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We examine a dual-quaternion formulation for expressing the relative rigid body
motion between two objects when incidence constraints are to be observed. The
incidences are between points, lines and planes, of the two parts. Both parametric
and implicit representations are investigated. Several examples illustrate the tech-
niques.
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1. Introduction

Geometric constraints are used in two different contexts. In one application
area we define a set of geometric primitives and constraints upon them,
and then are asked to find an arrangement of the primitives such that the
constraints are satisfied. Let us call this the construction problem. The
construction problem arises for example when defining CAD models for
discrete manufacturing.

In a second application area we are given a set of (usually composite)
geometric objects as well as constraints upon their spatial relationship, with
the objective of constraining the relative motion of the objects with respect
to each other. Let us call this the compliance problem. The compliance
problem arises in assembly modeling, kinematic simulation of machinery,
and in virtual reality, to name a few uses.

In this paper we consider the compliance problem in 3-space and in-
vestigate basic techniques to solve it. There is a wealth of prior work,
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and we give a few example references below. The area of kinematics to a
large extent considers and solves compliance problems, for instance when
investigating linkages, or, more generally, when designing and analyzing
machinery [6,7]. Other relevant research is done in robotics [1], and in
some areas of geometric constructions [5]. To some extent, the compliance
problem overlaps with the construction problem, as seen in [4], where a sys-
tem of equations is attacked by considering the residual compliant motion
of geometric primitives when restricting to a subset of the given constraints.

Much of the research into compliance is dominated by seeking elegant
mathematical formalisms that would simplify expressing and analyzing
compliant motion. In addition to ad-hoc techniques that are highly success-
ful in special cases such as four-bar linkages, three main formalisms have
emerged: (4× 4) transforms, screws, and dual quaternions. The three for-
malisms offer a general description of rigid body motion in 3-space. Note
that screws are essentially dual quaternions, but the reduced coordinate
set may introduce ambiguities in some cases. For this reason we do not
consider them further.

2. Tools and Notation

In this section, we review some basics and notations on quaternions, their
relations to rotations, and dual quaternions.

2.1. Quaternions

The field of quaternions has elements of the form a = a0 + a1i + a2j + a3k

where the coefficients ar are real numbers and the units i, j, and k obey
the equations:

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j

Complex numbers are quaternions with a2 = a3 = 0. The length of a
quaternion a, is defined as ‖a‖ =

√
a2
0 + a2

1 + a2
2 + a2

3. Quaternions are
due to Maxwell.

The conjugate of the quaternion a = a0+a1i+a2j+a3k is the quaternion
a = a0−a1i−a2j−a3k. The norm of a is the square of the length of a and
is equal to the quaternion product aa. We define the inner product (a · b)
of two quaternions a and b as (a · b) = a0b0 + a1b1 + a2b2 + a3b3. Note
that the norm of a is (a · a) = aa.
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A quaternion with a0 = 0 is called a vector. More generally, we can
call a0 the real part of the quaternion a and call a1i + a2j + a3k the vector
part. We denote quaternions with lower-case bold letters. Vectors in R3

are denoted by bold lower-case letters with an arrow; for example, ~p. The
arrow is omitted when it is clear from the context that we speak of a
vector. The vector part of a quaternion is denoted in the same way. Thus,
if a = a0+a1i+a2j+a3k, then ~a = a1i+a2j+a3k. We note that a = a0−~a.

