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Abstract.

This paper describes two important questions of semantics, in the context
of accuracy in shape interrogation. The first of these questions is how to give
meaning to an internally inconsistent solid description based on the widely used
trimmed-surface boundary representation. The second question is the meaning
of a request, made to a numerical method, to find a solution to a problem whose
parameter values are uncertain. Answers to these questions are given, inspired in
the case of the second question by a now-standard approach in numerical analysis.
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1 Introduction

Shape interrogation is the process of extracting information from a geometric

model [1]. In the context considered here, shape interrogation may be taken as

a synonym for geometry processing, a term used earlier by Barnhill [1, Pref-

ace ]. Typical examples of shape interrogation are “given two objects, where is

their intersection?”, or “given a surface, what does its offset look like?”. We are

concerned here with the semantics of representations of objects, and with the

accuracy of solutions to shape-interrogation problems.

The problem of semantics of representations is disguised, in the questions

quoted above, by the use of the word “given”. The difficulty [2, 3] is that often

in practice the meaning of a given computer representation is far from clear: rep-

resentations are usually internally inconsistent, due to the use of finite-precision

arithmetic, and the use of low-degree curves to represent high-degree surface

intersections. Similarly, there are fundamental semantic questions about inaccu-

racy, which may either be due to the ill condition of problems, or to the instability

of methods. These sources of inaccuracy are very different, and consequently, so

is the correct approach, in each case, to dealing with it.

Another aspect of accuracy, in the context of shape interrogation, is the def-

inition of how it should be measured. It is a surprising fact that the definition

of a metric, to be used to measure error, is missing from a large segment of the

literature on robustness of methods in solid modeling.

Appropriate use of the concepts of problem condition, method stability, error

metrics, and the relation between error and uncertain data, have been under

development for several decades [4, 5], and the overall approach has become

standard in modern numerical analysis (see for example [6]). In this paper we will

attempt to embed the accuracy and semantics questions of shape interrogation

into the standard numerical-analysis approach, and to describe the conclusions

to which this leads.

The remainder of the paper is organized as follows. In Section 2, a brief
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historical discussion is given, to introduce the two major questions of seman-

tics that will be discussed. Section 3 deals with the semantics of inconsistent

representations. Following this, Section 4 discusses two questions related to the

exactness of geometric data, Section 5 discusses metrics for the measurement of

error, and Section 6 deals with the semantics of ill-defined problems. Section 7

is a short section describing the immediate practical consequences of the paper,

and Section 8 is a short conclusion.

2 Historical background

What do we mean when we use an internally inconsistent representation of a

solid for the purpose of shape interrogation? And what do we mean when we

ask a method to solve a problem whose parameters’ values have not been exactly

specified? These two questions of semantics will be the main subject addressed in

this paper. First, however, some background will be given. This brief historical

discussion will be didactic, rather than comprehensive: its goal is to motivate our

answer to the two questions above.

The first significant study of the problem of attaching meaning to computer

representations, in the context of shape interrogation, was contained in a series

of technical reports by Requicha and Voelcker in the 1970’s. In particular, in

the seminal document [7] Requicha observed that we must distinguish between

a representation and the subset of R3 that it represents, since the same class

of sets may be represented in several different ways. One of the main repre-

sentations discussed was Constructive Solid Geometry (CSG), which describes

an object in a procedural way, by means of a binary tree. The technical re-

ports, referred to above, also introduced a careful semantics for CSG, based on

the Boolean algebra of regular-closed sets. Regularized Boolean operations, for

example S0∩∗S1 = cl(int(S0∩S1)), were introduced
3, along with closure proper-

ties, discussions of mathematical hypotheses corresponding to our intuitive idea

3Here, cl denotes closure, and int denotes interior, in the topology of R
3.
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of “manufacturable”, and so on.

