
Solving Spatial Basic Geometric Constraint Configurations
with Locus Intersection

Xiao-Shan Gao
�

Institute of Systems Science,
AMSS,Academia Sinica.
Beijing 100080, China

xgao@mmrc.iss.ac.cn

Christoph M. Hoffmann
y

Department of Computer
Science, Purdue University

West Lafayette, Indiana,
47907-1398, USA

cmh@cs.purdue.edu

Wei-Qiang Yang
z

Institute of Systems Science,
AMSS, Academia Sinica.

Beijing 100080, China

wqyang@mmrc.iss.ac.cn.

ABSTRACT
A basic idea of geometric constraint solving is to decompose
the constraint problem into smaller ones according to some
basic con�gurations. In this paper, we �nd all spatial basic
con�gurations involving points, lines, and planes containing
up to six geometric primitives in an automated way. Many
of these basic con�gurations still resist e�ective analytical
solutions. We propose the locus intersection method for
geometric constraint solving, which is used to solve all these
basic con�gurations.

Categories and Subject Descriptors
J.6 [Computer Applications]: COMPUTER-AIDEDEN-
GINEERING|CAD ; I.3.5 [COMPUTER GRAPHICS]:
Computational Geometry and Object Modeling|Geometric
algorithms, languages, and systems ; I.3.m [COMPUTER
GRAPHICS]: Miscellaneous

General Terms
Geometric Constraint Solving Algorithms

Keywords
Geometric constraint solving, parametric CAD, spatial basic
con�guration, locus intersection

1. INTRODUCTION
�Partially supported by Chinese NSF under an outstanding
youth grant (NO. 69725002) and by a National Key Basic
Research Project of China (NO. G1998030600).
yPartially supported by NSF grant CCR-99-02025 and ARO
contract 39136-MA.zPartially supported by a Youth grant of Academy of Math-
ematics and System Sciences, Academia Sinica.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SM’02,June 17-21, 2002, Saarbrucken, Germany.
Copyright 2002 ACM 1-58113-506-8/02/0006 ...$5.00.

Geometric constraint solving (GCS) is the central topic
in much of the current work of developing parametric CAD
systems. It also has applications in chemical molecular mod-
eling, linkage design, computer vision and computer aided
instruction. GCS algorithms accept the declarative descrip-
tion of geometric diagrams or engineering drawings as the
input and output a drawing procedure. There are four main
approaches to GCS: the graph analysis approach [13, 14, 8,
19, 23], the rule-based approach [1, 4, 10, 20, 16, 25, 24], the
numerical computation approach [21, 18], and the symbolic
computation approach [5, 17]. In practice, combinations of
these approaches are often used to obtain the best result.
The work in [9, 11, 3, 6] uses this approach.
Since practical problems from CAD are usually very large,

a basic idea in GCS is to use the following approach of divide
and conquer.
Algorithm DC(P)

1. Divide the problem P into several sub-problems P)
P1 [� � � [Pm.

2. Solve the sub-problems Qi = DC(Pi) recursively with
algorithm DC.

3. Merge the sub-problems together Q1 [� � � [Qm) P .

Most GCS methods may be understood in this way. For in-
stance, in the numerical computation method, we treat each
individual primitive as a sub-problem in the �rst step. The
second step is trivial and the third step is to merge these
primitives by solving a large scale equation system simul-
taneously. This is of course an extreme case. In general,
graph algorithms are used to �nd feasible decompositions.
The ideal decomposition is that each of the three steps in the
algorithm may be solved e�ectively, stably and completely.
The triangle merge approaches proposed in [13, 23] may

be understood as decomposing a problem into three sub-
problems such that each pair of the sub-problems shares a
common geometric primitive, and the merge step is to place
one primitive with respect to the other two. In this ap-
proach, the triangle problems, i.e., the constraint problems
consisting of three primitives, play an important role. They
are used as building blocks for larger scale constraint prob-
lems. We may call them the basic con�gurations in these
approaches. A smallest constraint problem that cannot be
solved with the above method may also be considered as
a basic con�guration. If we can solve this basic problem,
then we may use it as a building block to solve an enlarged

class of constraint problems. In [7], such a basic con�gura-
tion with six primitives is solved with four-bar linkages. In
[20], two rigid structures connected by three constraints are
considered as basic con�guration. In [14], a general method
to �nd solvable sub-problems is proposed. The advantage of
this kind of generic solvers is that once we know how to solve
a basic con�guration and how to decompose a large problem
into sub-problems based on this basic con�guration, we may
create templates to solve classes of problems. Thus, highly
stable and eÆcient solvers become possible.
In the spatial case, two kinds of basic con�gurations among

points and planes, tetrahedra and octahedra, are identi�ed
and studied in [13, 3]. Several octahedral problems involving
points and lines are also considered in [3, 15]. In this pa-
per, we will give a systematic study of basic con�gurations
involving points, planes, and lines.
Adding lines as new primitives increases the diÆculty

in �nding the basic con�gurations and solving them com-
pletely. This may be understood in two ways. First the
constraint problems with lines are more diÆcult to solve
[15]. Second, the structures for basic con�gurations become
more complicated and the number of basic con�gurations
increases drastically. If considering points and planes only,
the smallest non-sequential basic con�gurations contain six
primitives [14]. If adding lines as a new primitive, we show
that there exist 1, 17, and 683 basic non-sequential con-
�gurations with 4, 5, and 6 primitives | even if we treat
points and planes as the same type of primitive. This makes
it impossible to �nd all these con�gurations manually. An
automated method is required to do the work.
Since GCS is often used in the conceptual design, it would

be desirable to �nd all the solutions of the problem. This
makes it diÆcult to use iteration methods such as the Newton-
Raphson method. Homotopy methods are capable of �nding
all the solutions. But a pre-condition for eÆcient computa-
tion with this method is to �nd a reasonably small bound
for the number of solutions of the system. For the octa-
hedral con�gurations involving points and planes, eÆcient
homotopy methods are developed by reducing the equation
system for the con�gurations to a core system of three equa-
tions [3], and in [22] a system of two quartic equations is
derived. But for basic con�gurations involving lines, the
solution bounds are still too high to solve the problem eÆ-
ciently with the homotopy method [15].
On the other hand, in [7] general linkages are used to solve