We will use the inner product, denoted by · and the cross product of
vectors, denoted by ×, to express quaternion operations more succinctly.
For example, the product of two quaternions a = a0 + ~a and b = b0 + ~b is
the quaternion

ab = a0b0 − (~a · ~b) + a0
~b + b0~a + ~a× ~b

2.2. Rotations

With Cartesian point coordinates in 3-space, a rotation in 3-space about
the origin can be represented by the orthogonal matrix

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33




where RRT = I and det(R) = 1.
It is well-known that unit-length quaternions can represent rotations

about the origin. Wittenburg [10] gives the following conversion formulae.
For any unit-length quaternion a, the entries of the rotation matrix are

r11 = 2(a2
0 + a2

1)− 1, r12 = 2(a1a2 + a0a3), r13 = 2(a1a3 − a0a2),

r21 = 2(a1a2 − a0a3), r22 = 2(a2
0 + a2

2)− 1, r13 = 2(a2a3 + a0a1),

r31 = 2(a1a3 + a0a2), r32 = 2(a2a3 − a0a1), r33 = 2(a2
0 + a2

3)− 1,

and for any rotation matrix with entries rpq the quaternion coefficients are:

a2
0 = (r11 + r22 + r33 + 1)/4,

a2
1 = r11/2− u,

a2
2 = r22/2− u,

a2
3 = r33/2− u,

where u = (r11 + r22 + r33 − 1)/4.

Other, equivalent conversion formulae are given in, for example, [8].
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There is a well-known geometric interpretation of the quaternion repre-
sentation of such rotations. Let v = (v1, v2, v3) be the unit-length direction
vector of the axis of rotation, and let 2θ be the angle of rotation. With
c = cos(θ) and s = sin(θ), the rotation is represented by the quaternion
c + sv1i + sv2j + sv3k.

2.3. Dual Numbers and Dual Quaternions

A dual number is defined as A = a + bε, where a and b are from a field
and ε2 = 0. Dual numbers form a Clifford algebra. If A = a + bε is a dual
number, Aε = a− bε is its conjugate.

A dual quaternion is defined as A = a + bε, where a and b are quater-
nions. Equivalently, a dual quaternion is a quaternion whose components
are dual numbers (with real coefficients). Dual quaternions can represent
points, lines and planes in 3-space, as well as general rigid body motions,
as will be discussed in the next section.

As in [2], we define three different conjugations of a dual quaternion,
according to whether the quaternion components are conjugated, the dual
numbers are conjugated, or both. Let A = a + bε, where a and b are the
quaternions. We define

A = a + bε, Aε = a− bε, Aε = a− bε.

3. Representations

We adopt the algebraic schema of [2] to represent points, lines and planes
in 3-space, as well as rigid-body transformations on them.

3.1. Points, Lines, and Planes

In Cartesian coordinates, points are specified by their position vector
(p1, p2, p3) which we represent by the dual quaternion

P = 1 + pε

A plane has the equation ap1 + bp2 + cp3 +d = 0, where we require that
a2 + b2 + c2 = 1. Such a plane is represented by the dual quaternion

E = n + dε.

The first quaternion is the plane normal vector n = ai + bj + ck, and
the second quaternion, which is real, is the constant of the implicit plane
equation.
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Using Plücker coordinates, lines in 3-space can be represented by two
3-vectors t = (t1, t2, t3) and m = (m1,m2,m3), where t is the line direction
vector, normed to unit length, and m is the moment vector p× t of some
point p on the line. Clearly, the inner product of the moment vector and
the direction vector is zero; that is, (m · t) = 0. Identifying, as before, the
vector (a, b, c) with the quaternion ai+ bj + ck, we represent the line (t,m)
as the dual quaternion

L = t + mε.

The first quaternion is the unit-length direction vector, the second quater-
nion is the moment vector. For lines through the origin m = 0.

3.2. Rigid Body Motion

The unit quaternion q was noted to represent a rotation about the origin.
The dual quaternion Q = q with the zero quaternion as the ε coordinate
is chosen to represent the same rotation. Furthermore, we represent a
translation by the vector (2s1, 2s2, 2s3) by the dual quaternion S = 1 + sε,
where s = s1i+ s2j + s3k. A rigid body motion in 3-space can therefore be
represented by a dual quaternion T = SQ that is the product of the rotation
quaternion Q and the translation quaternion S, imitating the action of 4-
by-4 transforms. The representation of rigid motions by dual quaternions
is due to Study [9].

