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Abstract

A systematic framework is presented for solving algebraic equations

arising in geometric constraint solving. The framework has been used

successfully to solve a family of spatial geometric constraint problems.

The approach combines geometric reasoning, symbolic reduction, and ho-

motopy continuation.

1 Introduction

A geometric constraint solver accepts instances of geometric constraint prob-
lems. A geometric constraint problem instance consists of a set of geometric
elements, such as points, lines and planes, and constraints upon them, such as
constraints of distance, angle, coincidence, and so on. The constraint solver
then computes a suitable set of coordinates for each geometric element such
that the constraints are satis�ed, or else announces that no solution could be
found.

Applications of geometric constraint solving abound in solid modeling, graph-
ics, engineering, and many other �elds; [Dur98]. We are especially interested
in applications in solid modeling, hence we concentrate on solvers that have
to tackle nonlinear problems to satisfy the constraints. Incremental constraint
satisfaction, an important subject in graphics and simulation, is not addressed
in this paper.

A geometric constraint solver can operate in a single phase or in two phases.
Single-phase solvers, also called instance solvers, directly translate the constraint
problem instance into a representation suitable for solving the problem instance
immediately | and then solve the instance. Two-phase solvers �rst preprocess
the constraint system instance, making use of the structure of the constraints



and using the constraints symbolically. A fundamental advantage of generic
solvers is their ability to create templates to solve classes of constraint problems;
e.g., [HV94].

After a two-phase solver has preprocessed the problem, a second phase is
required to determine actual coordinate values for the geometric elements sub-
jected to the constraints. The work of this second phase di�ers from the work
of single-phase solvers only in that the preprocessing has decomposed the con-
straint problem and possibly recognized characteristic patterns that are solv-
able by a repertoire of templates. The second phase has been described in,
e.g., [Fud95].

We are interested in how to approach the second phase of two-phase solvers
when the nonlinear systems that must be solved become daunting. We note
that in spatial constraint solving con�gurations with as few as six geometric
elements may pose serious challenges to reliably �nding one or more solutions.

The problems that arise for the second phase very naturally correspond to
systems of simultaneous nonlinear equations. For reasons explained in detail
in [Dur98] and brie
y noted in the next section, it is often insuÆcient to �nd
only one solution of such systems: Equation solvers that �nd only one solution
may �nd one that is not acceptable to the application that formulated the
constraint problem. For this reason we look for an algebraic approach that can,
in principle and actuality, compute all solutions of the system. It is with this
requirement in mind that we undertake to formulate a framework for solving
nonlinear algebraic equations.

Our main goal is to provide a systematic solution framework for octahedral
problems, which combines geometric reasoning, symbolic simpli�cation and ho-
motopy continuation. Previous solutions, e.g., [HV94], have relied on reasoning
about the geometry of the con�guration. We do not consider degenerate cases.
Unless otherwise stated, all the problems involve only nonzero distances and
angles in the interval (0; �).

Moreover, throughout the text, solving a constraint problem can be regarded
as �nding all the possible realizations which satisfy the given constraints.

Finally note that all the running times reported were obtained on a Sun
Sparc Station 20 with 128 MBytes of memory and operating system SunOS
Release 5.5.1.

Section 2 presents a brief survey of constraint solving techniques. Section 3
introduces de�nitions, terminology and basic concepts which are used through-
out the paper. It also de�nes the scope of this work. Section 4 reviews homotopy
continuation methods for solving systems of algebraic equations. Section 5 intro-
duces our solution framework and uses it for solving a family of basic constraint
problems. Section 6 concludes this work.
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2 Constraint Solving Techniques

2.1 Analytical Solvers

In analytical solvers, the constraints are represented by a system of nonlinear
equations. Analytic solvers can be further classi�ed as numerical and symbolic
algebraic solvers.

Numerical Solvers

Numerical solvers are instance solvers that use iterative methods to solve the
system of equations representing the constraints.

An iterative technique in wide use is the Newton-Raphson method [SB93,
OR70]. This method is distinguished by the ability to solve large problems,
but it is very sensitive, requiring a suÆciently good initial guess. The diÆculty
predicting to which root the method will converge relies on the fact that the
attraction basins1 for the Newton-Raphson method are fractals [PR86]. There-
fore, if the sketch is used as the initial approximation, then it should nearly
satisfy the constraints to guarantee that the method would converge to the
desired solution. In applications, this is seldom the case.

Based on the theory of nonlinear optimization, methods with global conver-
gence properties were proposed [DS83]. These methods are referred as global,
and converge to a solution from almost any initial guess. Convergence is achieved
by de�ning an energy function that decreases as progress is made towards a so-
lution, therefore assuring improvement at each iteration. However, this method
can still occasionally fail by ending in a local minimum of the energy func-
tion. A combination of heuristics and a variation of this method were used
in EMBED [CH88], a practical, but complex algorithm, for solving molecular
conformation problems.

The major drawback of the foregoing techniques is that they can converge
to unwanted solutions. In that case, the method should be re-applied with
di�erent initial guesses until the desired solution is produced. However, there is
no guidance how the subsequent guesses might be made.

Homotopy continuation methods can be used to circumvent this problem
[AG90, Li97, Roj99]. Continuation methods are robust and versatile global
methods capable of �nding all solutions of a given system [AG93]. Although
the theoretical foundations encompass many di�erent areas of mathematics, the
idea behind homotopy is rather intuitive: the solutions of a known \easy" system
are deformed into the solutions of the wanted system. The method has been ap-
plied to problems in many areas, including robotics, kinematics of mechanisms,
chemical equilibrium, geometric intersection [Mor87, WMS90, Pat92, Ver96,
Ver97b, HS95, Hub96] and, more recently, to constraint solving [LM95]. Albeit
powerful, homotopy requires a signi�cant amount of computational work, usu-
ally limiting the set of solvable systems to those which are \small". Fortunately,

1The set of points in the space of system variables such that an initial approximation

chosen in this set evolves to a particular solution of the system
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algebraic tools can be used to reduce the size of the systems we are interested in,
and broaden the applicability and relevance of continuation methods [Mor92].