2D basic con�gurations eÆciently. In this approach, loci of
certain points in the linkage are generated and the constraint
problems are solved by �nding the intersections of these loci.
This approach is also used to solve one basic octahedral
con�guration with lines in [15]. Similar ideas were also used
in [8, 9] to solve spatial constraint problems. In this paper,
this idea is extended and formalized to a general method
for GCS: locus intersection method (LIM). The LIM is a
hybrid method which combines geometric construction and
heuristic search. Theoretically, it can be used to �nd all the
solutions for geometric constraint problems. Practically, it
is powerful enough to solve many diÆcult problems. In fact,
all the 701 basic con�gurations, with 4, 5 and 6 primitives,
can be solved with the locus intersection method.
The rest of this paper is organized as follows. In Section

2, we show how to �nd the basic con�gurations containing
up to six primitives. In Section 3, we introduce the locus
intersection method. In Section 4, we show how to solve the

basic con�gurations with the locus intersection method. In
Section 5, we present our conclusions.

2. AUTOMATED GENERATION OF BASIC
CONFIGURATIONS

We consider three types of geometric primitives: points,
planes, and lines and two basic types of constraints: the
angle constraints between line/line, line/plane, plane/plane
and the distance constraints between point/point, point/line,
point/plane and line/line. Angle and distance constraints
between two primitives o1 and o2 are denoted by ANG(o1; o2)
and DIS(o1; o2) respectively. If we do not need to distin-
guish the types of constraints, we use CONS(o1; o2) to de-
note the constraint between the two primitives. Parallel
and incidence constraints may be considered special cases
of angle and distance constraints. Between a pair of lines,
there might exist both an angle constraint and a distance
constraint.
We may use a constraint graph to represent a constraint

problem. The vertices of the graph represent the geometric
primitives and the edges represent the constraints.
For a primitive o in a constraint problem, let DOF(o)

be the degree of freedom for o and DEG(o) the number of
constraints involving o. Note that each parallel constraint
between line/line, line/plane, plane/plane will be counted
twice, because it consumes two degrees of freedom for the
corresponding primitives. For a set of geometric primitives
O in a constraint problem, let DOF(O) =

P
o2ODOF(o)

and DEG(O) the number of constraints among primitives
in O.
Basic Con�guration A geometric constraint problem

P is called a basic con�guration if it satis�es the following
conditions.

1. It is a structurally well-constrained problem. That is,
P satis�es DOF(P) = DEG(P) � 6. We subtract six
here, because a rigid structure in 3-space has six de-
grees of freedom.

2. There is no geometric primitive o in the problem satis-
fying DEG(o) � DOF(o). That is, no primitive in the
problem can be solved by a sequential construction.
Details for this case can be found in Section 3.1.

3. P cannot be decomposed into smaller basic con�gura-
tions.

A basic con�guration with n points, m planes, and k lines
is said to be of type nPmHkL. Since the degree of freedom
for points and planes are both three, we sometimes do not
distinguish them in the structural analysis. A basic con-
�guration with u points and planes and v lines is denoted
by uBvL. For convenience, zero is always omitted from the
above notation. For instance, 0P1H5L is simpli�ed to 1H5L.
In [13], it is pointed out that the octahedral problem in

Fig. 1 is a smallest basic con�guration if the geometric prim-
itives are points and planes. There are eight non-trivial octa-
hedral problems involving points and planes [3]. Octahedral
problems 5B1L, 4B2L, and 3B3L are also considered in [3].
It is pointed out in [3] that octahedral con�gurations with
more lines than points are always under-constraint. This is
because, only angle constraints between two lines are consid-
ered. If we consider both the distance and angle constraints

P5 P2

P3P4

P1

P6

Figure 1: Octahedron: a smallest basic con�gura-
tion for points and planes

between two lines, there exist many more basic con�gura-
tions with six geometric primitives. In the following sections,
we will give all the basic constructions involving up to six
geometric primitives.

2.1 Basic Configurations Involving Four Geo-
metric Primitives

Let p be a point or a plane and o a geometric primitive.
Then there exists at most one constraint between p and o. If
there is a point or a plane p in the constraint problem with
less than four constraints, i:e: DEG(p) � 3. This means
that p can be constructed sequentially and the problem is
not a basic con�guration. Therefore, all the primitives in a
basic con�guration with four elements must be lines. It is
not diÆcult to check that the only basic con�guration is the
tetrahedron in Fig. 2. The solution to this problem can be
found in Section 4.1.

l 1

l 2

l 3

l 4

Figure 2: The basic con�guration with four lines

Note that at least one of the constraints between l1; l3 and
l2; l4 must be a distance constraint. Otherwise, there would
be conicts among the angle constraints. Hence, there exist
two types of basic con�gurations involving four lines 4L1 and
4L2 which have four and �ve angle constraints respectively.

In Table 1, \a" means the existence of angle constraints
between two lines, \d" means the existence of distance con-
straints between two lines, and \a/d" means the existence
of both kinds of constraints.

pair of lines l1; l2 l2; l3 l3; l4 l4; l1 l2; l4 l1; l3
Problem 4L1 a/d a/d a/d a/d d d
Problem 4L2 a/d a/d a/d a/d d a

Table 1: Basic con�gurations with four lines

2.2 Automated Generation of Basic Configu-
rations

We use the adjacency matrix to specify the graphs of dif-
ferent constraint problems that have the same group of prim-
itives.
When the number of geometric primitives increases, the

number of constraint problems increases dramatically. There-
fore, we need to automate the process of �nding basic con-
�gurations. There are four basic steps to construct the basic
con�gurations with a �xed number of primitives.