Screw Motion

Chasles’ theorem [3] states that every rigid motion is equivalent to a screw
motion. Here, the screw with axis (t,m), angle of rotation 2θ, and a
displacement 2d is represented as the dual quaternion

Mscrew = cos(θ) + sin(θ) t + (−d sin(θ) + sin(θ)m + d cos(θ) t) ε (3.1)

Note that for θ = 0, the motion M simplifies to 1 + d tε, a translation by
2d t, and for d = 0 and m = 0 it simplifies to cos(θ) + sin(θ) t, a rotation
about the origin.

Other Motion Representation

The general rigid body motion can be expressed as

M = q + uε, ‖q‖ = 1, (q · u) = 0. (3.2)

We prove that this is true.
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The conditions of Equation (3.2) are clearly satisfied by the screw mo-
tions of Equation 3.1. Thus, all rigid motions can be represented.

Conversely, assume that the above conditions are satisfied by the dual
quaternion M = q + uε. Writing q = q0 + q1i + q2j + q3k, we may define
θ, t1, t2, t3 by setting

q0 = cos(θ), and qr = sin(θ)tr, r = 1, 2, 3.

Let t = t1i + t2j + t3k. Since ‖q‖ = 1, we have ‖t‖ = 1 in general.
If |q0| = 1, then q1 = q2 = q3 = 0 and u0 = 0. In that case M is a

translation.
If u0 = 0, the vector ~u must be perpendicular to the vector ~q. We may

assume |q0| 6= 1 and define the vector m = ~u/ sin(θ). We now see that M
represents a pure rotation about an axis with direction t and moment m.

Otherwise, with |q0| 6= 1 and u0 6= 0, we have sin(θ) 6= 0, and we can
define the nonzero quantity d from u0 = −d sin(θ). Define m0 = 0 and
mr sin(θ) = ur − dtr cos(θ), r = 1, 2, 3. Then

0 = q0u0 + q1u1 + q2u2 + q3u3

= −d sin(θ) cos(θ) +
∑3

r=1 sin(θ)tr(mr sin(θ) + dtr cos(θ))

= −d sin(θ) cos(θ) +
∑3

r=1(d sin(θ) cos(θ)t2r + trmr sin2(θ))

= sin2(θ)(t ·m)

Therefore the vector m = m1i + m2j + m3k is perpendicular to the vector
t, which means that M is a screw motion with axis (t,m), rotation angle
2θ, and displacement 2d.

3.3. Motion of Points, Lines and Planes

Let P be a dual quaternion representing a point or a plane. Then the dual
quaternion P′ that represents the result of a rigid body motion M, applied
to the point or plane represented by P, is calculated as

P′ = MPMε. (3.3)

Similarly, the line represented by the dual quaternion L is transformed into
the line represented by L′, where

L′ = MLM (3.4)

An algebraic computation verifies this definition; see also [2].
Summarizing, dual quaternions allow us to represent points, lines and

planes in 3-space uniformly, and express rigid body transformations of them
uniformly as well.
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4. Constrained Motion

We investigate what relative motion is possible when requiring a single
incidence constraint of a point, line or plane on another point, line or plane.
First, we formulate incidence conditions in terms of dual quaternions. Then
we investigate relative motion assuming that the incidences are currently
satisfied.

4.1. Incidence

Six elementary incidence conditions arise when requiring points, lines and
planes to be incident to each other. Among features of equal type, incidence
is trivial, as it requires equal coordinates. Note, however, that for planes
and lines incidence with opposite orientation should be accounted for.

Let P be a point, E a plane, and L a line. We require that the plane
normal and the line direction vectors have unit length. The following are
the incidence conditions between features of different type.

EP + PE = 0 point on plane

LP−PLε = 0 point on line

LP + PLε = 0 line on plane

See [2] for a proof.