Symbolic Algebraic Solvers

Symbolic algebraic solvers use algebraic elimination methods to solve the system
of equations representing the constraints coupled with (univariate) root �nding.

The �rst approach is based on polynomial ideal theory, and generates spe-
cial bases for the system, called Gr�obner bases [Buc65, Buc85, CLO92]. The
original system is transformed into an equivalent triangular system (a Gr�obner
basis) which, therefore, can be easily solved by back-substitution and univariate
root �nding. The computation of a Gr�obner basis is known as Buchberger's
algorithm. Gr�obner bases have been used extensively in algebra and geome-
try [CLO92, Hof89]. In [Kon92], Gr�obner bases are used in constraint solving.

The second approach is based on Ritt's construction of characteristic sets
(also referred as triangular sets) [Rit32, Rit50], a technique rediscovered and
extended by Wu in the context of mechanical geometry theorem proving [Wu86,
Wu94, Cho88]. This method decomposes the solution set of an algebraic system
into set-expressions involving the solutions of simpler systems. It is argued
in [Wan91] that the method can be used to solve a large number of systems found
in the current literature. Wang ([Wan98]) generalized the notion of triangular
sets to pairs of polynomials called simple systems, which were used to devise
a method for solving polynomial systems. Lazard ([Laz91]) and Kalkbrener
([Kal93]) also present methods for decomposing the solution set of polynomial
systems into triangular sets. An extensive discussion about the di�erent notions
of triangular sets is presented in [Laz99].

The third approach uses resultants and is based on the theory of deter-
minants. The main idea is to use the original system to generate a larger
system where the terms of the original equations are regarded as distinct vari-
ables [Gel94, Stu97]. Sederberg uses this method in the context of curve and
surface modeling [Sed83]. In [Man93, MC93], sparse resultants are used to com-
pute the solutions of polynomial systems. Emiris and Mourrain [EM96, EV97]
use a solver based on sparse resultants to solve problems arising in computa-
tional biology and chemistry.

Symbolic algebraic solvers can be regarded as instance solvers if the con-
straints values are used when manipulating the equations. The power of the
approach is due to the fact that the constraints can be manipulated symboli-
cally, producing parameterized solutions. Those solutions can be re-evaluated
for di�erent sets of constraint values.

Symbolic solvers are often very slow, usually requiring exponential running
time. Moreover, symbolic computations are memory-intensive. Therefore, some
geometric restrictions are usually imposed in practice.
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2.2 Graph-Based Solvers

In graph-based solvers, the constraints are represented by a constraint graph
which encodes the geometric and topological structure of the sketch. It is a
two-phase approach: In the �rst phase, the constraint graph is analyzed and a
decomposition and construction sequence is determined. In the second phase,
the geometric elements are placed, i.e., their coordinates are computed, as the
construction steps are carried out.

The solver described in [BFH+95] uses this approach to solve problems in
2D. The construction sequence groups the vertices of the graph recursively into
sets, called clusters. The clusters induce subgraphs whose underlying geometry
can be solved algebraically. The algorithm recursively merges three clusters
(forming a new augmented cluster), provided they are pairwise adjacent (when
regarded as super-vertices of the graph). For a complete solution, all vertices
must be grouped into a single cluster upon termination. Regardless of the fact
that the clusters can be merged in many di�erent ways, the solution is unique
when applying simple rules for selecting from arising multiple roots [FH93].
In [FH96], Fudos and Ho�mann describe how to construct conic blending arcs
from constraints using the same approach. In [HJA97], a method that combines
graph-based and numerical techniques is presented.

DCM [D-C94] is a commercial solver that also uses a graph-based approach.
The constraint graph is partitioned into subgraphs that can be solved alge-
braically with respect to local coordinates. In the next phase, the subgraphs
are placed with respect to each other by the application of rigid-body transfor-
mations to the underlying geometry of each subgraph [Owe91].

The graph-based approach is fast and methodical. However, it is very sen-
sitive to the types of geometric objects and constraints considered. Extensive
modi�cations are required after adding new geometric types or new constraint
types.

2.3 Rule-Based Solvers

In the rule-based approach, the constraints are represented as a set of rules
and predicates. Rewrite rules are used to �nd a construction sequence that
satis�es all constraints. Based on this procedure, the predicates representing
the desired constraints are transformed into predicates de�ning the position of
the geometric objects involved.

One of the �rst attempts to represent constraints as rules is described in
[Bor81], where the rules are classes in Smalltalk associated with methods that
can be invoked to solve the constraints. Br�uderlin [Br�u87] calculates all solutions
symbolically. Predicates are stored in a Prolog database with calls to the pro-
cedural language Modula-2 to evaluate the construction steps. Aldefeld [Ald88]
presents a method based on geometric reasoning that uses a forward inference
mechanism to solve problems in 2D involving points, tracks and line segments.
Verroust [VSR92] describes an approach capable of modeling dimensional, tan-
gency and radius constraints. The sketch is represented by a set of mutually
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Figure 1: Sketch involving planes P1, P6, and P7, and points p2, p3, p4, and p5.

constrained distances (CD sets) and angles (CA sets) which are evaluated si-
multaneously. Joan-Arinyo and Soto [JAS97a, JAS97b] provide a correctness
proof of a method based on an extension of the repertoire of the rules presented
in [VSR92].

Rule-based solvers are valued for the explicit and transparent representation
of the geometric knowledge and separation of the knowledge from its processing.
As a consequence, this approach is very 
exible in the sense that new rules
can be added incrementally without modi�cation of the inference component.
Nevertheless, it is a potentially slow method due to the exhaustive search and
matching inherent in the inference mechanism.

