
Distributed Maintenance of Multiple Product Views

Christoph M. Ho�mann �

Department of Computer Sciences

Purdue University

Robert Joan-Arinyo y

Departament de Llenguatges i Sistemes Inform�atics

Universitat Polit�ecnica de Catalunya

November 11, 1999

Abstract

We present three mechanisms for maintaining consistent product views

in a distributed product information data base. The mechanisms are used

when one of the views makes a change to the product model and the other

views must be updated to maintain consistency.

Keywords: CAD, Master Model, Distributed Data, Product View, Fea-

tures, Constraints, Neutral Representations.

1 Introduction

Data bases are an important element in discrete product design and manufac-

ture. A key component is the CAD model that primarily captures the shape

design, but increasingly has been enriched with other design and analysis data.

The integration of di�erent product information domains has evolved into the

concept of a master model, a single repository in which resides all relevant prod-

uct data. The master model concept has been embraced by industry, but it

raises signi�cant technical problems that continue to be studied in research.

Di�erent activities in product design and manufacture examine di�erent sub-

sets of the information in the master model. The presentation of such an in-

formation subset has been called a view, [10]. Maintaining views consistently

�Supported in part by ONR Contract N00014-96-1-0635 and by NSF Grants CDA 92-23502

and CCR 95-05745.
yWhile on leave in the Department of Computer Sciences, Purdue University. Partially

supported by the CICYT Spanish Research Agency under Grant TIC98-0586-C03-03.

1



is a central problem in research on product design and manufacture and is the

subject of this paper.

In [17] we have proposed a distributed approach to the creation and mainte-

nance of a master model data base. We favor the distributed approach for two

reasons:

1. The creation of a monolithic system from the ground up is, in our opin-

ion, not only diÆcult, but also leads to a realization that would pose

diÆcult software maintenance problems. Creating a master model repos-

itory by combining collaborating, but otherwise autonomous, subsystems

o�ers more exibility and a greater ability to adapt to new information

domains that should be integrated in the future.

2. It appears unrealistic to expect that industry would rely on a single system

and a single software provider. The typical situation is that a company is

committed to a speci�c CAD vendor whose CAD data is partially inac-

cessible except through the CAD system, and that this partially opaque

data has to be integrated with other data, possibly of corporate origin and

often inaccessible to the CAD vendor for proprietary reasons.

So, a distributed federation approach to designing a master model repository

appears to be a practical one. It also poses some interesting intellectual chal-

lenges.

In the earlier paper, we identi�ed two mechanisms for maintaining consis-

tency of views, an external information association mechanism, and a constraint

reconciliation procedure. We expand on the details and applicability of those

mechanisms and add a third mechanism as a complementary technique for main-

taining consistent views under distributed updates. We distinguish several cat-

egories of master model update:

1. shape changes,

2. changes of parameters, dimensions, and constraints, and

3. changes of attributes.

Of these, shape changes are the most diÆcult ones to respond to. Not all

changes can be dealt with fully automatically. Therefore, we impose restrictions

on shape changes. When those restrictions are not met, human intervention

would be required. Those restrictions will be discussed in detail and justi�ed.

In this paper, we illustrate our techniques with the situation in which there

are two views, the view of the designer who creates a solid shape by material

additions and subtractions, and the view of an NC machining program engineer

who would de�ne the same shape purely by subtractions. Clearly, those views

impose di�erent feature structures. We wish to allow that both views make

2



alterations to the net shape. When one view makes a change, we would like the

other view to adjust to that change automatically, and vice versa. This poses a

fundamental challenge not easily met at this time.

Commercial CAD systems cannot accommodate such view di�erences. In-

stead, they implement the paradigm of a premier view, the design view, which

must be used to make all net shape changes. From the design view all other

views arise as derivative. This is not ideal in manufacturing, especially in certain

applications. For example, in aircraft engine design di�erent disciplines have

very di�erent views: The structural view considers the design of solid shapes,

whereas the aero-thermal view must reason about the design of the passages

between the solid shapes, leading to an entirely di�erent conceptualization of

the product shape. Research is needed to address these needs.

2 Prior Work

Recent e�orts respond to the increasing need for tools that support concurrent

design, manufacture and related activities in the product life cycle. It is widely

accepted that these activities should be carried out in distributed and hetero-

geneous computing environments sharing a unique product model to guarantee

consistent information, [1, 2].

Distributed and heterogeneous computing environments have been studied in

several recent works. In [16], Han and Requicha report on the implementation of

a distributed environment encompassing a simple feature-based design system,

a geometric server, an automatic feature recognizer and a graphics renderer, all

running as separate processes. The geometric server is a central server and the

other components are its clients. The motivation of this work was to interface

a unique feature recognizer with several solid modelers. The goal is achieved

by building the geometric server as a set of solid modelers, each augmented

with a software wrapper called adaptor that provides a uniform application

programming interface. In this environment the geometric server stores both

the net shape generated by the design system and the features extracted by the

feature recognizer.