Actual implementation of Boolean operations has proved difficult in certain

cases. Exact arithmetic has been advocated by several authors as a reliable tool

to resolve these troublesome cases, including those with singularities. Moreover,

significant work has been done to overcome the intrinsic loss of efficiency when

using exact arithmetic. In the context of polyhedral intersection, for instance,

Fortune [8] introduced the distinction between constructors and predicates, and

developed the concept of determining, at run time, whether exact arithmetic is

actually needed. Keyser et al. [9] advocate carefully implemented exact arith-

metic to resolve singularities for curved solids. As we explain in detail later,

these approaches are applicable only when the input can be understood as exact

as given, a situation that does not in general apply for boundary representa-

tions. Indeed, the ESOLID modeler [9] relies on Boolean-operation inputs with

primitives that are assumed to be exactly represented.

The main paradigm for modern commercial feature-based solid modelers can

be viewed as an extension of CSG [10, 11, 12, 13], thereby defining a semantics

for feature-based operations. However, for many practical reasons, the kernel of

these systems does not use a CSG representation, but uses instead a Boundary

Representation. Boundary representations too are supported by rigorous mathe-

matics, going back to Euler and Poincaré [14, 15]. In practice, however, there is

a serious difficulty: due to the use of finite-precision arithmetic, and the use of

low-degree approximations to high-degree intersection curves, we cannot assume

a flawless representation. This is true even in the case of planar-faced polyhe-

dral solids, but the problem is much worse in the case of curved surfaces, such

as Bézier or Non-Uniform Rational B-Spline (NURBS) surfaces [16]. Thus, one

must deal with “gaps” and “overlaps” of boundary elements near their intended

joins, and such defects have serious (and expensive) consequences for downstream

applications [2]. More flagrant defects, such as missing surface elements, may also

occur. These problems are especially serious in the case of data imported from

other systems.
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A practical reaction to these difficulties is to attempt to construct “Body

Healers”, that is, software designed to repair defective geometry on a heuristic

basis. And, in practice, Computer-Aided Design (CAD) systems do the best they

can to resolve representation inconsistencies by using all sorts of auxiliary infor-

mation, such as “this surface is a blend surface of that type with these pre-defined

contact surfaces”. Body Healers are, however, very imperfect, and furthermore,

it has been shown that healing cracks optimally in a polyhedral surface has high

computational complexity [17]. Also, necessary auxiliary attachment information

may not always be available [10]. This is especially true in the modern context of

CAD systems federated with third-party software components: such a “best-in-

breed” strategy does not permit the use of proprietary attachment information

to help geometric queries.

In parallel with the practical need to develop workable heuristic ways to deal

with the difficulties mentioned, there is a natural tendency to devote effort to

the solution of narrow technical issues that clearly must be resolved. For exam-

ple, the problem of inexpensive and accurate evaluation of polynomials [18] is a

fundamental problem in shape interrogation for which good solutions must be

found, and we intend nothing pejorative when we refer to this problem as narrow

and technical. On the other hand, it seems worthwhile to take a step back from

developing workable heuristics, and solving important but fairly narrow technical

problems, in order to ask what our overall objective should be. One advantage

of doing this is that we may see more clearly what kind of theorems should be

formulated. Another advantage is that in certain cases we may recognize that we

are trying to do what cannot be done by numerical analysis, and that some other

approach is therefore necessary.

3 The semantics of inconsistent representations

An important example of an inconsistent representation, used in shape interro-

gation, is the standard Boundary Representation using trimmed-surface patches
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[19, 20]. We will denote the representation of a solid S, S ⊆ R3, by ∆. Note,

however, that since this representation is internally inconsistent, we have not yet

specified what that solid is. Indeed, this is the main topic of this section. The

notation used here follows [3].

The data ∆ is in two parts, the geometric data and the topological data. The

geometric data in ∆ comprises a finite set of compact oriented 2-manifolds-with-

boundary, and corresponding sets of explicit boundary curves and corner vertices.

The underlying surface for each 2-manifold is represented by a spline function over

a parametric domain D0, with range in R3. The spline function is then restricted

to a subset D of D0, as delineated by certain curves in the parametric domain,

yielding a trimmed NURBS patch. (Such trimming may arise, for example, as

the result of the intersection of two surfaces for representing the boundary of the

solid.) Thus, each 2-manifold is represented by a trimmed NURBS patch.