3 Theoretical Background

3.1 Primitives and Constraints

A point or a plane in 3-space is referred to as a primitive. We denote points by
p; p1; ::: and planes by P; P1; :::. By sketch we mean the (�nite) set of primitives
of a geometric constraint problem. We allow constraints of distance, angle,
denoted dist and ang, respectively. We also allow the relations of incidence,
perpendicularity, and parallelism, denoted in order by on, perp, and para.

The constraint graph captures the relationship between the primitives of a
sketch. The graph vertices denote the primitives, and the graph edges denote
the constraints and relations on them. Figure 1 shows a sketch involving planes
P1, P6, and P7, and points p2, p3, p4, and p5. Figure 2 shows the corresponding
constraint graph. Edges labeled dij or aij denote distance or an angle constraints
on the primitives i and j, respectively. The label on indicates that the adjacent
primitives are incident.

For di�erent sets of constraint values, we can compute one or more place-
ments of the primitives that satisfy the given constraints. The placements are
referred as realizations of the constraint graph. Figure 3 shows a graph involv-
ing 4 points p1, p2, p3, and p4, constrained by distances. The labels on the edges
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Figure 2: Constraint graph for the sketch of �gure 1.

p1 p2 p3 p4

(0,0,0) (1.2,0,0) (0.7125,0,-1.20513) (0.366667,1.03217,-0.700131)
(0,0,0) (1.2,0,0) (0.7125,0,-1.20513) (0.366667,-1.03217,-0.700131)

Table 1: Two possible realizations of the constraint graph shown in �gure 3.

correspond to the distance values. Table 1 shows two possible realizations of
Figure 3.

The problem of �nding one or more realizations of a constraint graph is
called a geometric constraint problem or simply a constraint problem.

If a constraint problem has in�nitely many solutions, then it is undercon-
strained. If a problem has a �nite number of solutions after deleting one or more
constraints, then it is called over-constrained. If the solutions satisfy the deleted
constraints, the over-constrained problem is said to be consistent, otherwise, it
is inconsistent and has no solution. A problem with a �nite number of solutions
is called well-constrained if it is not overconstrained.

3.2 Basic Con�gurations

Deciding whether a problem is well-constrained by inspection of the constraint
graph is nontrivial. A survey of concepts and techniques can be found in [Dur98].

In the plane, Laman's theorem [Lam70] provides a basis for such a test,
but it is restricted to primitives with 3 degrees of freedom, like points, planes,
and circles with �xed radii. Another characterization is based on Henneberg
n-sequences [Hen11], which also leads to an algorithm for �nding realizations
for a restricted class of graphs, called 2-simple or sequentially constructible.
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Figure 3: Constraint graph involving 4 points p1, p2, p3, and p4, constrained by
distances.

In [BFH+95], the idea is extended to a more general class of graphs. Initially,
the constraint graph is partitioned into 2-simple subgraphs, called clusters, and
their realizations computed locally. The realizations corresponding to 3 clusters
can then be recursively merged, provided the clusters share a primitive with
each other. Regardless of the e�ort, �nding a fast algorithm to systematically
produce a realization for any 2D abstract constraint system is, at the present
time, an open problem that deserves further attention.

In three dimensions, the constraint solving is even more diÆcult. Even a test
to check if a problem is well-constrained is still unknown. Laman's and Hen-
neberg's results, which provided the algorithmic foundation in two dimensions,
cannot be fully extended to higher dimensions [CH88].

Ho�mann et al. [HLS97a, HLS97b] propose an approach based on degree-
of-freedom analysis where the constraint graph is augmented with a weight
function that accounts for the number of degrees of freedom of a primitive and
the number of degrees of freedom eliminated by a constraint. In [HV94], the
algorithm from [BFH+95] is extended to three dimensions. Since the primitives
considered there (points and planes) have 3 degrees of freedom, three pair-
wise constrained vertices are necessary to begin a cluster. Additional vertices
can be added to the cluster provided they are incident to three nodes already
in the cluster. This corresponds to a tetrahedral structure in the constraint
graph. When no more vertices can be added, the cluster is deleted from the
constraint graph and the process repeated. There may be unused edges in the
constraint graphs since three pairwise constrained vertices are needed to start
cluster. These edges with the adjacent vertices form a degenerate cluster. A
local realization is then computed for each cluster and the clusters are merged
to produce the �nal realization. However, the necessary relationships between
clusters required for merging are much more complicated than the ones found in
the two dimensional case. The paper [HV94] identi�es four con�gurations which
de�ne a well-constrained problem in general. They are shown in Figure 4(a-d).

The double tetrahedron and the decahedron can be decomposed into tetra-
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(a) (b) (d)(c)

Figure 4: Tetrahedron (a), Double tetrahedron (b), Decahedron (c) and Octa-
hedron (d).

hedra. The tetrahedron and the octahedron cannot be further decomposed and,
for this reason, are called basic con�gurations. The corresponding problems are
basic problems. They de�ne intrinsically di�erent construction steps and can be
regarded as building blocks of more complex designs. In fact, by solving these
two families of basic problems, one can, in principle, solve any problem which
can be decomposed into tetrahedra and octahedra. This justi�es our interest in
�nding eÆcient solution strategies for these problems.

3.3 Tetrahedral and Octahedral Problems

Tetrahedral problems involve four primitives which can be points and planes,
constrained by distances and angles. There are four possible cases, which are
shown in Figure 13 (appendix B). The problems Tetrai, i = 1; : : : ; 4 involve
i � 1 planes. Problems involving 3 planes are under-constrained. The Tetra
family of problems can be solved directly by using many analytical methods
(see [Dur98]).

