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Abstract. Simultaneous spatial constraint problems can be approached
algebraically, geometrically, or constructively. We examine how each ap-
proach performs, using several example problems, especially constraint
problems involving lines. We also prove that there are at most 12 real
tangents to four given spheres in R3.

1 Introduction

Spatial constraint solving involves decomposing the constraint schema into a
collection of indecomposable subproblems, followed by a solution of those sub-
problems. Good algorithms for decomposing constraint problems have appeared
recently, including [3, 6]. The best of those algorithms are completely general,
adopting a generic degree-of-freedom reasoning approach that extends the older
approach of searching for characteristic constraint patterns from a �xed reper-
toire such as [7].

In the spatial setting, even small irreducible problems give rise to nontrivial
algebraic equation systems and yield a rich set of challenging problems. Restrict-
ing to points and planes, prior work has succeeded in elucidating and solving
with satisfactory results the class of octahedral problems. An octahedral prob-
lem is an indecomposable constraint schema on six geometric entities, points
and/or planes, with the constraint topology of an octahedron; see [1, 7, 10]. Such
problems have up to 16 real solutions.

When lines are added as geometric primitives, even sequential problems be-
come nontrivial, such as placing a single line at prescribed distances from four
�xed points. In [1] line problems have been investigated and solved using several
homotopy continuation techniques in conjunction with algebraic simpli�cation.
In particular, the problem 3p3L was analyzed and solved in which three lines
and three points are pairwise constrained in the topology of the complete graph
K6. In this paper, we consider the problems 4p1L and 5p1L of placing four or
�ve points and one line by spatial constraints. We also contrast them to the 6p
octahedral problem. Our main purpose is to learn how successful the di�erent
approaches to solving these problems are.

? Work supported in part by NSF Grant CCR 99-02025, by ARO Contract 39136-MA,
and by the Purdue Visualization Center.
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2 Three Ways to Solve Subproblems

Once a subproblem has been identi�ed, it must be translated into a simultaneous
system of nonlinear equations, usually expressed algebraically. The system is
then solved. Due to application considerations, we are especially interested in
solution strategies that can, in principle, identify all real solutions of such a
system. Thus we exclude in particular the usual Newton iteration approach that,
beginning with a particular initial con�guration, numerically determines at most
one solution of the system.

We are interested in three approaches to solving the algebraic equations that
arise when evaluating a subproblem.

1. Simplify the equations using a systematic set of techniques that are appro-
priate for the problem. This is the approach taken in, e.g., [1].

2. Apply a pragmatic mixture of geometric reasoning that simpli�es the equa-
tions, in conjunction with other algebraic manipulation. This approach has
been taken in, e.g., [8, 7].

3. Adopt a procedural approach in which basic geometric reasoning results in
a tractable, numerical procedure. This approach is familiar from, e.g., [5, 4].

In each case, the goal is to simplify the system so that it becomes tractable to
evaluate all real solutions. Aside from the intrinsic repertoire of each of the three
approaches, we note that the choice of a coordinate system in which to solve the
system is of critical importance.

We will explore how each of these approaches performs by considering the
constraint subproblem in which 5 points and one line are to be placed subject to
constraints on them. In [1], it was argued that a good choice of the coordinate
system seeks to place the lines in a �xed position, formulating the equations on
the points and on lines that could not be placed. We have found this to be a
good idea as well. However, in the sequential line placing problem, we will see
that it is better to place the points.

In the following, we will consider three spatial irreducible constraint prob-
lems:

1. The 6p Octahedral Problem: Given six points in space and twelve pre-
scribed distances between them in the topology of an octahedron, determine
the six points relative to each other. This problem is related to the Stewart
platform [8].

2. The 4p1L Problem: Given four known points, �nd a line that lies at pre-
scribed distance from each of them. Equivalently, �nd the common tangents
to four �xed spheres [1].

3. The 5p1L Problem: Given one line and �ve points, and thirteen con-
straints between them in the topology shown in Figure 2, determine their
relative position.

We will see that the �rst problem yields to the systematic simpli�cation ap-
proach. That it can be addressed with the second approach as well has been
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shown in [8], among others. An especially nice solution using the Cayley-Menger
determinant was presented by Michelucci in [10].

The second problem is amenable to the algebraic approach as well, except
that the coordinate system has to be chosen carefully. We will explain brie
y
two di�erent choices and their consequences.

Finally, the third constraint problem has not yielded to the �rst two con-
straint solving approaches, and the only satisfactory approach we have found so
far is the computational one.

3 The Spatial Constraint Problems

We explain each constraint problem we consider in turn, in increasing order of
complexity.