Figure 1 illustrates two trimmed patches which join (approximately) along the

intersection of two surfaces F and F ′, restricted respectively to D and D′. The

part of the representation of the solid corresponding to the intended intersection

comprises two (almost certainly inconsistent) pre-images, defined by parametric

curves p and p′ with ranges in the respective parametric domains. (We will follow

[19] and refer to p and p′ as p-curves. Many practical numerical algorithms

compute one or both of these two pre-images p and p′ as the output for an

intersection of surfaces.) In addition, there is often a third representation, usually

inconsistent with the other two, which is a parametric curve b, with range in R3,

and which follows closely the images of the p-curves p and p′. Finally, there is also

an explicit (and possibly inconsistent) representation of each endpoint v ∈ R3 of

the parametric curve b = b(t), as illustrated in Figure 1.

The representation ∆ also contains symbolic information, or topological data,

describing how the faces, edges and vertices of the cellular decomposition of the

boundary ∂S of S fit together. This data defines a topological 2-cycle: two

typical adjacent faces are illustrated in Figure 2. Ideally, the geometric and

topological data are consistent: for example, corresponding to each 2-cell [21,
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Figure 1: Two adjoining trimmed NURBS patches

Ch. 14] in the topological data is a trimmed surface patch in R3 (two of these,

F [D] = {F (u, v) : (u, v) ∈ D ⊆ D0} and F ′[D′] = {F ′(u, v) : (u, v) ∈ D′ ⊆
D0}, are shown in Figure 1). As already mentioned, the actual boundaries of

these trimmed patches are stored implicitly, by appropriate pre-images (p-curves

such as p and p′). Ideally, there are two p-curves corresponding to each 1-cell

in the topological data, one associated with each adjacent face, as well as one

explicit boundary representation b(t) for each 1-cell in the topological data. Also,

there should be one explicit corner vertex v corresponding to each 0-cell in the

topological data.

Unfortunately, as illustrated in Figure 1, the curve b(t) does not usually

coincide exactly with the corresponding edge of F [D], nor with the corresponding

edge of F ′[D′]. Similarly, the vertex v may not coincide exactly with the ends

of the neighboring boundary curves (such as b(t)), nor with the exact corners of

the trimmed patches F [D] and F ′[D′]. Finally, in practice, the geometric data

may become inconsistent with the topological data.
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Figure 2: Topological data corresponding to the trimmed patches of Figure 1

If we are going to prove rigorous theorems about the subset of R3 obtained

by applying an algorithm to the representation ∆, then clearly we must assign

a meaning to the inconsistent representation ∆. A solution to this problem

was presented in [3], where a set S, S ⊆ R3, was assigned to each well-formed

representation ∆. This assignment was denoted S |= ∆, read “S is the realization

of ∆”. We note immediately that there is no requirement to actually compute the

set S: we only need to know that it is well-defined, and to have good bounds on

its shape, so that we can prove theorems about the results of applying methods

to the representation ∆. We must also present cogent arguments to support the

claim that S is a reasonable interpretation of the inconsistent data ∆.

The realization S is defined by its boundary ∂S, which is made up of slightly

perturbed trimmed NURBS patches from ∆, where the perturbation is defined

by the Whitney Extension Theorem. The slightly perturbed patches are not nec-

essarily NURBS patches [3], but they are mutually consistent with the explicit

vertices v and with slightly perturbed versions of the explicit boundary curves
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b(t), and they all fit together in a way that is exactly consistent with the topo-

logical data. Furthermore, the meaning of the words “slightly perturbed” here

is quite satisfactory. The perturbation of the trimmed patch is denoted ε(q),

q ∈ D. It is continuous, and the magnitude of the perturbation nowhere exceeds

the magnitude of the largest discrepancy between the edge of the given patch

and the given neighboring explicit boundary curves b(t). (In other words, the

perturbation is nowhere larger than the largest discrepancy already in the given

data, along the edges of the given patch.) In addition, the perturbation satisfies

a Lipschitz condition throughout the patch, with a Lipschitz constant for each

component γ of ε equal to

L = sup
q1,q2∈∂D, q1 6=q2

|γ(q1)− γ(q2)|
‖q1 − q2‖

.