S1 Construct all possible well-constrained problems.

S2 Delete those that can be constructed sequentially with
algorithm LIM0 in Section 3.1.

S3 For those problems that have the same structure, we
need only to consider one of them. Two constraint
problems are said to have the same structure if by re-
naming the primitives of the same type in one of them,
they become the same constraint problem.

S4 Delete those that can be decomposed into smaller prob-
lems with the method in [14].

Steps S1 and S3 can be done in a naive manner by con-
sidering all the possible combinations. We introduce several
search strategies to enhance the search eÆciency. For S1,
the main idea is to start from a good initial constraint prob-
lem. From the de�nition of basic con�guration, it is easy to
see that each geometric primitive in the problem must be
constrained with at least four constraints. For instance, if
we consider problems with six vertices, the octahedron in
Fig. 1 could be used as a starting point. Although it might
not cover all the conditions as we have shown in Fig. 9,
which is not of the octahedron type, it does enhance the
search eÆciency.
For Step S3, we may use the Hamming number to reduce

the number of comparisons among the adjacency matrix en-
tries. Let A(n; n) be the adjacency matrix for a constraint
problem with n primitives. A(i; j) is the number of con-
straints between the i�th primitive and the j�th primitive.
The Hamming number for the i�th primitive is

Hi =
nX

j=1

A(i; j):

Then a necessary condition for two adjacency matrix prob-
lems to be structurally the same is that the Hamming num-
bers for the points, planes, and lines in them must be cor-
respondingly the same. Furthermore, if we cannot distin-
guish two problems by comparing their Hamming numbers,
we need to consider only di�erent combinations for those
primitives with the same class and the same Hamming num-
ber. For instance, Let f3; 4; 4; 5g be the Hamming numbers
for points p1; p2; p3; p4 and q1; q2; q3; q4 in two problems re-
spectively. Point p1 with Hamming number 3 can only be

matched with point q1 with the same Hamming number. We
need to compare only the corresponding array from the ad-
jacency matrix of p1; p2; p3; p4 with that from the adjacency
matrix of q1; q2; q3; q4.

2.3 Basic Configurations Involving Five and
Six Geometric Primitives

Two simpli�cations are made in the process of �nding ba-
sic con�gurations. First, we consider only the structure of
the con�gurations and ignore the types of constraints be-
tween two lines. Second, we will treat points and planes
as the same type of geometric primitives. This is possible
since they have the same dimension of freedom. Following
the method in the preceding section, we �nd all the basic
con�gurations with �ve and six geometric primitives.

5B 4B1L 3B2L 2B3L 1B4L 5L Sum

N0 0 0 1 1 3 12 17

N1 0 0 1 1 3 12 17

Nt 0 0 1 1 3 12 17

Table 2: Basic con�gurations with �ve geometric
primitives

6B 5B1L 4B2L 3B3L 2B4L 1B5L 6L Sum

N0 1 1 4 12 39 132 494 683

N1 1 1 4 12 37 122 437 614

N2 0 0 0 0 2 10 57 69

Nt 8 9 ? ? ? ? ? ?

Table 3: Basic con�gurations with six geometric
primitives

In the above tables, N0 is the number of basic con�gu-
rations; N1 is the number of problems that can be solved
with method LIM1 (see Section 3.2 for de�nition); N2 is the
number of problems that can be solved with method LIM2;
Nt is the number of basic con�gurations if we treat points
and planes di�erently. We do not determine the number Nt

in all cases so as to avoid the degenerated cases, which will
be discussed later.

3. LOCUS INTERSECTION METHOD FOR
GCS

Geometric and analytical solutions to a geometric con-
straint problem are always preferred, since such solutions
are generally fast, robust, and complete. But many of the
basic con�gurations involving lines still resist such solutions
[15]. In this section, we introduce a numerical search ap-
proach of GCS, which will be used to discuss all solutions of
basic con�gurations.

3.1 Geometric Construction Sequence
Before presenting the method, we �rst de�ne the concept

of construction sequences. As we mentioned before, a prim-
itive o can be solved sequentially if it satis�es the condition
DEG(o) � DOF(o). Let o1; : : : ; ok be the geometric primi-
tives that have constraints with o (if oi has two constraints
with o, oi will appear twice). Then o can be constructed
from o1; : : : ; ok by a construction

o = INTER(o1; : : : ; ok): (1)

For instance, let o be a point, o1; o2; o3 three planes, where
the distances between o and o1; o2; o3 are zero. Then o is
the intersection of the three planes.
In (1), if DOF(o) = k, the corresponding construction is

called well-de�ned [13]. A well-de�ned construction c gener-
ally introduces a �nite number of solutions, which is denoted
by NUM(c). If k < DOF(o), the corresponding construction
is called de�cient. In this case, o generally has an in�nite
number of solutions. For instance, if o is a line and o1 and o2
are two planes imposing angle constraints on the line, then
o is a line whose direction is determined by o1 and o2, but
can translate freely in the space.
Considering three kinds of primitives: points, planes, and

lines, there are in all ten well-de�ned constructions for points,
six well-de�ned constructions for planes, and twenty three
well-de�ned constructions for lines. Of these constructions,
the ones introducing points and planes are relatively easy
to compute. We may divide a well-de�ned construction in-
troducing a line into one of three classes: 2A2D, 1A3D, or
4D, where nAmD means that the in the construction there
are n angle constraints and m distance constraints, respec-
tively. There cannot be more than two angle constraints
in such a construction. Here is a description of the three
constructions.