In [12], De Martino et al. present a distributed, object-oriented, feature-

based system. An intermediate modeler is the server for a number of networked,

distributed application clients. The intermediate modeler maintains a homoge-

neos, multiple-view, feature-based representation of the part. From this model,

speci�c views can be derived. To maintain consistency between di�erent views,

only the designer client is allowed to modify the model. In this system, a single

data structure stores the information of all views.

Ho�mann and Joan-Arinyo, [17], developed an architecture for a product

master model that federates CAD systems with downstream application pro-

cesses for di�erent feature views that are part of the design process. The ar-

3



chitecture, based on a client-server model, addresses in particular the need to

make persistent associations of design information with net shape elements.

Moreover, the design respects the need of commercial CAD systems (and of

downstream application clients) to maintain proprietary information that must

not be disclosed in the master model.

To deal with the consistency and association problems systems are orga-

nized as either one-way or multi-way architectures. In one-way architectures,

features in an application view are derived from the features that belong to a

privileged view, usually the design view. The designer de�nes this view and con-

version modules derive application-dependent feature models. If a modi�cation

is required by a downstream application, it must be entered in the privileged

view �rst. Only thereafter can one derive new, application-dependent views;

[8, 12, 16]. In the one-way approach, feature conversion is triggered by one of

two di�erent strategies. In one strategy, feature conversion is delayed until the

design is considered completed, [12]. In the other strategy, also called incremen-

tal feature recognition, the conversion process is triggered immediately after the

completion of each feature attachment operation in the design view, [14, 19, 21].

In multi-way architectures, modi�cations required by an application are in-

troduced in the view in which the need for them arises, and each modi�cation, in

any view, is propagated automatically to every other view; [5, 10, 17, 4]. Work

based on this assumption may neglect to explain precisely how a feature view,

other than the design view, can change the net shape of the design, and there

is a paucity of techniques to formalize such changes. The work by Bronsvoort

et al. is a notable proposal in that respect, [5, 9, 11, 13, 4]. This work models

the net shape by a cell complex where the cells are re�ned such that every fea-

ture of an application view is composed of entire cells. That allows one to edit

shape mechanically in any feature view and to achieve consistency across all

views using constraint techniques. If an inconsistency between di�erent views

is found, the approach rebuilds the view that generated the inconsistency. The

view is rebuilt incrementally by �rst removing some features and then adding

new features.

In this paper, we continue to explore the architecture proposed by us in

[17]. We examine �rst net shape changes that can be accommodated by other

clients purely by constraint schema reconciliation ([17]). Next, we consider

the e�ect of a net shape edit in which the feature structures of di�erent client

views need to be rebuilt. Here, we propose an algorithm that restructures the

feature view of a client that did not edit the net shape, to make that structure

consistent with the new net shape. Only if the algorithms fails do we require

human intervention. Finally, we revisit the question of updating nongeometric

information and relationships that are associated with the net shape elements.

4



3 Master Model Server and Clients

We assume the master model (MM) scenario described in [17]. There is an

object-oriented MM server that records all information to be shared explicitly

among the participating subsystems. The clients that connect to the MM server

are assumed to be autonomous but collaborating. That is, they may be in pos-

session of undisclosed proprietary information that is important to their role in

product design and analysis, but they pledge to follow the protocols and con-

ventions of the MM server and, in particular, disclose what shared information

in the MM server repository is of interest to them.

The MM server receives noti�cations from a client that wishes to edit the

product model, according to its own view. The client then proposes the edit and

transmits the changes to the MM server. The MM server processes the changes

and noti�es the other clients that are a�ected by those changes in accordance

with the protocols explained in [17]. If every interested client can successfully

update, then the MM repository commits to the change and the edit proposed

by the client is successful. Otherwise, the edit must be rolled back. We omit a

description of the routine mechanisms needed to implement distributed, object-

oriented data bases and the various mechanisms for locking and committing to

such transactions.

The CAD system is one of the clients of the MM server. It is assumed that

the CAD client publishes at least the net shape for deposition in the MM server.

Feature information may, but need not, be published, as well as dimensional and

constraint information. Note that this information can be published explicitly

as a neutral data structure, or implicitly as a set of interrogating methods that

produce information in response to queries. In an object-oriented MM server this

distinction can be made transparent, perhaps with di�erentials in performance.

Accounting for shape changes requires a persistent naming mechanism and

a protocol for expressing change. Persistent naming is, in essence, a mapping

from shape elements (vertices, edges and faces) of the old net shape to those of

the edited net shape. It is supported to by most CAD systems, in the following

way:

An application program accesses the shape generated by the CAD system

and asks for a persistent name J of a particular face. J is generated by the

CAD system. After the CAD system has made some edits, the new shape

is likely a di�erent data structure. Now the application program can ask

the CAD system \tell me the face that has the persistent name J ." The

CAD program may respond with an identi�cation of a face in the new net

shape, or else that the face is no longer present and that the persistent

name has become invalid.

Note that this persistence mechanism can be used to associate attributes or

relations with shape elements, such as surface �nish or tolerances. Such ex-

5



ternal associations can be updated automatically after edits by the associating

application without the explicit involvement of the CAD system, at least for

many updates. It is therefore a basis for distributed maintenance of product

information.