4.2. Parametric Relative Motion

It is not difficult to express parametrically the relative motion that obeys
a single elementary incidence constraint. In particular, if the elements
are of the same type, we are asking for motion expressions that leave a
point, a line or a plane invariant. However, a parametric representation in
the presence of multiple incidence constraints between different features of
two rigid bodies is not so easy. We will show that it can be done based
on the parametric representation, in a number of cases. A related problem
commonly investigated in robotics is to synthesize the motion of a kinematic
chain, such as an articulated robotic arm. Such work typically assumes fixed
common lower-pair connections between the links such as a revolute or a
prismatic joint.

If we express the relative motion of a single incidence constraint para-
metrically, then we can combine the equations into a single system and
obtain a combined parameterization using elimination computations. It is
advantageous to keep the equation system as simple as possible, and this
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would argue for performing every algebraic simplification possible as a pre-
processing step before undertaking the actual evaluation. We begin with
expressing the elementary constraints. As before, we denote points, lines
and planes with dual quaternions P, L and E, respectively.

4.2.1. Incidences of Equal Type

These are incidences of point on point, line on line, and plane on plane. To
express the relative motions, we ask which rigid body transformations fix
a point, a line or a plane.

For the point represented by the dual quaternion P = 1 + εp we obtain

MP = q + ε~p× ~q, ‖q‖ = 1. (4.1)

Note that we require that q has length 1, and that p is a vector quaternion,
that is, p0 = 0.

We can derive MP by conjugating a general rotation about the origin
by the translation of the fixed point to the origin. Let T be the translation
from the point P to the origin, represented as a dual quaternion, and let
its inverse be T′. Then MP = T′QT. The representation has four param-
eters which reduce to three independent ones because of the unit-length
requirement on q.

A different parameterization derivation is possible by considering a
screw motion that has a zero displacement along the axis. With t an
arbitrary unit length vector, we then obtain the equivalent form

MP = cos(θ) + t sin(θ) + m sin(θ),

‖t‖ = 1, m = p× t.

Again, there are 4 parameters reducing to three independent ones because
of the unit-length requirement. The resulting parameterization is identical
to (4.1).

Next, we consider the motion that leaves the plane E = n+dε invariant.
Here, n is the unit-length normal vector of the plane. The motion that
leaves the plane invariant can be considered as a rotation about an axis
through the origin in the direction ~n plus a translation by a vector t in the
plane, which therefore satisfies (t · n) = 0. We obtain

ME = cos(θ) + sin(θ)n + ε(cos(θ)t + sin(θ)(t× n)),

(t · n) = 0.
(4.2)

The four parameters reduce to three independent ones by the (linear) equa-
tion (t · n) = 0.
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Finally, the motion that leaves the line L with direction t and moment
m invariant is given by

ML = cos(θ) + sin(θ)t + ε(−d sin(θ) + sin(θ)m + d cos(θ)t),

(t ·m) = 0.
(4.3)

It represents the screw with axis L, displacement 2d, and angle of rotation
2θ. The two parameters d and θ are independent. Thus, this relative motion
parameterization is irredundant.

4.2.2. Incidences of Different Types

Unequal type incidence constraints may be obtained by combining motions
that include fixing one of the features, to account for symmetries, followed
by displacing it within the geometry of the other feature.

The relative motion subject to requiring that the point P stay in the
plane E can be obtained by composing the relative motion that fixes P with
a subsequent translation in the plane. With 2s the vector of translation,
we obtain

MPE = TMP

= q + (−(~s · ~q) + q0~s + ~p× ~q +~s× ~q)ε

= q + (sq + ~p× ~q)ε,

‖q‖ = 1, (~s · ~n) = 0.

(4.4)

The condition that the translation vector be perpendicular to the plane
normal implies two independent parameters in the choice of s, bringing the
total degrees of freedom of the motion to 5.