2A2D Of the three construction types for lines, this is the
only one that is easy to compute. We may �rst de-
termine the direction of the line from the two angle
constraints, and then use the other two distance con-
straints to position the line. This construction gener-
ally has eight solutions.

1A3D This class has many cases since the angle constraint
may be on a line or a plane and the distance constraints
may be on points or lines.

4D This class also has many cases. The case of using four
points to determine a line is considered in [3, 15] and
has 24 solutions. Note that we consider oriented lines
in this count; the number of geometric solutions is 12.
The case of using four lines to determine a line has 8
solutions in the general case.

The 1A3D and 4D construction classes are too diÆcult to
be computed dynamically. We will discuss how to treat this
problem later.

A diagram can be drawn sequentially if the geometric
primitives in the diagram can be listed in an order

o1; o2; � � � ; om (2)

such that each oi is introduced by a construction using prim-
itives o1; � � � ; oi�1. Let Ci be the construction introducing
primitive oi. We say that the diagram can be drawn with
the following construction sequence (abbr. CS)

C1; C2; � � � ; Cm: (3)

Suppose that all the primitives in Fig. 1 are points. If we
remove constraint CONS(p2; p5), a construction sequence is

as follows.

p1 is a free point
p2 = INTER(p1)
p3 = INTER(p1; p2)
p6 = INTER(p2; p3)
p4 = INTER(p1; p3; p6)
p5 = INTER(p1; p4; p6):

(4)

The following algorithm to �nd a CS for a constraint prob-
lem is well-known (see, e.g., [6]). Since we will use it many
times in this paper, we restate it here.
Algorithm LIM0.
Input: a constraint problem.
Output: a construction sequence CS with initial value ;.

1. Let o be a primitive in the problem satisfying d =
DEG(o) � DOF(o).

2. Let o1; : : : ; od be the constructed primitives having
constraints with o. Then add a construction o = INTER
(o1; : : : ; od) to CS. Terminate if no such o exists.

3. Remove o and the constraints involving o from the
problem and goto Step 1.

This algorithm is linear in the number of constraints and
primitives if implemented properly.

To compute a construction sequence, we need to introduce
several concepts.
Since a spatial rigid body has six degrees of freedom, some

primitives in the problem must be placed with respect to a
coordinate system to guarantee that the problem has a �-
nite number of solutions. If a constraint problem may be
described by a CS, we may �nd a set of placement primi-
tives as follows. Let d be the maximal number such that
the �rst d primitives Od in the CS form a well-constrained
problem with the constraints in the CS. That is Od satis�es
DOF(Od) = DEG(Od) � 6. Then these �rst d primitives
may be treated as a set of placement primitives. In CS (4),
PS = fp1; p2; p3g is a set of placement primitives that form
a rigid body.
The driving primitives in a CS are those primitives in-

troduced by de�cient constructions, but are not placement
primitives. To evaluate the CS, we need to add new con-
straints depending on free parameters to the de�cient con-
structions to change them to well-de�ned constraints. For
instance, the construction p6 = INTER(p2; p3) in (4) is a
de�cient construction. Point p6 is on the intersection cir-
cle of two spheres. Then, we may use the angle formed
by planes h(p6p2p3) and p1p2p3 as a free parameter, and
p6 can now be introduced by a well-de�ned construction as
p6 = INTER(p2; p3; h). The number of solutions of this new
construction is de�ned as the number of solutions of the
de�cient construction.
The maximal number of branches of a CS (3) with p place-

ment primitives is de�ned as follows

NUM(3) = NUMb

Y

i=p+1;m

NUM(Ci) (5)

where NUMb is the number of solutions for the placement
part. For CS (4), the placement part is a triangle and hence
NUMb = 1. The number of solution branches for the re-
maining three constructions are two. Then NUM(4)y = 8:

If all the constructions are well-de�ned, then the evalu-
ation for the CS is straightforward, and the corresponding
constraint problem has at most NUM(c) solutions. Other-
wise, the problem generally has an in�nite number of solu-
tions.

3.2 The Locus Intersection Method
The locus intersection method (abbr. LIM) for GCS has

the following basic steps. We will use the octahedral prob-
lem in Fig. 1 as a working example. Suppose that all the
primitives in this problem are points.
Algorithm LIMd. In the algorithm, the input is a well-
constrained problem. The output is to �nd all the solutions
of the problem. Here d is the number of constraints to be
removed from the original problem.

1. Find A Sequential Solution. Try to solve the prob-
lem with algorithm LIM0. If it cannot be solved, goto
the next step.

2. Remove Constraints and Determine Construc-
tion Sequence. Let d > 0 be the smallest number
such that when we remove d constraints from the prob-
lem the remaining problem can be solved with Algo-
rithm LIM0. The geometric primitives in the removed
constraints are called locus primitives. For the prob-
lem in Fig. 1, if we remove the constraint between
p2 and p5, algorithm LIM0 generates construction se-
quence (4).

3. Find Placement Primitives. We use the CS ob-
tained in the preceding step to �nd the placement
primitives. As mentioned in the preceding section,
placement elements for CS (4) are p1; p2; p3.

4. Find Driving Primitives. Since d constraints are re-
moved from the well-constrained problem, there must
be some de�cient constructions in CS. In CS (4), the
driving primitive is p6.

5. Generate Loci. We allow the driving primitives to
move with small steps, which will be explained below.
For each position of the driving primitives, we may
compute the coordinates of all primitives in the prob-
lem according to the construction sequence. Repeat
the above process, we generate a set of coordinates for
each locus primitive. The set thus generated is called
the locus for the locus primitive. So the locus here is
discrete. The continuous curve in Fig. 3 is obtained by
connecting two consecutive points with a line segment.