As explained in [17], more information is desirable to manage external as-

sociations. Speci�cally, the change protocol is a neutral, qualitative descrip-

tion of the shape change that allows a greater degree of automatic external

re-association. Moreover, the change protocol does not disclose proprietary

methods the CAD system might use internally to manage persistence, and is

therefore a realistic candidate for practical use.

4 Synopsis of the Results

We assume a MM server as described before. We wish to coordinate two separate

views, by two clients. Each view has access to the net shape in the MM server,

but may have a di�erent feature decomposition and design history of the net

shape. Each view maintains features and constraints. In addition, there are

certain attributes associated with elements of the net shape in each view. We

consider three types of edits and how they must be made consistent in the views:

1. In one view, a dimensional constraint is changed and, with it, the net

shape. We want to update the other view consistent with the new net

shape.

2. In one view, a feature is added or deleted, deriving a new net shape. We

want to update the feature structure of the other view so it is consistent

with the new net shape.

3. In one view, a shape change has been made that a�ects relationships

among net shape elements in the other view. Update the relationships of

the other view consistent with the change.

For the sake of speci�city, we illustrate these edit operations by using a CAD

client and a machining process planning (MPP) client, and consider geometric

dimensioning and tolerancing (GD&T) relationships.

We restrict to changes in a product view that a�ect the net shape. Mechan-

ical artifacts perform their function primarily through the interaction of shapes.

Therefore, this assumption is not a strong restriction. Since geometric shape can

be structured in many di�erent ways, the main obstacle to coordinating views is

that one view does not necessarily understand how another view structures the

same shape. Therefore, it would be meaningless to announce to the MM server

that feature X has been deleted from view Y, or that a particular dimension has

been changed.

6



F0

F1

F2
F
2

F
1

F
0

Figure 1: Left: The base feature F0 is a block and is augmented by two extrusion

features F1 and F2. Right: a cut of the dashed shape would eliminate F2

altogether. Since F2 does not contribute to the net shape, it ought to be dropped

from the feature structure.

4.1 Change of a Dimension

A feature may be modi�ed by changing a dimensional constraint. If the change

does not alter the topology, this type of change is a good candidate for con-

straint reconciliation proposed in [17]. When the topology does change, the

modi�cation should be treated as a feature change. The change of a geometric

constraint, for instance dropping a perpendicularity requirement or changing it

to a speci�c angle, is approached in the same way.

4.2 Feature Change

We restrict to features that are extrusions and revolutions only. We assume that

each feature makes a direct contribution to some of the faces of the net shape.

Situations illustrated in Figure 1 are not considered. When a feature is added,

deleted, or modi�ed, the new net shape is communicated to the MM server, and

the change protocol details how the new net shape relates to the old net shape.

A di�erent view V updates by an algorithm that adjusts the feature structure

of its own view to replicate the new net shape. The algorithm may backtrack

and could fail. The view V may have a di�erent feature structure. We do not

change this structure automatically. To increase the exibility of updating with

a di�erent feature structure, however, we consider reinterpretation of the way

in which the feature has been generated, and in this sense we allow changing a

feature.

4.3 Implied Attribute and Relationship Changes

In some cases, the change of net shape requires a change, in a di�erent view,

of an attribute of a net shape element, or of a relationship among several net

shape elements. We propose a rule-based update procedure that accounts for

the speci�c nature of the attribute or relationship. The rules are individual to

7



the nature of the attribute, but the way in which they are evaluated is general.

The algorithm, �rst sketched in [17], applies the rules by a propagation through

the change protocol.

5 Feature Views and Changes

We assume that the detailed feature structure maintained by a view is not

disclosed to the MM server and remains private information of each client. We

want to maintain consistent but di�erent views.

Client 1 updates the net shape with some feature editing operation and

derives a new net shape. Client 2 must update its own feature structure and

obtain a consistent reinterpretation of the new net shape. In general, this is a

rather broad problem statement, and a fully automated solution would include

many techniques from feature recognition. See, for example, [3, 15, 21, 22, 23]

and references therein.

We restrict the problem and the geometric operations, and allow the rein-

terpretation process to fail. If it fails, human intervention is required. This

is justi�ed because some adjustments that might be performed automatically

should be reported to the user nevertheless, since they might violate design re-

quirements the other view has been unaware of. Such noti�cation is important

in practice, but is not discussed here.

Recall that we assume that the features are cuts and protrusions that sub-

tract from or add to the netshape. The generation method is assumed to be by

extrusion or revolution. We exclude operations such as shelling, drafting, and

blending. Note that the latter two could be derived by detailing steps from an

appropriate attributation of the shape design. Finally, we consider the following

attachment operations: from{to with explicitly designated targets, from{prev,

through{next, from all, through all, and blind with a numerical extent; see also

[7].

5.1 Feature Reinterpretation

We will allow feature update operations that rede�ne the feature generation

method: Recall from [7] the notion of a proto feature. In the case of an extruded

feature, the proto feature is a blind extrusion, to a particular extent, of the

cross section, so that the chosen attachment attributes can be conceptualized

as Boolean operations on the proto feature and the prior geometric shape. In

the case of a revolved feature, the proto feature is a blind revolution, again of

suÆcient extent.