Octahedral problems involve six primitives among points and planes con-
strained by distances and angles. They are shown in Figures 14 and 15 (ap-
pendix C). We consider six con�gurations which di�er on the number of planes
and points involved and on their topology. Problems with more than 4 planes
are under-constrained and are therefore not discussed. Section 5 addresses the
solution of octahedral problems.
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3.4 The Algebraic System Associated with a Constraint

Problem

With jj jj, � and � we denote Euclidean norm, dot product and vector product,
respectively. The point pi is represented by its Cartesian coordinates

pi : (xi; yi; zi);

and the plane Pi, by the unit normal vector ni = (nxi; nyi; nzi) and the signed
distance from the origin di

Pi : (nxi; nyi; nzi : di); where jjnijj = 1:

Note that the plane Pi has the implicit equation

nxix+ nyiy + nzix+ di = 0:

The condition jjnijj = 1 is an implicit constraint. We give an algebraic repre-
sentation of the constraints. The equations are presented in the vectorial and
Cartesian format.

Angle between two planes Pi and Pj

ang(Pi; Pj) = aij

vector ni � nj = cos(aij)
Cartesian nxinxj + nyinyj + nzinzj = cos(aij)

The constraints para and perp are special cases of the ang constraint where
the angles are 0Æ and 90Æ, respectively. Notice that the de�nition of parallelism
is di�erent from the one presented in most geometry books, where the angle
between the primitives can be either 0Æ, or 180Æ. We choose oriented parallelism
because it reduces the degree of the corresponding equation and, consequently,
the number of solutions of the problem.

Distance between two points pi and pj

dist(pi; pj) = dij

vector jjpipj jj = dij
Cartesian (xi � xj)

2 + (yi � yj)
2 + (zi � zj)

2 = d2ij

Distance from point pi to plane Pj

dist(pi; Pj) = dij

vector nj � pi + dj = dij
Cartesian xinxj + yinyj + zinzj + dj = dij
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The constraint on is a special case of the dist constraint where the distance
is 0.

Given a constraint problem, we de�ne the associated algebraic system as the
polynomial system obtained by the union of the equations corresponding to the
implicit and explicit constraints. Consider Tetra3 in Figure 13(c), for instance.
If the primitives are represented by

P1 : (x0; x1; x2 : x3)
P2 : (x4; x5; x6 : x7)
p3 : (x8; x9; x10)
p4 : (x11; x12; x13)

then the algebraic system associated with Tetra3 is
8>>>>>>>>>><
>>>>>>>>>>:

x20 + x21 + x22 � 1 = 0
x24 + x25 + x26 � 1 = 0
x0x4 + x1x5 + x2x6 � cos(a1) = 0
x8x0 + x9x1 + x10x2 � x3 � d2 = 0
x11x0 + x12x1 + x13x2 � x3 � d3 = 0
x8x4 + x9x5 + x10x6 � x7 � d4 = 0
x11x4 + x12x5 + x13x6 � x7 � d5 = 0
(x11 � x8)

2 + (x12 � x9)
2 + (x13 � x10)

2 � d26 = 0:

The �rst two equations correspond to the implicit constraints on P1 and P2.
The other equations correspond to the distance and angle constraints.

3.5 Placement Rules

The solutions of well-constrained problems are in general rigid realizations with
6 degrees of freedom (3 translational and 3 rotational). Therefore some of the
primitives must be placed with respect to a coordinate system to guarantee that
the associated system can be solved.

Six degrees of freedom have to be eliminated. Since we are dealing only
with points and planes, which have 3 degrees of freedom, we need to place 3
primitives constrained with respect to each other, i.e. forming a triangle on the
constraint graph [HV94]. We use the following placement rules. Only distance
and angles are considered. Moreover, in order to avoid degenerate cases, we
assume that only nonzero distances and nontrivial angles (6= 0Æ; 180Æ) occur.

Placement of 3 points (Rule ppp)

Let p1, p2 and p3 be 3 points with distance constraints di;j . A generic placement
can be obtained by the following rules; see also Figure 5:

1. p1 is placed at the origin.

2. p2 is placed on the positive side of the x-axis at distance d12 from p1.

3. p3 is placed on the xz-plane according to the distances d13 and d23.
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Figure 5: Placement of 3 points.

In terms of generic coordinates, the primitives can be represented by

p1 : (0; 0; 0)
p2 : (x0; 0; 0)
p3 : (x1; 0; x2):

The placement rules and the constraints then determine the values of x0, x1
and x2:

x0 = d12 x1 =
1

2

x20 � d223 + d213
x0

x2 =
p
�x21 + d213:

Placement of 2 points and 1 plane (Rule ppP )

Let P1 be a plane, p2 and p3 two points, and di;j the distance constraints between
them. A generic placement can be obtained by the following rules, illustrated
in Figure 6:

� P1 is placed as the xy-plane (with normal vector (0; 0; 1)).

� p2 is placed on the positive side of the z-axis at distance d12 from P1.

� p3 in placed on the xz-plane according to the distances d13 and d23.

In terms of generic coordinates, the primitives can be represented by

P1 : (0; 0; 1 : 0)
p2 : (0; 0; x0)
p3 : (x1; 0; x2):
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Figure 6: Placement of 2 points and 1 plane.

Then the placement rules and the constraints determine the values of x0, x1
and x2

x0 = d12 x1 =
p
d223 � d212 � d213 + 2d12d13 x2 = d13:

Placement of 1 point and 2 planes (Rule pPP )

Let P1 and P2 be 2 planes and p3 a point, and assume the constraints ang(P1; p2) =
a12, dist(P1; p3) = d13, and dist(P2; p3) = d23. As shown in Figure 7, a generic
placement can be obtained as follows:

� P1 is placed as the xy-plane (with normal vector (0; 0; 1)).

� P2 is placed in such a way that it satis�es the angle constraint a12, and
the intersection of P1 and P2 coincides with the y-axis.

� p3 is placed on the xz-plane according to the distances d13 and d23.