How to select the moving steps for the driving primi-
tive is a subtle matter. The smaller the steps, the bet-
ter the chance we �nd all the solutions. But, a very
small step will lead to a large number of samples and
will decrease the computation speed. We use the fol-
lowing heuristic to select a suitable set of values for the
driving parameters. First, �xed and uniform steps for
the driving parameters are selected and used to gen-
erate the loci. For instance, if the range for an angle
parameter is from 0 to �, we would select �=300 as the
initial step. Second, if for two consecutive values t1; t2
of the driving parameter, the distances between the
positions of any locus primitive are larger than a small
number, say 0:01, we will add more samples between
t1 and t2.

In this step, we need to decide how to move the driv-
ing points. A general method is as followed. Suppose
that o = INTER(o1; : : : ; om) is a driving point with
s de�cient degrees of freedom. Then we may select s
primitives b1; : : : ; bs, which have been constructed be-
fore o, and compute o using the following construction
o = INTER(o1; : : : ; om; b1; : : : ; bs). The constraints
between o and bi are called driving constraints or driv-
ing parameters.

We also need to determine the range from which the
driving parameters take values. If the constraint be-
tween o and bi is an angle constraint, then we may
take the range for the parameter as 0 � � and 0 � 2�
depending on whether o is a point or a line (or plane).
If the constraint between o and bi is a distance con-
straint, we may use the following result to determine
an upper bound for the distance from o to bi.

Let P be a point and o1; o2 any primitives. Then DIS(o1;
o2) � DIS(o1; P) +DIS(P; o2).

The proof for this result is omitted. In the general
case, we do not obtain an explicit formula for the upper
bound.

Note that the lower and upper bounds mentioned above
are generally not optimal (see Figures 4 and 5). A
more detailed analysis could reveal narrower enclosures
for feasibility ranges. For example, [12] derives tight
range estimates for valid parameter ranges in 2D GCS
based on geometric reasoning.

In (4), we use the angle between plane p6p2p3 and
plane p1p2p3 as the driving parameter. This parameter
may change from 0 to �, but we consider only values
from 0 to �=2 by symmetry.

6. Locus Intersection. After the loci for locus primi-
tives are generated, we check them to �nd whether the
removed constraints are satis�ed. To be more precise,
let DS be the set of values for the driving parameters,
LS the set of locus primitives, and PS the set of all
primitives. For each value t in DS, we may compute
the coordinates LS(t) and PS(t) for the primitives in
LS and PS. We search the set LS(t) to �nd the set T
of values t0 such that LS(t0) satis�es the removed con-
straints approximately. For instance, let the removed
constraint be DIS(o1; o2). For each value t inDS, com-
pute d(t) = jDIS(o1; o2)� jo1(t)o2(t)jj. A value t0 is a
solution if the following conditions are satis�ed: d(t0)
is a local minimum and d(t0) is a small number. Then
the solutions of the GCS problem are fPS(t)jt 2 Tg.
This step may be considered to �nd the intersections
of several loci.

Fig. 3 is the distance curve for the 6p problem with
a set of constraint values given in Table 4. From this
�gure we may give a classi�cation of number of solu-
tions for the problem (in Table 5) according to distance
p2p5.

For the problem given in Table 4, jp2p5j = 1:3. There
exist 12 solutions. All of them are realizable in Euclidean
space.

d12 = 1:000 d13 = 1:108 d23 = 1:073 d14 = 1:181
d15 = 1:275 d26 = 1:171 d34 = 1:157 d45 = 1:164
d46 = 1:067 d56 = 1:110 d36 = 1:052 d25 = 1:3

Table 4: A set of constraint values for the 6p prob-
lem

Figure 3: The distance curves for p2p5 in the Octa-
hedral problem for points. The x-axis is the driving
parameter for point p6. The y-axis is DIS(p2; p5).
The average time to compute the curves is 0.07 sec-
ond on a PC with PIII733 and 128M memory. We
select 157 samples for the driving primitive. Six-
teen curve segments are computed, which contain
2512 points. In the �gure, two consecutive points
are connected with a line segment.

Let d be the number of positions for each driving primi-
tive. Then the driving parameters take values in a d-dimensional
space. Note that number d is a critical parameter inuencing
the amount of computation required by the above method.
Because of this, we call the above method the locus inter-
section method of dimension d (abbr. LIMd).
Another important parameter in the above method is the

number of branches of the construction sequence which rep-
resents the number of loci need to be computed. This bound
is generally much smaller than the Bezout number (see, e.g.,
[3]) of the problem. For instance, the naive Bezout number
for the Octahedron problem in Fig. 1 is 4096. In [3], a sys-
tem of polynomial equations with total degree 64 and BKK
bound 16 is obtained after simpli�cation. The number of
loci need to be computed in our case is 8. Note, however,
that the loci here are di�erent from the paths used in the
homotopy method. One locus here may give rise to multiple
solutions of the problem, and therefore the number of loci
is not equal to the number of solutions.

4. SOLVING THE BASIC CONFIGURA-
TIONS

We have used the LIM method in Section 3.2 to solve
all basic con�gurations obtained in Section 2.2. The two
tetrahedral problems for lines can be solved with algorithm
LIM1. The results for the basic con�gurations with �ve and
six primitives are given in Tables 2 and 3. It is readily seen
that all the basic con�gurations up to six vertices for points,

Values for 0.275- 1.171- 1.228- 1.353- 1.615 -
jP2P5j -1.171 -1.228 -1.353 -1.615 -2.263
Number
of solutions 4 8 12 8 4

Table 5: Number of solutions of the Octahedron
problem for di�erent values of p2p5

planes, and lines can be solved with method LIM1 and LIM2.
Below, we will give some of the details of the solutions.