Applying the same procedure we obtain the following for keeping the
point P on the line L. The translation must be along the line direction,
thus we obtain

MPL = TMP = q + (tq + t× ~q)ε. (4.5)

Finally, consider keeping a line L = t+mε incident to a plane E = n+dε.
Geometrically, the motion can be considered a screw motion with axis L
followed by a translation of the line in the plane which can be restricted to
a displacement perpendicular to the line. Since t is perpendicular to the
plane normal, the subsequent translation is in the direction t× n.
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We obtain the following representation:

MLE = cos(θ) + sin(θ)t + ε(−d1 sin(θ) + sin(θ)m)+

ε(d1 cos(θ)t + d2 cos(θ)u + d2 sin(θ)n),

u = t× n, ‖t‖ = 1, (m · t) = 0.

(4.6)

Here 2θ is the angle of rotation, 2d1 the displacement in the t direction,
and d2 the displacement in the perpendicular u = t× n direction.

5. Combining Constraints

5.1. Parametric Approach

Consider now moving a part A relative to another part B where there
are multiple incidence constraints between features of the two parts. The
parametric representations of the relative motion can be used when combin-
ing several incidence constraints as follows. Let F1, ..., Fr be the parametric
forms of the residual motion taken separately for each incidence constraints.

By equating the rigid body motions of the Fi, we obtain a system
E1, ..., Es of implicit equations in the parameters. We solve this system
for a set of independent parameters. This is an elimination computation
and therefore potentially expensive. Then we can evaluate relative motion
by evaluating the dependent parameters as necessary and substituting into
F1, thus obtaining an admissible relative motion.

Example 5.1. Consider a fixed part A with two plane features, E1 = j

and E2 = i, namely, the planes x = 0 and y = 0. On a moving part B

we fix the points P1 = 1 + iε and P2 = 1 + jε, that is, the points (1, 0, 0)
and (0, 1, 0), respectively. Evidently P1 is on E1 and P2 is on E2. We use
for the translation in E1, the vector s = (s, 0, t) and for the translation in
E2, the vector s′ = (0, s′, t′). Then the parametric forms for the relative
motion, considering the incidence constraints separately, are, in detail,

F1 : M1 = q + ε
(−sq1 − tq3 + (sq0 − tq2)i

+(tq1 − sq3 − q3)j + (sq2 + tq0 + q2)k
)
,

F2 : M2 = q′ + ε
(−s′q′2 − t′q′3 + (s′q′3 − t′q′2 + q′3)i

+(s′q′0 + t′q′1)j + (t′q′0 − s′q′1 − q′1)k
)
.

We equate the parameters q and q′, and determine the relationships be-
tween the other parameters by equating the components of the ε quaternion.
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Accounting for ‖q‖ = 1, we obtain

s = q0q3 − q1q2 − q2
2 − q2

3 ,

s′ = −q0q3 − q2
1 − q1q2 − q2

3 ,

t′ = t + q0q1 + q0q2 − q1q3 + q2q3.

Thus, we have four independent parameters. Three of them specify q and
this determines s and s′ as well. The fourth parameter is t which, in
conjunction with q, determines t′.

Figure 1. Configuration of Example 2; drawing reproduced from [6]

Example 5.2. Consider the joint constructed by fitting a tripod of balls
into three slots whose center planes intersect in a common line. See Figure 1
above. Here we have three point/plane incidence constraints. The features
of the fixed part are the three planes

E1 = j,

E2 = −
√

3
2

i− 1
2
j,

E3 =
√

3
2

i− 1
2
j.
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The respective parametric tangential motions are

s1 = (s, 0, t),

s2 = (−s′,
√

3s′, t′),

s3 = (−s′′,−√3s′′, t′′).

The features of the moving part are

P1 = 1 + εi,

P2 = 1 + ε(−1
2
i +

√
3

2
j),

P3 = 1 + ε(−1
2
i−

√
3

2
j).