An elementary reinterpretation is a change in the generation method and

cross section of a proto feature such that the same surfaces are generated but in

a di�erent way. The following cases are considered elementary reinterpretations:

8



Figure 2: Three ways to create a parallelepiped

Parallelepiped extrusion: The proto feature is shown in Figure 2 and can

be obtained from three di�erent cross sections by extrusions in three di-

rections. Note that the extrusion directions may be at an angle to the

cross section plane.

Cylindrical revolution: The proto feature is shown in Figure 3 and can be

obtained by a revolution or by an extrusion.

When necessary, we allow switching from one interpretation to another one.

For example, assume that the cylinder of Figure 3 was viewed by client 1 as a

revolution and by client 2 as an extrusion, then a change in the cross section by

client 1 may destroy the interpretation of client 2, and we may have to change

the feature de�nition of client 2 from an extrusion to a revolution.

A general reinterpretation is the reinterpretation of a feature as a group

of features, by a decomposition. For example, assume that client 1 creates a

cylinder feature by revolution that has been interpreted as an extrusion by client

2. Client 1 edits the cross section, obtaining the new feature shown in Figure 4.

The modi�cation invalidates the extrusion interpretation of client 2. However,

by splitting the extrusion into two separate extrusions, client 2 can maintain

the interpretation.

Now consider any net shape obtained by the extrusion and revolution oper-

ations coupled with the attachment rules from before. Every surface is either a

cylindrical or a revolute surface. Planar surfaces and surfaces on a right-circular

cylinder are considered a special case of both the cylindrical and revolute sur-

face type. Every cylindrical surfaces can be obtained by an extrusion, and

every revolute surface by a revolution, from a suitable cross section element.

Moreover, surfaces that are both revolute and cylindrical may allow elementary

reinterpretation, depending on how they are delimited.

Figure 3: Two ways to create a cylinder

9



Figure 4: One revolved feature or two extruded features

When generating a feature, additional surfaces may be obtained by the at-

tachment rules that are not part of the extrusion or the revolution. Therefore,

except for such surfaces, di�erent feature structures of the same net shape arise

only as follows:

1. A parallel extrusion has an overlapping cross section;

2. A concentric revolution has an overlapping cross section;

3. An elementary reinterpretation of a part of the feature.

Note that the attachment rules blur recognition of these cases because, by fea-

ture collision, they may create delimiting feature surfaces that appear to exclude

elementary reinterpretation. By considering �rst the proto feature shape this

diÆculty is ameliorated.

6 Change of a Dimension

When the editing client alters only constraints, under the assumption of topo-

logical invariance, the net shape change is such that the number of features and

their interdependence in the updating client remains the same. Updating client

structures can be made consistent with the new net shape either by reconcilia-

tion or by history-based adjustment.

6.1 Adjustment by Reconciliation

When the editing client alters only constraints, there is the possibility that the

change impacts a single cross section only. Since the net shape mapping is

communicated, the MM server can be told that the new net shape came about

by constraint changes as well as on which geometric elements the constraint

is de�ned. If those elements are generated by a single cross section and the

prior geometry, in the updating client, constraint reconciliation can be used as

described in [17].

At this time, the majority of CAD designs are history-driven, and the major

CAD systems do not use variational spatial constraints to de�ne a shape design.

Because of this limitation, constraint reconciliation is restricted to those con-

straints that map, in the editing client, to a single feature. For other constraint

changes we advocate the techniques explained later on.

10



Figure 5: Left: Initial net shape. Right: Edited net shape.

Since the change protocol has identi�ed all net shape alterations, including

face relocations, we can identify the cross section impacted by a constraint

change and recognize the fact that reconciliation is applicable. In the following

we assume that a single constraint has changed. The case of multiple changes

is a straightforward extension.

In general, the changed constraint does not appear explicitly in the a�ected

cross section. It is possible, in principle, to express the functional dependence

of the changed constraint on the other constraints in the cross section, and to

derive from that dependence how the constraint values of the updating client

should be changed. However, those dependencies can become intractable sym-

bolic expressions, and it is much simpler to take a procedural approach.

Since the new constraint has been used to derive the new net shape, a cross

section recomputation, from the new net shape, yields the appropriate cross

section. From this cross section, the constraint values for the updating client

can be computed by measurement. Thereafter, we must verify that the new

cross section correctly generates the new net shape.

The recomputation of the cross section involves both geometric changes to

the cross section and changes to the constraint schema. Constraint changes

may be trivial, such as the change of an angle or distance constraint, or they

may be exceptional, such as the change of a parallel constraint to a nonzero

angle, the change of an incidence constraint to a nonzero distance, and so on.

If the exceptional changes concern explicit, user-de�ned constraints, then the

user should be noti�ed of the adjustment performed by the algorithm. This is

a measure that accounts for the possibility that the ensuing shape change may

violate a design choice that the editing client may have been unaware of.