3.1 The 6p Octahedral Problem

We are given six points and twelve distance constraints, as indicated in Figure 1.
The position of the points relative to each other, or with respect to a global coor-
dinate system, is not known. As noted in [7], this problem has several instances

p1 p2

p4

p5

p6

p3

Fig. 1. The 6p Octahedral Problem: Graph vertices represent points, graph edges dis-
tance constraints

when replacing some of the points with planes and considering angle constraints
between planes. In every case, the problem cannot be further decomposed and
requires solving a simultaneous system of nonlinear equations. A solution is a
coordinate assignment to the points that satis�es all twelve distance constraints.
As we will explain, this problem yields to both the algebraic and to the reasoning
approach.
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3.2 4p1L { Common Tangent to Four Spheres

We are given four points in �xed location in a global coordinate system. We are
asked to �nd a line in space that lies at prescribed distance from each of the four
points. Equivalently, we are given four �xed spheres in 3-space, not necessarily
of the same radius, and are asked to �nd a line that is tangent to each sphere.

This problem is a sequential construction problem. A line has four indepen-
dent coordinates, so four conditions such as the required distances determine its
position. Suppose that we have a constraint problem in which each geometric
element can be placed in a global coordinate system one-by-one in some order.
If we admit as possible elements points, lines and planes, then this subproblem
arises naturally. Note that geometric constraint problems that can be solved by
such a sequential procedure are among the simplest problems.

We will discuss an algebraic approach to solving this problem that relies on
a good choice of the coordinate system. Geometric reasoning approaches appear
to fail to lead to more simpli�cation.

3.3 The Problem 5p1L

Consider a con�guration of �ve points and one line in 3-space that is constrained
as shown in Figure 2. All constraints are distances. The subgraph of the �ve

p5

p2

p1

p3

p4

L

Fig. 2. The 5p1L Problem: Graph vertices represent points and a line, graph edges
distances.

points has the topology of a square pyramid and is therefore not rigid. The point
p5 is the apex of the pyramid. In all, the con�guration requires 19 generalized
coordinates subject to 13 constraints, and is therefore generically a rigid body
in 3-space.
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4 Solving Strategies

4.1 Algebraic Approach

In the algebraic approach, we choose a coordinate system and formulate a set of
algebraic equations based on that choice. The equations are then simpli�ed and
brought into a form that gives greater insight into the number of distinct solu-
tions and is suÆciently simple that root �nding or reliable numerical techniques
can be applied to solve the system. Ideally, the approach follows a systematic
generic framework for manipulating the equations.

The 6p { Octahedral Problem The octahedral problem 6p has an elegant
solution discovered by Michelucci [10] that is based on the Cayley-Menger deter-
minant. Recall that the determinant relates the squared distances between �ve
points in space. Consider the two unknown diagonal distances d13 = d(p1; p3)
and d24 = d(p2; p4). Choosing the �ve points fp1; p2; p3; p4; p5g, a quadratic
relationship between d213 and d224 is obtained from the determinant. A similar
relationship is obtained from the set fp1; p2; p3; p4; p6g. Thus, we obtain two
quartic equations in two unknowns, a system of total degree 16.

Michelucci's solution is independent of a coordinate system choice, a strong
point, but it does not follow a systematic procedure. A systematic framework
was developed by Durand in [1, 2]. Choosing to place one point at the origin,
one point on the x-axis, and one point in the positive quadrant of the xy-plane,
the initial system consists of nine quadratic equations in nine unknowns. This
system is then simpli�ed by the following steps:

1. Gaussian elimination.
2. Solving univariate equations.
3. Parameterization of variables in bilinear and biquadratic equations.

The resulting system for 6p are three quartic equations in three variables, a
system of total degree 64. By applying techniques from homotopy continuation,
the �nal system required evaluating only 16 roots, of which, in the examples
studied, 8 were real and 8 were complex.

4p1L { Tangent to Four Spheres The problem would appear to be classi-
cal, but we did not �nd much helpful literature on it. A systematic algebraic
treatment of the problem was given by Durand in [1]. Durand found an equation
system of degree 64 (the BKK bound) and experimentally determined that 40 of
the 64 paths led to in�nity. Thus, only 24 paths had to be explored. We improve
this result now.

Placing three points at the origin, on the x-axis, and in the xy-plane, our
initial equation system consists of six quadratic equations in six unknowns, (1{
6). The unknowns are the point (x; y; z) nearest to the origin on the sought line,
and the unit length tangent (u; v; w) of the line. Assume that ri is the distance
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of point i from the line, and that the point coordinates are (ai; bi; ci). Then the
initial equation system is

x2 + y2 + z2 � r21 = 0 (1)

(a2 � x)2 + y2 + z2 � (a2u)
2 � r22 = 0 (2)

(a3 � x)2 + (b3 � y)2 + z2 � (a3u+ b3v)
2 � r23 = 0 (3)

(a4 � x)2 + (b4 � y)2 + (c4 � z)2 � (a4u+ b4v + c4w)
2 � r24 = 0 (4)

xu+ yv + zw = 0 (5)

u2 + v2 + w2 � 1 = 0 (6)

We use equation (1) to eliminate the terms x2; y2 and z2 from equations (2{
4). Then those equations can be solved symbolically, yielding a solution that
expresses the variables x; y and z as a quadratic expression in u; v and w. This
eliminates x; y and z from equations (5) and (6) and factors out a subsystem
of three equations in u; v; w of degree 2, 3 and 4, respectively. Thus, a degree
reduction to 24 has been accomplished.