4.1 Basic Configurations with Four Lines
We �rst consider the basic con�gurations with four lines

(Fig. 2). If we remove the constraint between l1 and l3, a
construction sequence is as follows.

l1is a free line
l2 = INTER(l1; l1)
l4 = INTER(l1; l1; l2)
l3 = INTER(l2; l2; l4; l4):

(6)

The placement primitives are lines l1 and l2. The driv-
ing primitive is l4 which has an angle and distance con-
straint with l1. Since one of the constraints CONS(l1; l3)
and CONS(l2; l4) is a distance constraint, we may always
assume that the constraint CONS(l2; l4) is a distance con-
straint and add an angle constraint between l2 and l4 as the
driving constraint.
Fig. 4 and Fig. 5 give the solution curves for problems

4L1 and 4L2 with concrete constraints values given in Tables
6 and 7.

d12=0.00000 a12=0.78540 d23 =
p
2 d24 = 1:5

d13removed d14=1.00000 a14 = �=2 d34=2
a34 = �=3 a23 = �=4

Table 6: the set of constraints for 4L1

d12=0.00000 a12=0.78540 d23 =
p
2 d24 = 1:5

a13 removed d14=1.00000 a14 = �=2 d34=2
a34 = �=3 a23 = �=4

Table 7: the set of constraints for 4L2

Note that the Bezout numbers for problems 4L1 and 4L2
are 4194304 and 2097152. The maximal number of branches
(see (5) for the de�nition) for 6 is 64 in both cases. There-
fore, the number of loci generated by the LIM1 method is 64.
The two �gures look di�erent, because the curve in Fig. 5
is the overlap of many curve segments. For the given values
of constraints, we may obtain the following results from the
method.

1. Problem 4L1 has solutions for 0:787 < ANG(l1; l3) <
1:823. Problem 4L2 has solutions for 0:787 < ANG(l1; l3) <
1:823 and 0:524 < ANG(l4; l2) < 1:571. Note that the
curves in Fig. 4 and Fig. 5 are multiple curves, i.e.,
several curves are coincident.

Figure 4: Solutions to con�guration 4L1. The x-axis
is ANG(l2; l4). The y-axis is the DIS(l1; l3). The av-
erage time to compute the 64 curves is 0.23 second
on a PC with PIII733 and 128M memory. We select
314 samples for the driving primitive. 64 curve seg-
ments are computed, which contain approximately
6656 points.

2. Problem 4L2 has 64 solutions on the solid part of the
solution curve. Problem 4L1 has at most 134 solutions
for di�erent values DIS(l1; l3). Fig. 4 shows the case
for DIS(l1; l3) = 2:0, which has 98 solutions.

4.2 Basic Configurations with Five Primitives
In all, there are 17 basic con�gurations involving �ve prim-

itives if we treat points and planes as the same type. All
of these problems can be solved with method LIM1. We
use a 5L con�guration in Fig. 6 as an illustrative example,
where CONS(l1; l3),CONS(l1; l4), and CONS(l2; l4) are dis-
tance constraints and CONS(l2; l5) is an angle constraint.
For the 5L con�guration in above �gure, each of the four-

teen constraints in the con�guration can be removed and
we may obtain fourteen CSs for the problem. Among these
CSs, the following two are essentially di�erent. All other
CSs are similar to one of them.
If we remove CONS(l1; l3), a construction sequence is as

followed

l1is a free line
l5 = INTER(l1; l1)
l4 = INTER(l1; l5; l5)
l2 = INTER(l1; l1; l4; l5)
l3 = INTER(l2; l2; l4; l4)

(7)

The placement primitives are l1; l5. The driving primitive
is l4. The maximal number of branches is 512.
If we remove CONS(l2; l5), a construction sequence is as

followed

l1is a free line
l2 = INTER(l1; l1)
l3 = INTER(l1; l2; l2)
l4 = INTER(l1; l2; l3; l3)
l5 = INTER(l1; l1; l4; l4)

(8)

The placement primitives are l1; l2. The driving primitive
is l3.

Figure 5: Solutions to con�guration 4L2. The x-
axis is ANG(l2; l4). The y-axis is the ANG(l1; l3).
The average time to compute the 64 curves is 0.23
second on a PC with PIII733 and 128M memory.
The curves contain approximately 6656 points.

l 1

l 5

l 4

l 2

l 3

Figure 6: One 5L basic con�guration

In step 2 of algorithm LIMd, we may remove di�erent con-
straints. Therefore, the process of obtaining a construction
sequence is not unique, and we could obtain many di�erent
construction sequences for the same problem. An advantage
of generating multiple CSs is that we may select a \good"
one. For instance CS (7) is better than (8). This is because,
all the construction steps in (7) determine a line using two
angle and two distance constraints. This kind of construc-
tion is easy to evaluate. In (8) we construct l4 using one
angle and three distance constraints. This kind of construc-
tion is diÆcult to evaluate. Therefore, we will choose CS
(7) to compute the problem. A general heuristic to select
a good CS is to have the smallest number of lines as the
non-placement elements, and in constructions for lines to
use 2A2D type construction.