An example is given in Figure 5. If the features have been generated as

shown in Figure 6, then constraint reconciliation is applicable. The designer's

view, shown on the left of Figure 6, consists of two protrusions, labeled B and D,

placed on top of block A. Protrusion B is generated by extruding a rectangular

cross section perpendicular to the top face of the block A. The cross section has

width d and height h. One of the ends of protrusion B has been rounded with

11



2e

1e

2

h

d

b

c
1

3
1b

C

A

B

b

D

e1f

C

A

B

α

1c

3f
2f

1

e3

e2

Figure 6: Design view left; MPP view right. Constraint reconciliation is possible.

a circular cut, C.

The view of the MPP client, shown on the right side of Figure 6, is di�erent:

It consists of a block A into which a slot has been cut. Since the angle � between

edges f1:e1 and f1:e2 has a meaning to MPP, it has been explicitly established

as an angular dimension. Similarly in the designer's view, the rounding of one

side of the slot has been generated with a circular cut, C.

Figure 7 shows how the MPP client can edit by giving a new value �0 to

angle �. The design client, to update its own view, �rst computes a cross

section to generate the new shape of the extrusion B by replacing edges b1:e1
and b1:e2 with edges f 0

1
:e2 and f 0

1
:e3, respectively. Then, new values for the

dimensional constraints are computed. The old dimension value d becomes d0

and the 90Æ constant angle between edges b1:e1 and b1:e2 becomes the varying

angle dimension with value �.

6.2 History Adjustments

Suppose we have changed a constraint in the view V0. In that view, the con-

straint is on prior geometry and on elements of a single feature only. However,

that does not mean necessarily that we can account for the change in the other

view in a single cross section: Consider the design view shown in Figure 8. If

e1

e2

b’2

β
h

d’

b’1

b’3

c’1

A

CB

c’1

f’
1

f’3

f’2
B’

C

α’

1

e
e2

3

e

A

Figure 7: Left: Updated design view. Right: New MPP view.

12



2e

1e

2

h

d

c
1

3

C

A

B

b

D

b

1b

Figure 8: A di�erent design view of the original net shape. Constraint reconcil-

iation is not possible, and reinterpretation would be required.

the edit shown in Figure 7 has been carried out by the MPP client, the CAD

client cannot update by constraint reconciliation alone. Instead, the CAD client

has to use more general techniques. Let us show how a history-based approach

can handle this situation.

We distinguish two types of proto feature faces, perimeter faces and extent

faces. Perimeter faces are the faces swept by the geometric elements of the

proto feature cross section. Extent faces include the front and back faces that

bound the proto feature extent. As we shall see, extent faces become involved

in updating operations explicitly only when reinterpretations are done.

The change client 1 performs is communicated to client 2 by the following

information: The new net shape, and the change protocol that establishes a

mapping between the shape elements of the old and the new net shapes. Client

2 examines the cross sections in an order that is compatible with its feature

history. Recall the assumption that the net shape change is such that the

number of features and their interdependence remains the same in the updating

client, a feature is adjusted in the following situations:

1. Its cross section contributes to the old net shape a boundary element that

has been changed in the new net shape;

2. The feature attachment method refers to a shape element that has been

changed.

In each case, the cross section is recomputed for the new net shape and the

attachment method validated. If the cross section cannot be adjusted consistent

with the new feature shape, a question that is answered generatively, we attempt

elementary reinterpretation. If that fails as well, then this attempt at feature

adjustment fails. We can then backtrack and try a di�erent feature sequence.

Note that feature attachment induces a partial order on features. If feature

A uses geometric elements of feature B, to de�ne the cross section or the at-

tachment method, then the creation of B must precede the creation of A. We

13



consider linear orderings that are consistent with the partial order. Since linear

orderings are not unique in general, backtracking is possible upon failure.

Assume that the preceding features have been already updated. The next

feature, in sequence, that contributes to changed elements of the new net shape,

is then processed using Algorithm 1

Algorithm 1

1. Identify the underlying proto feature.

2. From the change protocol, extract the subset of faces that are part of some

perimeter face in the proto feature being updated.

3. Replace in the proto feature those perimeter faces that have changed with

the new ones.

4. Compute cross sections C1 and C2 at each end of the proto feature.

5. If C1 6= C2 or C1 = C2 but they are not valid cross sections go to step 6.

Otherwise C1 = C2 is the new proto feature cross section. If necessary,

adjust it by reconciliation. If required, adjust proto feature extent. Stop.

6. Try elementary proto feature reinterpretation.

Changed perimeter faces of the proto feature are replaced with new ones

using Algorithm 2.

Algorithm 2

For each face in the subset of changed perimeter faces do

1. If the supporting half space of the old and new faces are the same do

nothing.

2. If the supporting half space of the new face is a parallel translation of the

old face then

a) Translate the old face to the half space that supports the new face.

b) If needed, adjust faces in the proto feature incident to the old face.

3. Otherwise

a) Replace the old face with the new one.

b) If needed, adjust faces in the proto feature incident to the old face.