(Thus, the perturbation satisfies a Lipschitz condition, with a constant equal to

the constant in the Lipschitz condition corresponding to the discrepancy already

present in the given data, along the edges of the given patch.) The Lipschitz

condition is important, because it allows us to bound the change in the nor-

mal vector of the perturbed patch, relative to the normal vector n of the given

trimmed patch. This bound will be necessary in proofs about computed sets,

when we want to preclude the possibility that adjacent patches have extraneous

intersections (i.e., intersections other than those along their prescribed common

edge, or at their prescribed common corner) [22, 23].

The definition of well-formedness of ∆ was also given in [3], along with a

discussion of verification of whether a given ∆ is well-formed and the cost of such

verification. (The cost may be negligible, if good sufficient conditions are known,

or higher if algorithms like [24] are required [3, Sec. 3.3].) The sets S defined by

the slightly perturbed NURBS patches were called QuasiNURBS sets.

Other approaches to assigning a meaning to the inconsistent representation

are possible, but they will not be discussed in detail here. One possibility is to

introduce the concepts of inner-interval and outer-interval solids [25], obtained

by enclosing a solid’s boundary in boxes computed using interval arithmetic. For
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example, the larger set obtained in this way contains the original set, in the same

manner as a Maximum Material Condition (MMC) of geometric tolerancing [26].

In the case where the original solid is a manifold with a well-defined boundary,

it is possible to show that the topological structure of the inner-interval and

outer-interval solids is the same as that of the original solid. In the case of data

corresponding to an ill-defined boundary, as in the case of ∆, above, an outer-

interval solid can still be computed using interval arithmetic, and this can be

viewed as a representative of ∆. There is still a gap in the semantics, however,

since the representative depends on the choice of interval-arithmetic operations.

A different idea for assigning meanings to representations appears in [27],

which suggests identification of inconsistent data like ∆ with a class of subsets

of R3. This is accomplished by defining, by means of a procedural definition, the

concept of an ε-solid, which is specified in terms of inner and outer sets satisfying

additional conditions of regularity. This is a new and original approach.

One of the main advantages of the QuasiNURBS set S, aside from its ge-

ometrical similarity to the given geometric data in ∆, is that it has the same

topological structure as that specified by ∆. Suppose, for example, that we are

given well-formed representations ∆0 and ∆1. Then the topological structure of

S0 and S1, where S0 |= ∆0 and S1 |= ∆1, as well as the topological structure of

sets defined by subsequent operations, such as S0 ∩∗ S1, are all well defined and

capable of being referenced in the statement of a theorem. The QuasiNURBS

sets appear therefore to provide a satisfactory foundation on which to build a

theory of robustness in shape interrogation.

4 Exactness of data

There are two questions related to the exactness of data that have received at-

tention in the field of robustness. One of them has already been dealt with, in

Section 3. We discuss it further here because we wish to distinguish it from the

second question, which will be considered later in this section.
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The first question related to exactness of data is, given demonstrably incon-

sistent data ∆, should we assume that the topological data is correct, and define

the relation |= by slightly modifying the geometric data, or should we assume

that the geometric data is correct, and try to make appropriate modifications

of the topological data [28, 29]? In [3] and in Section 3, above, the first choice

was made. The reasons for this choice were as follows [3]. First, the decision

seems to be thrust upon us. Even for solids of very simple form, such as a simple

cube with sides that are not quite planar, the edges of F [D] and F ′[D′] almost

certainly do not correspond. In this case, the geometric data is, patently, inex-

act. Secondly, suppose the user provides, say, a cylindrical surface as input. It

may be important in practice that this surface be very nearly cylindrical, but the

user does not believe that the eventually manufactured object will be an exact

mathematical cylinder. Such a user should be prepared to accept that the incon-

sistent data, which he himself provided, models an object with surfaces varying

slightly from cylindrical. Thirdly, in the case when there is uncertainty in the

data provided, this uncertain data may correspond to uncertainty in the actual

form of the object surfaces.