Therefore their coordinates can be represented generically by

P1 : (0; 0; 1 : 0)
P2 : (x0; 0; x1 : 0)
p3 : (x2; 0; x3):
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P1

P2
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Figure 7: Placement of 2 planes and 1 point. Only the projection on the plane
xy is shown.

The values of x0, x1, x2 and x3 can be computed directly based on the con-
straints and placement rules

x1 = cos(a12) x0 =
p
1� x0 = sin(a12) x3 = d13 x2 =

d23 � d13 cos(a12)

sin(a12)
:

Placement of 3 planes (Rule PPP )

Let P1, P2 and P3 be 3 planes, and let aij denote the angle constraints between
them. A generic placement can be obtained by the following rules:

� P1 is placed as the xy-plane (with normal vector (0; 0; 1)).

� P2 is placed in such a way that it satis�es the angle constraint a12, and
the intersection of P1 and P2 coincides with the y-axis.

� P3 is placed in such a way that it contains the origin and satisfy the angle
constraints a13 and a23.

Therefore their coordinates can be represented generically by

P1 : (0; 0; 1 : 0)
P2 : (x0; 0; x1 : 0)
P3 : (x2; x3; x4 : 0):

The placement rules and constraints completely determine the values of x0, x1,
x2, x3 and x4. In this case x3 can assume two distinct values.

x1 = cos(a12) x0 =
p
1� x0 = sin(a12) x4 = cos(a13)
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correct

x�

x0

� = 0 � = 1

predict

Figure 8: Predictor-corrector scheme. x� is a point on the homotopy path and
x0 is the predicted point.

x2 =
cos(a23)� cos(a13) cos(a12)

sin(a12)
x3 = �

p
1� x22 � x24:

4 Homotopy Continuation Methods

4.1 Overview

For more than a century, homotopy has played an important role in many areas
of modern mathematics, and its use as a tool to solve systems of linear equations
can be traced back at least to Lahaye [Lah34].

Let F (x) = 0, x = (x1; x2; : : : ; xn), F = (f1; f2; : : : ; fn), be a system with
�nitely many solutions in Cn. The homotopy equation is de�ned by

H(x; �) = (1� �)G(x) + �F (x); (1)

where � 2 [0; 1). F (x) is called the target system and G(x) the start system.
The system 1 is under-determined and implicitly de�nes a curve in Cn�[0; 1),

the homotopy path. The term homotopy continuation refers to a set techniques
for numerically approximating the homotopy path. The solutions of H(x; 0) =
G(x) = 0 are the start points, and, as � approaches 1, the start points are
deformed into the solutions of the target system.

Most homotopy continuation methods use a predictor-corrector scheme, sim-
ilar to the one depicted in Figure 8. Suppose x� is on the homotopy path for � =
�0. The predictor function computes x0, which approximates H(x; �0 + Æ) = 0,
and the corrector uses x0 to compute the point on the homotopy path for �0+Æ.
For a review of path-following techniques, see [AG90, AG97].

The choice of the start system, and the start points to follow, is crucial for
designing an eÆcient homotopy, because the number of paths to be followed
corresponds to the number of start points selected. The problem arises because
some start points may produce divergent paths, corresponding to solutions at in-
�nity of F (x) = 0 [Mor87]. Solutions at in�nity are diÆcult to detect, expensive
to compute, and usually have no practical interpretation.
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The topology of the homotopy paths may also impose extra diÆculties: paths
may cross, have singularities, or become arbitrarily close, causing many numeri-
cal problems. Fortunately, an adequate selection of the start system can usually
minimize such situations in practice. In our situation, start system selection
was adjusted after solving a con�guration for the �rst time, using the approach
of cheater homotopy described later.

4.2 Types of Homotopy Continuation Methods

Homotopy continuation methods are used to compute all solutions of polynomial
systems. Even though the underlying idea is the same, they can rely on di�erent
theoretical principles, which de�ne the strategy used for computing the start
system and corresponding start points, and the space in which the computations
are going to be performed.

Projective homotopies are based on Bezout theorem [Mor87], which states
that the number of isolated solutions of F (x) = 0 is bounded above by its
total degree. Morgan [Mor86a] describes how to build a generic start system,
whose number of solutions is equal to the total degree of the target system.
In [Mor86b], he also introduces a projective transformation, which avoids path
crossing and solutions at in�nity. The resulting homotopy is known as standard
homotopy.

Bezout's theorem uses only the degree of the polynomials and often over-
counts the actual number of isolated solutions. Consequently, standard homo-
topy usually �nds a large number of homotopy paths that lead to solutions at
in�nity.

Polyhedral homotopies take into account the sparse structure of the system,
based on the monomials that appear in each equation. These homotopies rely
on Bernstein's theorem, which states that the number of isolated solutions of
a system in (C�)

n
is bounded above by the mixed volume of the Newton poly-

topes [Ver96]. The theorem forms the basis of sparse elimination theory with
methods, also known as polyhedral methods, that use a geometric approach to
exploit the structure of the equations.

Bernstein's bound is at most as high as Bezout's bound, but is signi�cantly
smaller for systems we have encountered in our applications. The bound is also
known as the BKK bound, because it relies on work by Bernstein, Khovanskii
and Kushnirenko (see [DGH98, Kho78, Kho77, Kus75]). Mixed volumes can
be computed by several methods, in particular [DGH98, HS95, EC95, VGC96].
For additional theoretical background and standard tools refer to [Sch93, Bet92,
BF87, DGH98].

Sparse elimination also provides the basis for solving systems of equations by
continuation [HS95, VGC96, HS97]. The central computation in this method is
�nding a mixed subdivision of the supports associated with the polynomials of
the system, which de�nes a monomial basis of the coordinate ring and permits
the computation of the number of solutions and numeric approximation of the
solution vectors. This method is called polyhedral homotopy continuation.
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Unlike projective homotopies, it is not necessary to homogenize any of the
systems involved, because the continuation is performed in aÆne space, not in
projective space.