Note that for planar faces a supporting half space is a parallel translation of

another if, and only if, the normals to the supporting planes are parallel. For

cylindrical faces, the axes of both cylindrical half spaces must be parallel.

14



hr
h

α

r

Figure 9: Cylindrical proto feature with two possible interpretations. Left:

extruded, client 1. Right: Revolved, client 2.

Parallelepiped extrusions have four perimeter faces and, as we have already

shown, there are three di�erent possible ways to generate them. If F designates

the union set of perimeter and extent faces of the proto feature, reinterpretation

is attempted as follows by Algorithm 3:

Algorithm 3

1. Group the four perimeter faces of the updated proto feature into two sets,

say F1 = ff11; f12g and F2 = ff21; f22g, each with two parallel faces.

2. For i = 1; 2 do Steps 3 to 5.

3. F 0 = F � Fi is the subset of proto feature faces which are candidates to

be perimeter faces in the feature reinterpretation.

4. Build the cross section C1 as the intersection of the faces in F 0 with the

plane supporting the face fi1, and build the cross section C2 as the inter-

section of the faces F 0 with the plane supporting face fi2.

5. If C1 = C2 then we have found a valid cross section for a sweep of C1 from

fi1 to fi2. If needed, adjust the proto feature extent. Stop.

6. If there were no matching cross sections, the reinterpretation fails.

A revolved feature that is either a right cylinder or a right cylinder with

a missing wedge allows reinterpretation as a revolved or an extruded feature;

Figure 9. Assume that client 1 interprets such a feature as extruded (Figure 9

left) while client 2 interprets the same feature as revolved (Figure 9 right). It is

clear that editing a parameter of client 1 can be directly updated in the view of

client 2.

However, when client 2 edits the cross section, client 1 can update only if the

changes keep the top and bottom faces perpendicular to the axis of revolution

and maintain a straight line parallel to the axis of revolution; Figure 10. Oth-

erwise, client 1 must reinterpret the feature as revolved. Therefore, for revolved

features, elementary reinterpretation is as follows:

15



h

a

α

Figure 10: Updated feature that can be interpreted only as revolved.

Algorithm 4

1. If the feature has two planar perimeter faces (revolution is smaller than

360Æ) take one of them as the new cross section C. Go to step 4.

2. Otherwise build a plane � perpendicular to the old cross section sketching

plane and through the center of the cylindrical perimeter face.

3. Build the new cross section C by intersecting plane � with the updated

proto feature.

4. Reinterpret the proto feature as a revolution whose cross section is C and

whose axis is a line parallel to the old sweep direction through the center

of either the bottom or the top proto feature face.

5. Adjust proto feature extent, if needed.

7 Feature Addition and Deletion

Algorithm 1 assumes net shape changes under which the number of features,

and their interdependence, in client 2, remains the same. This assumption will

often be violated when allowing addition or deletion of a feature. We consider

such edits now and assume, furthermore, that the feature added or deleted does

not have any other feature depending on it. Such a feature would be a leaf

feature in the dependency graph. If nonleaf features are to be deleted, then

we would either delete the dependent features �rst, or request that the editing

client restructure its design such that the dependencies are eliminated. The

latter operation is familiar from commercial CAD systems.

There are two fundamental issues that arise when adding or deleting a fea-

ture. First, the feature vocabulary of the editing client may be richer than that

of the updating client. For instance, the CAD client can add protrusions, but

the MPP client may be restricted to cuts from a stock shape only. Second, the

feature structure of the editing client may be substantially di�erent from the

structure of the updating client. For example, the CAD client may be adding a

16



1S 3

2S

S
1S

3S
2S

Figure 11: Compound cut. Left: Design view. Middle: MPP view. Right: A

di�erent MPP view.

single pro�led cut, but the MPP client may have to decompose the pro�le into

a compound structure of simpler pro�les.

7.1 Adding a Protrusion or a Cut

The single feature added is, by de�nition, a leaf feature. If the updating client

has a compatible feature type, then the change requires constructing a new cross

section and generating the appropriate feature. DiÆculties arise for incompati-

ble feature vocabularies.

When the CAD client adds a pro�led cut, the diÆculty for the MPP client

may be that the cut must be decomposed into several cuts accounting for avail-

able machining processes. The problem is solved by tiling the CAD pro�le with

elementary pro�les that cover it. For instance, consider the cut pro�le of Fig-

ure 11. The pro�le on the left can be decomposed into three rectangular cuts,

S1; S2; S3. Note that di�erent decompositions are possible. Tiling algorithms

are easy to devise. More sophisticated tilings would consider cost, machining

characteristics, etc. See for example [18, 20].

A more diÆcult case is when the editing client has feature operations of a

type not available to the updating client. For instance, assume that the CAD

client adds a protrusion, but the MPP client can only add cut features to a base

feature, the stock. Then the update for the MPP client is more diÆcult. An

example is shown in Figure 12. Here, the adjustments of Algorithm 1 cannot

succeed because the mapping between the old and the new net shape does not

Figure 12: The CAD client adds the boss straddling the step. An MPP client

would have to update by enlarging the stock and adding several cut features.

