 is discov-
ered. It is added to NewCQueue. The DR-plan for P3 has been found.

Now MFA constructs a DR-plan for P4.
After vertices 15 and 16 are distributed, cluster S9 = {14, 15, 16} is discovered. Vertex

9 forms a sequential extension of cluster S9, together they form a cluster S10 = P4.
Cluster S10 is added to NewCQueue. The DR-plan for P4 has been found.

Since CQueue is now empty, Depth is incremented and is set equal to 1. The new
CQueue = {S3, S10},NewCQueue = {S8}.

After clusters S3 and S10 are distributed, Depth is set equal to 2. After the cluster
S8 is distributed, the cluster S11 = {S8, S10} is discovered. Cluster S11 is added to the
NewCQueue.

Since the clusters S11 and S3 share more than one frontier vertex, the cluster S12 =
{S3, S11} is discovered by using the second heuristic described in the beginning of this
section.

Since S12 is the entire remaining graph, the DR-plan terminates successfully, incorporat-
ing the design decomposition P . The partial ordering of all Si of the DR-plan is shown
in Figure 11.

Decomposition of Geometric Constraints II 427

References

Ait-Aoudia, S., Jegou, R., Michelucci, D. (1993). Reduction of constraint systems. In Compugraphics, pp.
83–92. Alvor, Portugal.

Bouma, W., Fudos, I., Hoffmann, C., Cai, J., Paige, R (1995). A geometric constraint solver. Comput.
Aided Des., 27, 487–501.

Fudos, I., Hoffmann, C. M. (1996). Correctness proof of a geometric constraint solver. Int. J. Comput.
Geom. Appl., 6, 405–420.

Fudos, I., Hoffmann, C. M. (1997). A Graph-Constructive Approach to Solving Systems of Geometric
Constraints. ACM Trans. Graph., 16, 179–216.

Hoffmann, C. M., Lomonosov, A., Sitharam, M. (1997). Finding solvable subsets of constraint graphs. In
Proceedings of Principles and Practice of Constraint Programming ’97, Linz, Austria, LNCS 1330,
pp. 463–477. Berlin, Springer-Verlag.

Hoffmann, C. M., Lomonosov, A., Sitharam, M. (1998). Geometric constraint decomposition. In Brud-
erlin, Roller eds, Geometric Constraint Solving. Berlin, Springer-Verlag.

Hoffmann, C. M., Vermeer, P. J. (1994). Geometric constraint solving in R2 and R3. In Du, D. Z.,
Hwang, F. eds, Computing in Euclidean Geometry, 2nd edn, Singapore, World Scientific Publishing.

Hoffmann, C. M., Vermeer, P. J. (1995). A spatial constraint problem. In Workshop on Computational
Kinematics, France. Sophia-Antipolis, INRIA.

Kramer, G. (1992). Solving Geometric Constraint Systems. Cambridge, MA, U.S.A., MIT Press.
Latham, R., Middleditch, A. (1996). Connectivity analysis: a tool for processing geometric constraints.

Comput. Aided Des., 28, 917–928.
Owen, J. (1991). Algebraic solution for geometry from dimensional constraints. In ACM Symposium on

the Foundations of Solid Modeling, Austin, TX, pp. 397–407. New York, ACM.
Owen, J. (1996). Constraints on simple geometry in two and three dimensions. Int. J. Comput. Geom.

Appl., 6, 421–434.
Pabon, J. A. (1993). Modeling method for sorting dependencies among geometric entities. US States

Patent, 5,251,290.
Serrano, D. (1990). Managing constraints in concurrent design: first steps. In Proceedings of Computers

in Engineering, Boston, MA, 1990, pp. 159–164.
Serrano, D., Gossard, D. C. (1986). Combining mathematical models with geometric models in cae

systems. Computers in Engineering, Chicago, IL. ASME, 1, 277–284.

Originally Received 16 December 1998
Accepted 5 June 2000

	Preliminaries
	Condensing Algorithm (CA)
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8

	Implementation of MFA
	Fig. 9
	Fig. 10
	Fig. 11

	References