Note that polyhedral homotopies have to follow a number of paths equal to
the BKK bound of the target system, and do not take into account any relation-
ship between the coeÆcients, which happens, for instance, when the coeÆcients
are given by parameters. Therefore, the BKK bound can still overcount the
number of aÆne solutions of the system. For more details refer to [Ver96].

In many practical applications we need to solve di�erent instances of a sys-
tem. That is particularly true when the coeÆcients of the target system depend
on certain parameters. For instance, the coeÆcients of systems associated with
geometric constraint problems depend on the constraints de�ned between the
primitives.

Morgan and Sommese [MS89] show that such parametric structure can be
exploited, by performing the continuation in parameter space, instead of coeÆ-
cient space. Therefore, fewer paths need to be tracked, and the total numerical
cost is substantially reduced. The method is called in the literature parameter-
based homotopy.

The same idea is the basis of the so-called cheater's homotopies [LSY89,
Ver98], which are introduced to solve repeatedly a polynomial system with para-
metric structure. The procedure assumes that one has solved the polynomial
system once | the cheating part | for a generic set of complex parameter
values. Afterwards, we can use that system and only its nonsingular aÆne so-
lutions as the start system and start points in a homotopy to solve any other
system with the same parameter structure. Since only the nonsingular aÆne
solutions are used as start points, much fewer paths have to be tracked, when
compared with standard homotopy, for instance. See [MS89] for further detail.

4.3 Implementations Used

We use two software packages that implement di�erent 
avors of homotopy:
Continuum [DH98], which uses the projective approach, and PHC [Ver97b,
Ver97a], which implements polyhedral homotopy.

5 Solving the Octahedron

Some octahedral problems have been studied in di�erent contexts, from kine-
matics [NWM90] to computational chemistry [EM96]. For geometric constraint
solving, the interest in the octahedron comes from the fact that it is the smallest
nontrivial con�guration which cannot be decomposed into tetrahedra.

Because of its topological symmetry, any of the 8 triangular faces of the
octahedron can be selected to be placed, and this gives some 
exibility choosing
a placement order that leads to the simplest associated system. We found that
placing the faces with most planes produces an associated system which is easier
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to simplify. Therefore, we use rule ppp in Octa1, rule ppP in Octa2 and Octa4,
rule pPP in Octa3 and Octa6, and rule PPP in Octa5, Octa7, and Octa8.

We de�ne a 4-step framework for solving octahedral problems:

1. Equation formulation: In this phase, we compute the system associated
with the problem using the placement rules and representation of primi-
tives and constraints introduced in section 3.

2. Algebraic simpli�cation: In this phase, we simplify the associated system
applying the following sequence of prede�ned steps.

(a) Gaussian elimination. The resulting system should have as few squared
variables as possible.

(b) Eliminate univariate equations, since the variables involved can be
determined directly.

(c) Parameterize the variables appearing in all bilinear equations and
replace them by their corresponding parametric expressions.

(d) Parameterize the variables appearing in all bivariate quadratic equa-
tions (using sin and cos) and replace them by their corresponding
parametric expressions.

(e) Use the standard trigonometric substitution cos(�i) =
1�y2

i

1+y2
i

, sin(�i) =
2yi
1+y2

i

, where yi = tan
�
�i

2

�
.

The resulting system is called the core-system which is used as a pattern
to solve all problems with the same structure.

3. Homotopy continuation: In this phase, we use homotopy continuation to
compute all the solutions of the core system.

4. Realization: In this phase we compute the realizations using the solutions
of the core system.

In what follows, we apply the the framework to solve Octa1. The solutions
of the other octahedral problems follow the same steps.

Initially, we position 3 points according rule ppp de�ned in section 3.5. The
primitives can be represented in terms of coordinates by:

p1 : (0; 0; 0); p2 : (x0; 0; 0); p3 : (x1; 0; x2);
p4 : (x3; x4; x5); p5 : (x6; x7; x8); p6 : (x9; x10; x11);

where x0; : : : ; x11 are the unknowns of our problem. The associated system
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obtained using this coordinatization is

ffig12i=1 =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

x20 � d21 = 0
x21 + x22 � d22 = 0
x23 + x24 + x25 � d23 = 0
x26 + x27 + x28 � d24 = 0
(x1 � x0)

2 + x22 � d25 = 0
(x3 � x1)

2 + x24 + (x5 � x2)
2 � d26 = 0

(x6 � x3)
2 + (x7 � x4)

2 + (x8 � x5)
2 � d27 = 0

(x0 � x6)
2 + x27 + x28 � d28 = 0

(x0 � x9)
2 + x210 + x211 � d29 = 0

(x1 � x9)
2 + x210 + (x2 � x11)

2 � d210 = 0
(x3 � x9)

2 + (x4 � x10)
2 + (x5 � x11)

2 � d211 = 0
(x6 � x9)

2 + (x7 � x10)
2 + (x8 � x11)

2 � d212 = 0:

(2)

System (2) has 12 equations in 12 variables. Furthermore, despite its sparseness,
its total degree and BKK bound equal 212. Therefore 4096 homotopy paths must
be tracked to solve the system directly. Considering that each path is computed
in 1 second, more than one hour would be required to solve the problem.

We apply Gaussian Elimination to system (2) (Step 2a). The following steps
are performed sequentially:

f5 := f5 � f1 � f2

f6 := f6 � f2 � f3

f7 := f7 � f3 � f4

f8 := f8 � f1 � f4

f9 := f9 � f1

f10 := f10 � f2 � f9

f11 := f11 � f3 � f9

f12 := f12 � f4 � f9:

The resulting equations f1, f2, f5, and f8 can be eliminated (Step 2b) since
the values of x0, x1, x2, and x6 are completely determined. We use rule ppp to
decide the sign of x0 and x2. The total degree of the resulting system is 64.