17



identify the top face of the boss as belonging to the face set created by the base

feature, i.e., the stock.

The example illustrates the problem for shape edits that are made with a

feature vocabulary richer than that of the updating client. Updates with a

restricted vocabulary can succeed only if geometric reasoning techniques are

employed. Such techniques have been developed in the context of feature recog-

nition in, e.g., [6] and [15].

7.2 Deleting a Protrusion or a Cut

Since the deleted feature need not correspond to a single leaf feature in the

updating client, several features may have to be adjusted using Algorithm 1.

Moreover, deleting a protrusion in the CAD client may imply adding cut fea-

tures in the MPP client. We also expect the possibility that features become

redundant in the course of executing Algorithm 1, for instance when deleting a

cut.

8 Updating Attributes and Relations

We consider changes that require updating secondary information associated

with net shape elements. For example, consider the case where the CAD client

does not maintain or process tolerancing information, material properties, sur-

face �nish, or engineering notes. We consider these information domains con-

ceptually as relationships that are de�ned for net shape elements. In the case

of unary relationships, such as surface �nish, it is customary to speak of at-

tributes. Whether the relationships are unary, binary or of higher degree,1 the

basic problem is simply to maintain the associations correctly. This is done by

transferring the associations, suitably edited, from the old to the new net shape.

As analyzed in [17], the mapping that relates the old net shape to the new

net shape can be represented as a graph whose nodes are net shape elements and

whose edges are operations on them. The operations are move, change, split,

merge, delete, and new. The graph describes the changes each shape element of

the old net shape undergoes and the net shape elements, if any, of the new net

shape that correspond or to which a contribution is made. Figure 13 illustrates

these concepts. Circles with lower-case letters represent net shape geometric

elements. Circles with capital letters represent attributes associated with net

shape elements. The graph is directed and acyclic, and is therefore a good

candidate for rule-driven algorithms to update associations. The rules include

computations on the net shape elements involved.

1We could represent form features as n-ary relationships on a suitable set of faces, edges

and vertices.

18



A A

f’f

A

f
A

f2

A

f1

Split

A,B

A

f1

B

f2

f12Merge

Delete f

A

Change
A A

f f’

Move

fNew

A

Figure 13: Graph description of changes undergone by net shape elements.

19



The update rules depend on the information domain. In [17], we illustrated

this approach using notes attached to net shape elements. Here, we consider a

GD&T attribute specifying a nominal dimension between two parallel faces with

a parallel tolerance. The rules are applied at every net shape edge where there

is an change of one or the other parallel face. Using the rules, we \evaluate"

the change protocol graph in the order of the changes, from the graph roots

(elements of the old net shape) to the leaves (elements of the new net shape).

change: The net shape element has changed in area, but not in position and

orientation. No action is required.

move: The net shape element has changed in position and orientation. If not

in an intermediate position, evaluate the nominal dimension from the

new position and orientation. If no longer parallel within tolerance, or

if no longer within the nominal dimension range, notify user.

split: Replicate the GD&T attribute and attach to all split descendants.

merge: Merge all attributes of the merged entities.

new: No action required.

delete: Notify user that the GD&T attribute has been orphaned.

We see that the update activity for attributes is well-suited to a rule-based

approach. The key operational devices needed in general are

1. Call a user-de�ned evaluation routine with a Boolean result.

2. Issue a user-de�ned noti�cation. Noti�cations are minimally: attribute

orphaned, attribute violated, attribute replicated.

3. Replicate an attribute.

4. Merge an attribute set.

Moreover, those devices are general, independent of the attribute domain, except

for a call-back mechanism which is domain-dependent.

9 Summary and Conclusions

We have explored the requirements for the distributed maintenance of consistent

master model information in a federated architecture, in which di�erent software

clients connect to a server and collaborate by disclosing information required by

other clients to construct and maintain consistent views of the design. In partic-

ular, we have focused on maintaining shape-related information without forcing

20



the CAD client to disclose proprietary design and editing information. In con-

junction with earlier work, we have argued that it is possible to construct such

a system that succeeds in automating a wide range of view updating operations.

From an applications point of view, we �nd it especially important to account

for the need to preserve privacy of proprietary information.

We �nd that maintaining di�erent feature views is complicated by the cur-

rent, history-based CAD design style. In our algorithm to partially automate

updates, we apply a core set of techniques familiar from the feature recognition

literature when dealing with updating the feature history. In many situations

an adjustment is possible purely by constraint reconciliation, a concept we in-

troduced earlier. Were it not for the sequential design history implemented by

CAD systems, constraint reconciliation would be more widely applicable. Fi-

nally, the maintenance of attributes can be completely automated, and, with it,

the maintenance of many downstream views that can be derived from attributes

and relations maintained on the net shape elements.

The limitations of our algorithms are less consequential in practice than

might seem so at �rst glance. We note that major changes of the net shape,

such as the ones indicated in some of the examples, probably require human

review by di�erent individuals, so that automating radical design changes is

not appropriate. Only routine changes should be automated. In view of this

situation, it may not be worthwhile looking for perfect algorithms, from an

applications point of view. Of course, a perfect history adjustment algorithm

that can handle all possible situations would be an interesting technical and

intellectual accomplishment.