The three transformations obtained are

F1 : M1 = q + ε(−sq1 − tq3

+ (sq0 − tq2)i + (tq1 − sq3 − q3)j + (sq2 + tq0 + q2)k),

F2 : M2 = q + ε(s′(q1 −
√

3q2)− t′q3+

+ (s′(−q0 +
√

3q3)− t′q2 +
√

3q3/2)i

+ (s′(
√

3q0 + q3/2) + t′q1 + q3/2)j

+ (s′(−√3q1 − q2) + t′q0 − q2/2−√3q1/2)k),

F3 : M3 = q + ε(s′′(q1 +
√

3q2)− t′′q3+

+ (s′′(−q0 −
√

3q3)− t′′q2 −
√

3q3/2)i

+ (s′′(−√3q0 + q3/2) + t′′q1 + q3/2)j

+ (s′′(
√

3q1 − q2) + t′′q0 +
√

3q1/2− q2/2)k).

We equate the coordinates of the three dual quaternion expressions.
Note that this results in a linear system of equations in the parameters
s, s′, s′′, t, t′, t′′. The equations yield the following

2s = q2
1 − 3q2

2 − 2q2
3 ,

2s′ = −q2
1 −

√
3q1q2 − q2

3 ,

2s′′ = −q2
1 +

√
3q1q2 − q2

3 ,

2(t− t′) = −3q0q2 + 3q1q3 −
√

3(q0q1 + q2q3),

2(t− t′′) = −3q0q2 + 3q1q3 +
√

3(q0q1 + q2q3),

q0q3 = 0.
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It follows from these six equations that the relative motion has three degrees
of freedom.

5.2. Implicit Approach

In the implicit approach we express the relative motion as relations on the
parameters of the general rigid-body motion. This will allow us to conjoin
the parameter relations without having to resort to algebraic elimination.

Implicit Incidence Constraints, Equal Types

We translate the parametric formulations of the incidence constraints into
implicit form. We will work with the generic rigid body transformation
expression M of Equation (3.2).

We derived the parametric form of Equation (4.1) for keeping a point p
invariant. Accordingly, the implicit conditions on M are

Mp = q + uε, p× ~q = u, ‖q‖ = 1. (5.3)

These conditions imply in particular that u0 = 0. When p = 0 the point is
at the origin and the condition on u simplifies to u0 = u1 = u2 = u3 = 0.

To fix the plane E, we derived the parametric form of Equation (4.2).
It implies the condition u0 = 0. The direction of the rotation axis implied
by q has to be normal to the plane, hence we require (n · ~q) =

√
1− q2

0 .
Since both t and t × n in Equation (4.2) are perpendicular to the plane
normal, we obtain the following conditions:

Me = q + uε, u0 = 0, (n · ~q) =
√

1− q2
0 , (~n · u) = 0. (5.4)

The second condition degenerates when the motion is a pure translation
since, in that case, the right-hand side vanishes. However, in that case the
condition ‖q‖ = 1 forces q1 = q2 = q3 = 0, so a pure translation within the
plane is implied by the formulation.

Now consider a line L = t+ εm with direction t and moment vector m.
The line is invariant under M = q+ εu if the transformed line L′ = MLM
has the same tangent and moment vectors. This implies the following
relations, in which m and t are known quaternions:

Ml = q + uε, t = qtq, m = utq + qmq + qtu.
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Implicit Incidence Constraints, Different Types

Consider now keeping a point P on a plane E, for which we derived the
parametric form of Equation (4.4). We derive the implicit condition on M
by requiring that the transformed point P′ is again in the plane E. Let
P = 1 + εp. We obtain

P′ = (q + εu)(1 + εp)(q− εu)

= 1 + ε(uq− qu + qpq)

= 1 + ε(−2(u× ~q)− 2u0~q + 2q0~u + qpq)

= 1 + εp′.