We parameterize the variables appearing in bilinear equations (Step 2c). For
instance, we can derive parametric expressions for x5 (in terms of x3) and x11 (in
terms of x9) from equations f6 and f10, respectively. The resulting system has
only 6 quadratic equations, namely, f3, f4, f7, f9, f11, and f12, in the variables
x3, x4, x7, x8, x9, and x10. Notice that this step does not reduce the degree of
the system any further.

Equations f3, f4, and f9 are biquadratic, involving the pairs of variables
(x3; x4), (x7; x8), and (x9; x10), respectively. Each pair can be parameterized
in terms of sines and cosines of an angle �i, i = 1; 2; 3, 0 � �i � 2� (Step 2d).
Finally, we perform the standard trigonometric substitution (Step 2e). This
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step does not reduce the total degree of the system, but simpli�es the structure
of the system. The resulting core system

8<
:

(�1 y
2
2 + �2) y

2
1 + �3 y2 y1 + �4 y

2
2 + �5 = 0

(�1 y
2
3 + �2) y

2
1 + �3 y3 y1 + �4 y

2
3 + �5 = 0

(
1 y
2
3 + 
2) y

2
2 + 
3 y3 y2 + 
4 y

2
3 + 
5 = 0

(3)

has only 3 equations of degree 4 in y1, y2, and y3. The coeÆcients �i, �i,
and 
i, i = 1; : : : ; 5 depend exclusively on the distance constraints and can
be recomputed for di�erent instances of the problem. Furthermore, given a
solution of the core system, a solution of the original system, and, consequently,
a realization of the problem can be easily computed [Dur98]. The core systems
of problems Octa2,: : :,Octa8 are obtained by following the same steps. Their
structures are shown in appendix A

The total degree of the system (3) is 64 and its BKK bound is 16. Therefore,
standard homotopy requires 64 paths to be tracked, and polyhedral homotopy,
only 16. Moreover, we solved generic instances of system (3) using Continuum
and found that 48 out of the 64 paths lead to solutions at in�nity. Consequently,
we can use cheater's homotopy to our advantage, by following only the paths
leading to the remaining 16 aÆne solutions.

Selecting the core system for a speci�c constraint problem is not a determin-
istic procedure. The applicability of some symbolic reduction and simpli�cation
techniques depends strongly on the structure of the system, which, in its turn,
relies on the algebraic representation selected for primitives and constraints in-
volved in the problem. The framework introduced here provides a systematic
tool to �nd the core systems and solve octahedral problems, in a way consistent
with results previously reported in the literature [HV95, NWM90, EM96].

As pointed out by one of the referees, computing the BKK bound can be as
hard as solvinig the original system. We emphasize that computing the BKK
bound for the systems is not part of the solution process. It is a valuable tool
for selecting the core system. Once such a system is chosen, it can be used in a
numeric context to solve various instances of the same problem.

Since �i, �i, and 
i, i = 1; : : : ; 5 are functions of the distance constraints,
we can determine a generic set of coeÆcients for system (3) by selecting random
distance values. The resulting system and its solutions are then used in a
continuation to solve any other Octa1 problem (cheater's homotopy).

Table 2 summarizes the application of homotopy continuation to a generic
instance of Octa1 (Step 3). Continuum (using cheater's homotopy) and PHC can
solve the problem in 2 seconds. System (3) has 8 real and 8 complex solutions.
The number of Geometric solutions corresponds to the number of realizations.
In this example, it equals the number of real solutions. Nevertheless, we point
out, that the number of realizations may be di�erent from the number of real
solutions in some problems [Dur98].

Figures 9, 10, 11, and 12 show 4 realizations of an instance of Octa1 where:
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Octa1

Continuum # paths 64
Standard Homotopy time (in sec.) 27

Continuum # paths 16
Cheater's Homotopy time (in sec.) 2

PHC # paths 16
time (in sec.) 2

Real 8
Solutions Complex 8

Geometric 8

Table 2: Summary of the results of the application of homotopy continuation
on a generic instance of Octa1.

p1

p6

x p2
y

p4

z

p5

p3

Figure 9: Realization #1 of a typical instance of Octa1.

d1 = 1:00796 d2 = 1:15857 d3 = 1:19071 d4 = 1:18592
d5 = 1:12482 d6 = 1:16643 d7 = 1:17417 d8 = 1:17389
d9 = 1:18117 d10 = 1:06129 d11 = 1:07569 d12 = 1:11983

The other 4 realizations can be obtained from these by re
ecting the solutions
with respect to the xz plane.

6 Discussion

6.1 Application Considerations

In our view, instance solvers that �nd only one solution, such as Newton-
Raphson based solvers, are not very well suited to geometric constraint solving.
We believe that it is necessary, from time to time, to explore other solutions
of an equation system, since the process of identifying a solution that realizes
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Figure 10: Realization #2 of a typical instance of Octa1.

p1

z

x
y

p2

p5

p6

p3

p4

Figure 11: Realization #3 of a typical instance of Octa1.

p1

z

p2

p4

p5

p3

p6

x

y

Figure 12: Realization #4 of a typical instance of Octa1.
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the application intent is not well understood and can have high computational
complexity.

It has been argued that users of constraint solvers would probably present
the input problem in a shape that is already close to the intended solution, and
that this would lead with high probability to good starting values for iterative
instance solvers. This argument is plausible in applications where the use of
the solver is only for one-time problems. However, it is often the case that the
input problem is understood as a generic design, and that di�erent instances,
or variants, are sought from di�erent dimensional constraint values. In such
a situation starting values for one instance, to a Newton iteration, are not
necessarily good starting values for a di�erent instance. However, as we pointed
out, cheater's homotopy is ideally suited to that situation, because it leverages
the knowledge of which paths lead to aÆne solutions. Other paths need not
be re-evaluated. Thus, the techniques of this paper apply especially well to
variational constraint problems in which di�erent instances are constructed from
the same input problem using various values for distance and angle constraints.