References

[1] IEEE Computer. Special issue on Concurrent Engineering, 26(1), 1993.

[2] Computer-Aided Design. Special issue on Network-Centric CAD, 30(6),

1998.

[3] V. Allada and S. Anand. Feautre-based modelling approaches for integrated

manufacturing: state-of-the-art survey and future research directions. In-

ternational Journal for Computer Integrated Manufacturing, 8(6):411{440,

1995.

[4] R. Bidarra. Validity Maintenance in Semantic Feature Modeling. PhD

thesis, Inf Technology and Systems, Technical University of Delft, 1999.

[5] W.F. Bronsvoort and F.W. Jansen. Multi-view feature modelling for design

and assembly. In J.J. Shah, M. M�antyl�a, and D.S. Nau, editors, Advances

in Feature Based Manufacturing, Manufacturing Research and Technology,

20, chapter 14, pages 315{330. Elsevier Science B.V., 1994.

21



[6] M.A. Chamberlain, A. Joneja, and T.C. Chang. Protrusion-features han-

dling in design and manufacturing planning. Computer Aided Design,

25(1):19{28, 1993.

[7] X. Chen and C.M. Ho�mann. Towards feature attachment. Computer

Aided Design, 27(9):695{702, 1995.

[8] J.J. Cunningham and J.R. Dixon. Designing with features. The origin of

features. In V.A. Tipnis and E.M. Patton, editors, Computers in Engineer-

ing Conference and Exhibition, volume 1, pages 237{243, San Francisco,

1988. ASME.

[9] K.J. de Kraker, M. Dohem, and W.F. Bronsvoort. Multiple-way feature

conversion. Opening a view. In M. Pratt, R.D. Siriram, and M.J. Wozny,

editors, Product Modeling for Computer Integrated Design and Manufac-

ture, pages 203{212, London, UK, 1997. Chapman and Hall.

[10] K.J. de Kraker, M. Dohmen, and W.F. Bronsvoort. Multiple-way fea-

ture conversion to support concurrent engineering. In C.M. Ho�mann and

J. Rossignac, editors, 4th Symp. on Solid Modeling and Applic., pages 105{

114, Salt Lake City, UT, 1995.

[11] K.J. de Kraker, M. Dohmen, and W.F. Bronsvoort. Feature validation and

conversion. In D. Roller and P. Brunet, editors, CAD Systems Development,

pages 121{142. Springer Verlag, Heidelberg, 1997.

[12] T. DeMartino, B. Falcidieno, and S. Hassinger. Design and engineering

process integration through a multiple view intermediate modeller in a

distributed object-oriented system environment. Computer-Aided Design,

30(6):437{452, May 1998.

[13] M. Dohmen, K.J. de Kraker, and W.F. Bronsvoort. Feature validation in

a multiple-view modeling system. In 16th ASME International Computers

in Engineering Conference, Irvin, NY, USA, 19-22 August 1996. ASME.

[14] J. Han and A.A.G. Requicha. Incremental recognition of machining fea-

tures. In Proceedings of the ASME Computers in Engineering Conference,

pages 587{598, Minneapolis, MN, 1994.

[15] J.H. Han and A.A.G. Requicha. Integration of feature based design and

feature recognition. Computer-Aided Design, 29(5):393{403, May 1997.

[16] J.H. Han and A.A.G. Requicha. Modeler-independet feature recognition in

a distributed environment. Computer-Aided Design, 30(6):453{463, May

1998.

22



[17] C.M. Ho�mann and R. Joan-Arinyo. CAD and the product master model.

Computer-Aided Design, 30:905{919, 1998.

[18] A. Kusiak. Optimal selection of machinable volumes. Transactions of In-

stitute of Industrial Engineering, 22(2):151{160, 1990.

[19] T. Laakko and M. M�antyl�a. Feature modelling by incremental feature

recognition. Computer-Aided Design, 25(8):479{492, August 1993.

[20] D.S. Nau, G. Zhang, and S.K. Gupta. Generation and evaluation of alter-

native operation sequences. In A.R. Thangaraj, A. Bagchi, M. Ajanappa,

and D.K. Anand, editors, Quality Assurance Through Integration of Manu-

facturing Processes and Systems. ASME, 1992. (Proc. 1992 ASME Winter

Annual Meeting, Publication No. PED-Vol. 56, pp. 93 { 108).

[21] H. Suh and R.S. Ahluwalia. Feature generation in concurrent engineer-

ing environment. In J. Rossignac and J. Turner, editors, Symposium on

Solid Modelling Foundations and CAD/CAM Applications, pages 493{502,

Austin, TX, June 5-7 1991. ACM Press.

[22] Y.-J. Tseng and S.B. Joshi. Recognizing multiple interpretations of inter-

acting machining features. Computer-Aided Design, 26(9):667{688, 1994.

[23] X. Xu and S. Hinduja. Recognition of rough machining features in 2 1/2

D components. Computer-Aided Design, 30(7):503{516, 1998.

23