In the case of imported data, it may be that neither the geometric nor the

topological data is reliable. In this case, we again choose to modify the geometric

data.

The possibility of uncertainty in the data, however, leads us to the second

question concerning exactness of the data. Let us denote the whole collection of

geometric data in ∆ by g: it includes the vertices v, the control points for the

spline curves b and the spline surfaces F , as well as the control points for the p-

curves in the parametric domains. The representation ∆ is thus parametrized by

g, and we write ∆g to refer to the representation defined by the geometric data

g. The question then is, if the user provides a single value go of this geometric

data, can it be considered exact, or is there in fact uncertainty in the data, so

that the actual problem4 to be solved is known only to be a member of the class

4For simplicity, we are considering here the case when the problem is defined by a single set,
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of problems

{∆g : g in a neighborhood of go } ?

The answer to this question has important consequences for the kind of methods

that can appropriately be applied. Consider, for example, the former case: if go

can be considered exact, then, even though the definition of |= involves slight

perturbation of the geometric data (Section 3), it makes sense, provided there is

no budget constraint, to apply exact arithmetic to solve numerical problems. To

take a very simple illustration, let S |= ∆ be defined as in [3] and in Section 3,

above. Then, we can compute the translation

S + t = {x : x = s+ t, s ∈ S}

by using exact arithmetic to add t to each vertex of v of ∆, and to each vector

control point of each curve b(t) of ∆, and to each control point of each F =

F (u, v) of ∆. It can then be proven, since spline curves and surfaces are invariant

under translation [16], that the resulting computed representation ∆c satisfies

S + t |= ∆c.

(We emphasize that S + t denotes the exact mathematical translation of S.)

In the other case, when there is uncertainty in the given data (g is known

only to lie in some neighborhood of go), the use of exact arithmetic is not ap-

propriate, as will be discussed further in Section 6. In practice, there are many

possible sources of uncertainty in the data g. For example, there may have been

error in the decimal-to-binary conversion, and it is quite possible [3], in ordinary

circumstances, that the desired width of an object should be, say,
√
2, a num-

ber which has no finite binary representation. Similarly, there may have been

error introduced by some previous solid-modeling operation, or the object to be

interrogated may have come from some other program or device.

Consider for example the objects shown in Figure 3: S0 is a block, and S1 is

a wedge-shaped object. The object S1 is illustrated by itself at the right of the

as for example in set translation.
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S0

S1 S1

Figure 3: Wedge to be subtracted from a block

figure, but it is supposed to be positioned approximately in the upper righthand

part of S0, as illustrated at the left of the figure. The operation of interest

is the set difference S0 −∗ S1 ≡ S0 ∩∗ (∼ S1). Certain of the faces of S0 are

almost (but not quite) coplanar with certain faces of S1, and the method may

have no way to know that there is uncertainty in each of the faces of a pair,

and that (as a result of external information) the faces should coincide. Such

examples can arise, in particular, in the context of data exchange in feature-

based systems [10, p. 186, col. 2]. The correct response, in such a situation, is

not the application of expensive exact arithmetic in a futile effort to produce a

satisfactory answer. (Use of exact arithmetic in this case will produce very thin

sets that are entirely spurious.) Rather, we should recognize that the problem

is very ill-conditioned, which means that small changes in the problem data can

produce a very large difference in the solution (see Section 6). The consequence

is that accurate solutions are beyond the reach of improved numerical methods,

since we can never avoid the error associated with the uncertainty in the problem
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data. The solution to the dilemma is to reformulate the high-level problem so

that we avoid the operation of computing ∩∗, replacing it by an operation that

includes relevant attachment information as part of its inputs [10, p. 186, col. 2].

These questions will be discussed in more detail in later sections, but we will

make two remarks here about the example of the last paragraph. First of all, the

authors of [10] did not need an elaborate theory in order to conclude that the

operation ∩∗ should be replaced, as described above (for them it was obvious).