4.3 Basic Configurations with Six Primitives
From Table 3, there are in all 683 basic con�gurations

involving six primitives if we treat points and planes as
the same type. Of these problems, 614 can be solved with
method LIM1 and 69 have to be solved with method LIM2.
We take the 2P4L con�guration in Fig. 7 as an illustrative
example. To solve this problem, we need algorithm LIM2.
The following construction is such that all steps are easy to
evaluate. The Construction Sequence is as follows:

l 4 l 1

l 2
l 3

p2

p1

Figure 7: One 2P4L basic con�guration

l1is a free line
l2 = INTER(l1; l1)
l3 = INTER(l2; l2)
l4 = INTER(l1; l1; l3; l3)
p1 = INTER(l2; l3; l4)
p2 = INTER(l2; l3; l4)

(9)

The removed constraints are CONS(p1; l1) and CONS(p2; l1).
The placement primitives are l1; l2. The driving primitive is
l3. The maximal number of branches is 4096.
Note that besides the constraints with l2, the line l3 still

has two degrees of freedom. According to the algorithm
LIM2, we need to add two more driving constraints to con-
struct l3. The new construction for l3 is

l3 = INTER(l2; l2; l1; l1)

and the driving parameters are the angles and distances
between l3 and l1. An upper bound for the DIS(l3; l1) is
DIS(p1; l1) + DIS(p1; l3) by the fact mentioned in Step 5 of
Algorithm LIMd.
Since there are two driving parameters, the loci for P1

and P2 are surfaces, and we need to search two surfaces in
the loci intersection step. We may use the following trick to
reduce the amount of computation and searches. After the
computation of point P1, we will check whether constraint
CONS(P1; l1) is satis�ed, and only use those P1 satisfying
this constraint to compute P2.

l 2
l 1

l 3

l 5

l 6 l 4

Figure 8: One 6L basic con�guration

We consider the 6L con�guration in Fig. 8 where CONS(l1;

l4), CONS(l1; l5), CONS(l2; l6), CONS(l3; l4), CONS(l3; l6)
are distance constraints and CONS(l2; l5) is an angle con-
straint. This problem can be solved with LIM2. If we
remove CONS(l6; l2) and CONS(l6; l3), a construction se-
quence is as follows.

l1is a free line
l2 = INTER(l1; l1)
l3 = INTER(l1; l1; l2; l2)
l4 = INTER(l1; l3)
l5 = INTER(l1; l2; l4; l4)
l6 = INTER(l4; l4; l5; l5)

(10)

The placement primitives are l1; l2; l3. The driving prim-
itive is l4. The maximal number of branches is 2048.
This problem di�ers from all other examples in that the

primitive elements are non-trivial. We need to estimate the
number of solutions for the placement part, while the place-
ment part for all the previous examples has only one solu-
tion.
To compute the placement part, we may use l1; l2 as a

new placement and compute l3. In this way, we may �nd
eight solutions. But in these solutions, only four are di�er-
ent geometrically. This is because, when rotating l1; l2; l3
around the common perpendicular line of l1 and l2 by �,
one solution will change into another solution. Therefore,
the placement part has four solutions. This example shows
that to use a large placement part may reduce the total
number of branches needed to be computed.

l 1

p1

l 5

l 3

l 2 l 4

Figure 9: A 1P5L con�guration does not have an
octahedron structure

All the con�gurations encountered so far have the octahe-
dron structure. The 1P5L con�guration in Fig. 9, however,
is not an octahedron. This problem could be solved with
the LIM2 method.

4.4 Dynamic Locus Intersection Method
A precondition that the LIMd method works is that con-

structions can be evaluated eÆciently. This is always the
case in basic 2D GCS, since we need to solve only two equa-
tions of degree less than or equal to two [7]. As we mentioned
before, some of the constructions for spatial lines are diÆ-
cult to compute. We introduce the dynamic LIMd method
to solve this problem.

Let us consider the construction for line

l = INTER(l1; l2; l3; l4)

which is of class 1A3D. Suppose that CONS(l; l1) is an angle
constraint. To compute this construction we introduce a
new construction

l = INTER(l1; l2; l2; l3)

where the angle constraint between l and l2 is used as a
free parameter. In other words, we change the construc-
tion from a well-de�ned one to a de�cient one that is easy
to compute by removing another constraint DIS(l; l4). The
removed constraint needs to be checked later in the intersec-
tion step. If the original problem involving this construction
may be solved with an LIMd method, then we will use an
LIMd+1 method to solve it.
For instance, if the constraints CONS(l1; l3), CONS(l1; l4),

CONS(l2; l4), CONS(l2; l5) in the 5L problem in Fig. 6 are
all distance constraints, then we need a 1A3D construction
in any construction sequence. So, if we remove DIS(l1; l3)
and DIS(l2; l5), a construction sequence is as follows.

l1is a free line
l5 = INTER(l1; l1)
l4 = INTER(l1; l5; l5)
l2 = INTER(l1; l1; l4)
l3 = INTER(l2; l2; l4; l4)

(11)

The placement primitives are l1; l5. The driving primi-
tives are l4 and l2. We use the angle constraints ANG(l4; l1)
and ANG(l4; l2) as the driving parameters. In terms of eÆ-
ciency, this is a trade o�: we use an LIM2 method to solve a
problem that can be solved with an LIM1 method to avoid
the computation of a 1A3D construction.
We may treat a construction of type 4D for a line simi-

larly. In this case, we need to remove two constraints and to
introduce two driving angle constraints. If the original prob-
lem involving this construction may be solved with an LIMd

method, then this change would let us solve the problem
using an LIMd+2 method.

5. CONCLUSION
One of the main diÆculties of GCS lies in the fact we need

methods that deliver eÆcient and complete solutions to the
constraint problem. A basic idea of GCS is to decompose
the constraint problem into smaller ones according to some
basic con�guration. In this paper, we identify all basic spa-
tial con�gurations containing up to six geometric primitives
and propose the locus intersection method to �nd all the
solutions of these basic con�gurations.
This paper further reveals the nature of diÆculties of

GCS. Even for constraint problems with up to six primitives,
there exist hundreds of essentially di�erent basic con�gura-
tions and most of them are quite diÆcult to solve. This is
basically due to the presence of lines. If only points and
planes are considered, then there is only one basic struc-
ture: the octahedron as shown in [3]. This suggests that we
need to �nd a way to avoid using lines in spatial GCS in the
same way as points and planes. Also, some of the basic line
con�gurations may have special cases in which the algebraic
equations must be solved with specialized techniques.
It is interesting to note that application considerations

also motivate limiting the role of lines in spatial constraint

systems. Namely, in the de�nition of spatial constraint prob-
lems in parametric engineering design, there is an underlying
mechanism to select a solution based on the orientations of
the elements, in relation to each other. When editing such a
design, assigning new dimensional constraint values to some
of the distances or angles, it is possible that the solution so
identi�ed is not correct, [2]. Such problems can be avoided
in many cases when limiting the role of lines in the constraint
structure.
For some of the basic con�gurations, analytical solutions

are also possible. For instance, in the basic con�gurations
with four lines and �ve angle constraints, we may determine
the directions of the four lines by these angle constraints.
This simpli�es the problem signi�cantly.