6.2 Nonlinear Equations

General solutions to large scale nonlinear equation systems are too complex,
hence are not an attractive alternative. This has motivated us to approach the
problem by decomposing it into patterns and devising solution templates. Re-
stricting those patterns to small simultaneous problems involving only planes
and points, the case we considered here, allows the systematic approach we have
presented. This result has been foreshadowed in earlier work that approached
the problem analysis with a pragmatic mixture of geometric reasoning and clas-
sical algebraic tools such as resultants.

Having a successful systematic analytical technique is encouraging, because
a geometric reasoning approach must use speci�c individual properties of the
problem, and is therefore hard to transfer to other problems with di�erent com-
binations of geometric elements and di�erent patterns of constraints between
them. What is needed is a systematic approach that establishes a good method-
ology. This has been the objective of our work.

Instead of using elimination and reducing the numerical part to root �nding,
we opted to explore homotopy continuation. Our motivation is that the variable
elimination computations needed to reduce the system to triangular form can
become prohibitive. For example, a straightforward attack on octahedral prob-
lems without �rst reducing to the core system, using Gr�obner bases, is at the
limits of what can be computed with the current technology. Hence it does not
lend itself to interactive spatial constraint solving. Clearly, future research is
needed to expand the scope of problems amenable to systematic solution. This
research could progress along the following lines.

BKK bounds work well for generic systems. However, as evident from the
core system, the equations we eventually obtain using a systematic sequence of
transformations have structure that could be exploited. In past research of this
and related problems geometric reasoning was employed. It should be possible to
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focus exclusively on the algebraic structure instead, thereby unlocking a greater
generality of solution techniques and making progress on some of the more
challenging con�gurations with a richer set of geometric elements. Progress in
this direction could help close the current gap of understanding the relationship
between structure in the algebraic sense and geometric structure.
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A Structure of the Core System of the Remain-

ing Octahedral Problems

In the following systems, the coeÆcients �i, �i, and 
i depend solely on the
constraint values and are di�erent in each case.
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Octa2

8<
:

(�1 y
2
2 + �2) y

2
1 + �3 y2 y1 + �4 y

2
2 + �5 = 0

(�1 y
2
3 + �2) y

2
1 + �3 y3 y1 + �4 y

2
3 + �5 = 0

(
1 y
2
3 + 
2) y

2
2 + 
3 y3 y2 + 
4 y

2
3 + 
5 = 0

(4)

Octa3

8<
:

(y22 + �1) y
2
1 + �2 y2 y1 + y22 + �3 = 0

(�1 y
2
3 + �2) y

2
1 + �3 y3 y1 + �4 y

2
3 + �5 = 0

(y23 + 
1) y
2
2 + 
2 y3 y2 + y23 + 
3 = 0

(5)

Octa4

8<
:

(�1 y
2
2 + �2) y

2
1 + �3 y2 y1 + �4 y

2
2 + �5 = 0

(�1 y
2
3 + �2) y

2
1 + �3 y3 y1 + �4 y

2
3 + �5 = 0

(
1 y
2
3 + 
2) y

2
2 + 
3 y3 y2 + 
4 y

2
3 + 
5 = 0

(6)

Octa5

8<
:

�1 + �2 y1 + �3 y2 + �4 y
2
1 + �5 y

2
2 + �6 y2 y1 = 0

�1 + �2 y1 + �3 y3 + �4 y
2
1 + �5 y

2
3 + �6 y3 y1 = 0


1 + 
2 y2 + 
3 y3 + 
4 y
2
2 + 
5 y

2
3 + 
6 y3 y2 = 0

(7)

Octa6

8<
:

(y22 + �1) y
2
1 + �2 y2 y1 + y22 + �3 = 0

(�1 y
2
3 + �2) y

2
1 + �3 y3 y1 + �4 y

2
3 + �5 = 0


1 y
2
2 + 
2 y3 y2 + 
3 = 0

(8)

Octa7

8<
:

(�1 + �2y3 + �3y1)y2 + �4y1 + �5 = 0
�1y

2
2 + �2y2 + �3 = 0


1y
2
3 + 
2y3 + 
3 = 0

(9)

Octa8

8<
:

(�1y
2
2 + �2)y

2
1 + �3y1y2 + �4y

2
2 + �5 = 0

�1y
2
1 + �2y1y3 + �3 = 0


1y
2
2 + 
2y2y3 + 
3 = 0

(10)
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B Tetrahedral Problems
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d5 d6
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(c) (d)
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a1

d1
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p2 p3

p4

d4

d5 d6d3

d1

d3d3

d2 d2

a2d2

Figure 13: (a) Tetra1, (b)Tetra2, (c) Tetra3 and (d) Tetra4

C Octahedral Problems

� Octa1: 6 points.

� Octa2: 5 points and 1 plane.

� Octa3: 4 points and 2 planes that are adjacent in the constraint graph.

� Octa4: 4 points and 2 planes that are not adjacent in the constraint graph.

� Octa5: 3 points and 3 planes that form a triangle in the constraint graph.

� Octa6: 3 points and 3 planes that form a path in the constraint graph.
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� Octa7: 4 planes and 2 points that are adjacent in the constraint graph.

� Octa8: 4 planes and 2 points that are not adjacent in the constraint graph.
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p2p5
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d11 d10
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p4 p3
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d8
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p4 p3

d4

d7

d11 d10

d5

d2

d8

d3

d12

d6
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p6

d1 d1

P1 P1

(c) (d)
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Figure 14: (a) Octa1, (b) Octa2, (c) Octa3, (d) Octa4
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Figure 15: (a) Octa5, (b) Octa6, (c) Octa7, (d) Octa8
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