But that is not the point. The point is that when we are considering, in the

abstract, the question of computing ∩∗, the appropriate reaction in the case of

a badly conditioned problem is to admit our inability to produce an accurate

solution, and conclude that the high-level problem should be reformulated. An

inappropriate reaction is to apply expensive methods to solve exactly a problem

that is almost certainly not the one we want to solve, and for which small changes

in the problem definition may lead to large changes in the computed result.

The second remark is that such a decision, to abandon a problem formulation

because it leads to an ill-conditioned problem, is very much within the tradition

of numerical analysis. For example, least-squares approximation using the ordi-

nary power basis leads [30, p. 194] to a linear system with coefficients defined

by the Hilbert matrix, which is very badly conditioned. The solution to this dif-

ficulty is to reformulate the high-level approximation problem using orthogonal

polynomials, so that the ill-conditioned matrix problem is avoided.

5 Metrics for the measurement of error

As mentioned in the introduction, it is a surprising fact that the definition of a

criterion, for the measurement of error, is missing from a large segment of the

robustness literature. For example, a test for robustness of set-intersection al-

gorithms that has been widely used is the following. One input object is taken

to be a unit cube, and the other input object is taken to be a slightly rotated

copy of the same cube. The robustness of the algorithm is then evaluated, based
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on the smallness of the angle of rotation that can be tolerated without a pro-

gram “crash”. The problem with this approach, of course, is that it makes no

reference to the quality of the computed result. For example, an algorithm that

simply produces the unit cube as its output, independently of its inputs, would

be considered ideal according to this criterion [31, p. 4].

On the other hand, it is not straightforward to introduce a metric, on classes of

sets, that corresponds to our intuitive idea of closeness in the context of shapes.

A first idea is to introduce the Hausdorff metric on the class C of non-empty

compact subsets of R3 (C includes the r-sets):

d(S, S′) = max{sup
s∈S

dist({s}, S ′), sup
s′∈S′

dist(S, {s′})}.

This can be extended to the class C ∪ {∅}, respecting the triangle inequality, by

using the extended real line, defining d(∅, ∅) = 0 and d(∅, A) = ∞ for A 6= ∅.
The Hausdorff metric is a very rough measure: for example, the unit ball is

considered close to a unit ball with a thin hole drilled through its middle [32]. A

more sensitive measure is the metric

dw(S, S′) = max{d(S, S ′), d(∂S, ∂S′)}

which requires that if two objects are to be considered close, then both the

Hausdorff distance between the objects, and the Hausdorff distance between the

boundaries of the objects, should be small. According to the metric dw, the ball

with a thin hole in it is not close to the ordinary ball.

In the study of shape, however, it is often desired that for two objects to

be considered close, they should have the same topological form. This also may

have more than one interpretation: a stringent requirement is that two objects

should be considered close only if they are linked by a homeomorphism that can

be extended to all of R3 or (slightly stronger) by an ambient isotopy [23, 32, 33].

This can be accomplished by adding a penalty function to dw:

δ(S, S′) =







dw(S, S′) if S and S′ are ambient isotopic

∞ otherwise.
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(Informally, an ambient isotopy requires all of space to be transformed by a

homeomorphism, which transforms the object along with the rest of space. To

illustrate, a torus and a knotted torus are linked by a homeomorphism, but they

are not linked by an ambient isotopy.)

Further discussion of metrics appropriate for comparing shapes can be found

in [34], along with supporting theorems. Here we want only to emphasize two

fundamental points. The first is the one already mentioned: if we want to judge

the quality of a computed result, to be used by a method relevant to shape

interrogation, then we must introduce a criterion to measure quality.

The second point relates to the idea of condition, which was introduced briefly

in Section 4, and which will be discussed further in Section 6. Condition de-

pends on the problem to be solved (for example, translation of two shapes may

be well-conditioned, while regularized intersection of the same two shapes may

be ill-conditioned), but it also depends crucially on the choice of metric. For

example, an intersection problem involving proximate boundaries may be ill-

conditioned with respect to a metric requiring sameness of topological form, but

well-conditioned otherwise. The question of semantics appears again: to decide

on the best choice of method, and on the best course of action, we must first

specify what we mean by closeness of objects.