An algebraic computation verifies that the real component of p′ is zero,
that is, p′ is the position vector of the transformed point. Assuming the
original point is in the plane with unit normal vector n, we obtain the
condition (n · p) = (n · p′), or equivalently:

(n · p) = −2(n · (u× ~q)− 2u0(n · ~q) + 2q0(n · ~u) + (n · (qpq)) (5.5)

Example 5.6. Consider the plane E1 = j and the point P1 = 1 + εi in
the plane. Any motion M that keeps this point in the plane must satisfy
according to Equation (5.5)

q0q3 + q1q2 − u0q2 + u1q3 + u2q0 − u3q1 = 0

‖q‖ = 1

(q · u) = 0

Example 5.7. We consider the points and planes of Example 1. The
conditions from the point incidences are then

q0q3 + q1q2 − u0q2 + u1q3 + u2q0 − u3q1 = 0

−q0q3 + q1q2 − u0q1 + u1q0 − u2q3 + u3q2 = 0

‖q‖ = 1

(q · u) = 0

Note that a translation in the z-direction, 1+εdk, satisfies these conditions.
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Example 5.8. We consider the planes and points of Example 2. The
incidence conditions, after some simplification, define the equations

‖q‖ = 1

(q · u) = 0

2q0q3 − q1q2 = 0

q0q3 + q1q2 + u2q0 − u0q2 + u1q3 − u3q1 = 0

2
√

3(u0q1 − u1q0 + u2q3 − u3q2) +
√

3(q2
1 − q2

2) + 2(q0q3 + q1q2) = 0

6. Discussion

The uniformity of the representation and the algebraic nature of the rep-
resentation are the main attractions when using dual quaternions. Points,
lines and planes are simple to represent as dual quaternions, and so are
rigid-body motions. Moreover, as we have seen, there is considerable geo-
metric intuition in this representation schema.

Another advantage of dual quaternions, from a computational perspec-
tive, is that they describe a general rigid-body motion with only eight
parameters, whereas a 4 × 4 matrix representation would require twelve.
Thus, the system of equations describing a particular contact configuration
is smaller. A screw representation would lower this to six parameters, but
the resulting equations may fail in particular instances and do not differ,
in essence, from the dual quaternion representation.

There are some drawbacks to using dual quaternions as well. In the
implicit form of the constraint encoding, for instance, the conditions can
become fairly complex. An example is the implicit representation of mo-
tions that keep a line invariant. Here, the parametric form does better.
Moreover, the implicit form we derived has some redundancies. Consider
again all conditions on Ml:

t = qtq (6.1)

m = utq + qmq + qtu (6.2)

‖q‖ = 1 (6.3)

(q · u) = 0 (6.4)

Conditions (6.1) and (6.2) each yields three scalar equations, giving eight
equations in eight variables total. Therefore, there must be two redundant
equations. With a pure translation (|q0| = 1), Condition (6.1) is trivial.
With a pure rotation (u0 = 0 and u = sin(θ)m), on the other hand, Con-
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dition (6.1) is not trivial. Thus, redundancy depends on the parameter
values.

Parametric motion representations often lead to motion descriptions in
which the system of parameter relations is linear, a computational plus.
However, nonlinear relations may ensue, for example on the q coordinates
of the transformation. Here, symbolic algebraic computations may require
reasoning that is not entirely automated in, for instance, Maple.

Another drawback is that the representation of the relative motion may
not include certain special cases. For instance, given a plane E, we may
choose a line (t,m) that lies in the plane and use it as the axis for a
rigid-body motion that has a rotation angle of 180◦. Those motions also
preserve the plane, albeit with a reversal of the plane orientation. Thus,
the geometry and the algebra diverge in this case.

In contrast to the parametric expression of relative motion, the im-
plicit formulation does not require intermediate positions to satisfy the
constraints. For example, the point P is required to be on the plane E only
at the start and at the end of the motion. As the motion progresses, it may
very well leave the plane E at the other times. This is true in particular of
the special case of a rotation by 180◦ about an axis in the plane E.

From a computational perspective, dual quaternions do not reduce the
number of arithmetic operations that must be done to compute the image of
a feature under a given transformation. Using a 4×4 matrix representation,
transforming a point requires 12 multiplications and 9 additions. The dual
quaternion representation, on the other hand, requires more.
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