6. REFERENCES
[1] B. Br�uderlin, Using Geometric Rewriting Rules for

Solving Geometric Problems Symbolically, Theoretical
Computer Science, 116, 291-303, 1993.

[2] X. Chen and C. Ho�mann, On Editability of Feature
Based Design, CAD 27, 905-914, 1995.

[3] C. Durand and C.M. Ho�mann, A Systematic
Framework for Solving Geometric Constraints
Analytically, J. of Symbolic Computation, 30(5),
493-529, 2000.

[4] X.-S. Gao and S. C. Chou, Solving Geometric
Constraint Systems I. A Global Propagation
Approach, Computer Aided Design, 30(1), 47-54,
1998.

[5] X.-S. Gao and S. C. Chou, Solving Geometric
Constraint Systems II. A Symbolic Approach and
Decision of Rc-constructibility, Computer-Aided
Design, 30(2), 115-122, 1998.

[6] X.-S. Gao, L. Huang, and K, Jiang, A Hybrid Method
for Solving Geometric Constraint Problems in
Automated Deduction in Geometry, J. Richter-Gebert
and D. Wang (eds), 16-25, LNAI No. 2061,
Springer-Verlag, Berlin, 2001.

[7] X.-S. Gao, K. Jiang, and C.-C. Zhu, Geometric
Constraint Solving with Conics and Linkages,
accepted by Computer Aided Design.

[8] C. Hsu, Graph-Based Approach for Solving Geometric
Constraint Problems, PhD Thesis, The University of
Utah, 1996.

[9] C. Hsu and B. Br�uderlin, A Hybrid Constraint Solver
Using Exact and Iterative Geometric Constructions,
in CAD Systems Development { Tools and Methods,
D. Roller, P. Brunet, eds., Springer Verlag, 1997.

[10] R. Joan-Arinyo and A. Soto, A Correct Rule-Based
Geometric Constraint Solver, Computers and
Graphics, 21(5), 599-609, 1997.

[11] R. Joan-Arinyo and A. Soto, Combining Constructive
and Equational Geometric Constraint-Solving
Techniques, ACM Trac. on Graphics, 18(1), 35-55,
1999.

[12] R. Joan-Arinyo, N. Mata, and A. Soto, A
Constraint-Solving Based Approach to Analyze 2D
Geometric Problems, Proc. Solid Modeling '01, Ann
Arbor, MI, 2001, 11-17.

[13] C. Ho�mann and P.J. Vermeer, Geometric Constraint
Solving in R2 and R3, in Computing in Euclidean

Geometry, D.Z.Du and F.Huang (eds), pp. 266-298,

World Scienti�c, Singapore, 1995.

[14] C. M. Ho�mann, A. Lomonosov and M. Sitharam,
Finding Solvable Subsets of Constraint Graphs, in
LNCS, NO.1330, pp.163-197, Springer, Berlin
Heidelberg, 1997.

[15] C. M. Ho�mann and B. Yuan, On Spatial Constraint
Solving Approaches,to appear in Proc. of ADG'2000,
J. Richter-Gebert and D. Wang (eds), Zurith,
Switzerland, September, Springer, Berlin Heidelberg,
2001.

[16] G. A. Kramer, Solving Geometric Constraints
Systems: A Case Study in Kinematics, MIT Press,
Cambridge Massachusetts, 1992.

[17] K. Kondo, Algebraic Method for Manipulation of
Dimensional Relationships in Geometric Models,
Computer Aided Design, 24(3), 141-147, 1992.

[18] H. Lamure and D. Michelucci, Solving Geometric
Constraints By Homotopy, IEEE Trans on
Visualization and Computer Graphics, 2(1):28-34,
1996.

[19] R. S. Latham and A. E. Middleditch, Connectivity
Analysis: a Tool for Processing Geometric
Constraints, Computer Aided Design, 28(11), 917-928,
1994.

[20] J. Y. Lee and K. Kim, Geometric Reasoning for
Knowledge-Based Design Using Graph Representation,
Computer-Aided Design, 28(10), 831-841, 1998.

[21] V. C. Lin, D. C. Gossard and R. A. Light, Variational
Geometry in Computer-Aided Design, Computer
Graphics, 15(3), 171-177, 1981.

[22] D. Michelucci, Using Cayley-Menger Determinants,
undated world-wide-web document,
www.emse.fr/~micheluc/MENGER/.

[23] J. Owen, Algebraic Solution for Geometry from
Dimensional Constraints, in ACM Symp., Found of
Solid Modeling, ACM Press, New York, 1991, pp.
397-407.

[24] G. Sunde, Speci�cation of Shape by Dimension and
Other Geometric Constraints, Geometric Modeling for
CAD Application, pp.199-213, North-Holland, 1998.

[25] A. Verroust, F. Schonek and D. Roller, Rule-Oriented
Method for Parameterized Computer-Aided Design,
Computer Aided Design, 24(10), 531-540, 1992.

[26] W. T. Wu, Basic Principles of Mechanical Theorem
Proving in Geometries, Science Press, Beijing, 1984;
English Version, Springer-Verlag, Berlin Heidelberg,
1994.