6 The semantics of ill-defined problems

In Section 4 it was observed that the data g in a representation ∆g may not be

known exactly: it may only be known, say, that g lies in a neighborhood of a given

go. Furthermore, the problem defined by go may be well or badly conditioned.

Thus, in the example of Figure 3, the problem of regularized intersection is badly

conditioned, relative to the metric dw introduced in Section 5. Small changes in

the position of the object S1, for example, may cause parts of the boundary of

S0 −∗ S1 to simply disappear.

It is clear that in general there are two distinct sources of error involved: there
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may be error due to methods, and there may be error due to the ill-condition

of the problem itself. It turns out, however, that having error associated with

the problem data may be turned to our advantage, in the sense that it may be

possible to show that the additional error introduced by a numerical method

has consequences no more serious than the consequences of error that must be

tolerated in any event [35].

Returning to the second question posed at the beginning of Section 2, to ask

a method to solve a problem that has not been completely specified, in the sense

that the problem involves uncertain data, means that the method should find

a “slightly wrong solution to a slightly wrong problem” [5]. This is in fact the

definition of a stable method. The overall situation is illustrated in Figure 4, for

the case of regularized Boolean intersection [3]. The arrows there correspond to

the relation |= discussed in Section 3. The inputs to the intersection algorithm

are ∆0 and ∆1, and the computed output is ∆c.

S0

S′
0∆0

S1

S′
1∆1

S′
0 ∩∗ S′

1

Sc

∆c

Figure 4: Error associated with problem and solution

The representations ∆0, ∆1 and ∆c are the only things we can actually ob-
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serve, but we can say something about the other items. First of all, if the repre-

sentations are well-formed, then they correspond to actual subsets S0, S1 and Sc

such that S0 |= ∆0, S1 |= ∆1 and Sc |= ∆c, with all that this implies (Section 3).

An error analysis showing that a method is stable involves showing that there

exists a problem defined by [S ′
0, S

′
1], near to the problem defined by [S0, S1], for

which the true solution S ′
0 ∩∗ S′

1 is near to Sc. The words “near to” are made

precise by a metric, as described in Section 5. It seems apparent that such a

proof must manipulate neighboring representations ∆′
0, ∆

′
1 and ∆∩∗ defining re-

spectively the sets S ′
0 and S′

1 such that S′
0 |= ∆′

0, S
′
1 |= ∆′

1, and S′
0 ∩∗ S′

1 |= ∆∩∗ .

To give such a proof for a simple operation like set translation is quite simple; to

give such a proof for the operation ∩∗ will certainly be quite difficult.

The first thing to notice is that a stable method does not necessarily provide

us with a small error. In Figures 5 and 6, the space of problems is shown

P S

Figure 5: Well-conditioned case

on the left, and the space of solutions is shown on the right, with individual

problems joined to their solutions by a line or curve. The problem presented to
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P

S

Figure 6: Ill-conditioned case

the method is shown by a black circle within the space of problems; the actual

problem solved, and the actual solution obtained, are shown by unfilled circles.

In the ill-conditioned case, the error in the solution provided by a stable method

may be large.

The next thing to notice, however, is that if we are able to obtain a small

error bound in solution space by associating part of the error with the problem,

then in the case when there is uncertainty in the data, we have knowledge that

we did not have before. This knowledge is, specifically, that if the perturbation of

the problem introduced by the method is no larger than the uncertainty already

present in the data, then the stable method will have provided a solution that is

as good as the data warrants.

Rephrasing these ideas, the uncertainty in the data has provided us with the

luxury of associating all or part of the data with the problem. However large the

error is, the additional error introduced by a stable method is no worse than the

error we must tolerate in any case.
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Let us return now to the statements in Section 4, which said that if there is

uncertainty in the given data, the use of exact arithmetic is not appropriate, and

that we should not apply expensive exact arithmetic in a futile effort to obtain

a satisfactory answer. This means, more precisely, that we should not use exact

arithmetic to produce a solution more accurate than that produced by a stable

method, since we cannot in any case avoid the consequences of uncertainty in the

input data. This does not, however, rule out the possibility that exact arithmetic

may be useful or necessary, in certain key parts of an algorithm, to produce a

stable method in the first place. (This situation would be analogous to the case

of solving the quadratic equation ax2 + bx+ c = 0: in order to get a satisfactory

single-precision solution, double precision should be used in one key part of the

algorithm, namely, the evaluation of the discriminant b2 − 4ac [5].)

Recently obtained perturbation results [36, 37] may be viewed as progress

towards providing error analyses associating the error in surface intersection with

the problem data.

It may be, of course, that we are not prepared to tolerate the consequences

of a perturbation of the problem data, whatever its origin (data uncertainty,

or contributed by a stable method). If the perturbation analysis (by which we

mean [4, Ch. 2] the evaluation of problem condition) shows that the problem is

ill-conditioned, then we may proceed to reformulate the problem, without even

seeking a stable method. This was the case, for example, for the operation

illustrated in Figure 3.

Yet another approach to dealing with ill-condition in the presence of uncer-

tainty is to turn to methods outside the scope of numerical analysis. For example,

in some situations it may be possible to modify the level of interaction with the

user, so that ambiguous cases can be resolved by human intervention. Another

possibility is to use heuristics, or other methods of artificial intelligence, to pro-

duce likely or plausible results, for example, by merging surfaces that seem to be

similar. Such approaches may be quite reasonable, in some circumstances, but

we should be conscious of what we are doing, and the user should be informed
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about which type of method was used to obtain a given solution.

7 Consequences for implementation and for theory

The discussion above has direct practical consequences, some of which are imme-

diate and relate to implementations, and some of which should affect the orienta-

tion of future theoretical development. We summarize some of the consequences

here.

We begin with the question of implementations. First of all, when developing

algorithms for shape interrogation in the presence of uncertainty, we should first

specify what we mean by a good solution, and ask whether, in the light of given

data and our choice of metric, a problem is ill-conditioned. If the answer is

affirmative, then we should provide for the solution of a reformulated problem,

for example, by requiring further information (as in the case of the example of

Figure 3). That we are in such a situation is a valuable piece of information,

and neither elaborate theorems nor elaborate implementations are required in

this case: the appropriate next step is to reformulate the problem. It follows a

fortiori that exact-arithmetic implementations are not appropriate in this case.

If, on the other hand, it is decided that for ill-conditioned problems furnishing

a plausible solution is more important, or more practical, than guaranteeing

absolute reliability, then development of algorithms can proceed using heuristic

methods. That we are using a heuristic approach is also important information.

No theorems are required, and development can proceed with the full knowledge

that we are simply trying to produce an answer that is reasonable. Furthermore,

in such a case, we can consider how to signal to the end user that the result is

heuristic: a heuristic result, labelled as such, is much more valuable than a result

whose reliability is uncertain.

A second immediate consequence for implementation is that it may be possi-

ble to provide certification of computed results if theorems like those in [22] are

available, or optional certification when verification must be done computation-
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ally, using algorithms such as those in [24].

Concerning the orientation of future theory, we first note that it would be

useful to generalize results such as those in [22], which apply only to a special class

of representations (curvilinear Bézier complexes), and to improve algorithms such

as [24]. The discussion also shows the interest of generalizing results like those

in [36] and [37], which permit association of error with the problem. Once this

has been done, there will again be immediate consequences for implementation

(for example, we should avoid the use of exact arithmetic if know already that

we have the exact solution of a slightly perturbed problem).

Further consequences for future theory are that we should put high priority

on finding metrics that better describe what mean by “close” in the context of

solid modeling, and once we have done so, we should avoid formulating theorems

giving error bounds that do not take problem condition into account. (Any such

theorem will be unduly pessimistic in the case of well-conditioned problems.)

Indeed, we should seek a stability result which guarantees that error is small if

the problem is well-conditioned.

8 Conclusion

This paper gave answers to two fundamental semantical questions relevant in the

context of shape interrogation.
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