We note that for each solution (x; y; z; u; v; w) of the system (x; y; z;�u;�v,
�w) is also a solution.1 Geometrically, this says that the orientation of the lines
is immaterial, which one expects. Therefore, the 24 solutions of the system,
counted by Bezout's theorem, reduce to 12 geometric solutions. That this is the
smallest number possible follows from the result by Theobald et al. [9]. They
prove there are up to 12 distinct real tangents when all radii are equal, that is,
when r1 = r2 = r3 = r4 = r.

It would seem that one could place the unknown line on the x-axis and seek
equations to place the four points as a rigid structure subject to the distance con-
straints. Doing so yields equations with a high degree of symmetry and structure,
but we have not found an attractive simpli�cation of those equations.

5pL1 We can choose a coordinate system in which the line L is on the x-axis
and the point p5 on the z-axis as shown in Figure 3. We denote the distance
between L and the point pi with ri, i = 1; : : : ; 5. The distance between and
point p5 and pi, i = 1; : : : ; 4, is denoted di, and the distance between points pi
and pj with dij . This choice leads to a system consisting of 12 equations in 12
unknowns:

y2i + z2i = r2i i = 1; : : : ; 4
x2i + y2i + (zi � r5)

2 = d2i i = 1; : : : ; 4
(xi � xj)

2 + (yi � yj)
2 + (zi � zj)

2 = d2ij ij = 12; 23; 34; 41
(7)

Naive counting of the number of possible solutions would yield 4096. Using the
multi-homogeneous Bezout theorem of [11], a tighter bound of 512 �nite solutions
is obtained. That bound does not make it practical to explore all solutions.

1 This is clearly true for the original system. Moreover, the expressions substituted for
x, y and z also exhibit the sign symmetry; hence the claim is true for the resulting
system of degree 24.
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Fig. 3. Coordinate Assignment for the 5p1L Problem

Moreover, the system of equations resisted meaningful simpli�cation, both ad-
hoc manipulations as well as the systematic simpli�cation steps developed before.

We could choose to place the coordinate system such that three points are
put into a special position, say one point at the origin, one on the x-axis, and
one in the xy-plane, but doing so did not lead to better equations.

4.2 Geometric Reasoning to Assist Simpli�cation

In this approach we try to introduce auxiliary geometric structures, such as
the curves described by a particular point when restricting to a subset of the
constraints, especially if this can lead to a reasonable parameterization. Often,
one can then introduce the additional constraints and derive a simpler equation
system.

6p { Octahedron Geometric reasoning was used in [7] to yield a system of
equations that, in conjunction with resultant techniques, succeeded in deriving
a univariate polynomial of degree 16. It improves on the systematic approach by
a factor of 4 and matches the Cayley-Menger solution.

4p1L { Sphere Tangents Presently, we do not have a good solution that
exploits the geometry of the con�guration. We believe that it should be possible
to �nd one of total degree to 24 or less.

5p1L Placing the coordinate system as before, with the line on the x-axis and
the point p5 on the z-axis, we could proceed by parameterizing the locus of the
point p1 as function of the z-coordinate Z. From the distance constraints r1 and



8

d1 we obtain for the point p1:

p1 =

8<
:
x1(t) = �

p
d21 � r21 � r25 + 2r5t

y1(t) = �
p
r21 � t2

z1(t) = t

(8)

We can then construct the remaining points whose coordinates are now a func-
tion of the parameter t, using the distance constraints for r2, d2, and d12 for p2,
the distance constraints r4, d4 and d41 for p4. Finally, point p3 is constructed us-
ing r3, d3 and d23. This leaves the distance constraint d34 to be used to determine
the parameter t. The equations so derived have the following form:
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�4d22x1(t)x2 + 8x1(t)y1(t)x2y2 � 8r5x1(t)z1(t)x2
�8r5y1(t)z1(t)y2 + 4x1(t)

2x22 + 4y1(t)
2y22 + 8r25x1(t)x2

�4d21x1(t)x2 + 4d212x1(t)x2 � 4d22y1(t)y2 + 8r25y1(t)y2 � 4d21y1(t)y2
+4d212y1(t)y2 + 4d22r5z1(t)� 4d212r5z1(t)� 8r5z1(t)y

2
2 + 4r25z1(t)

2

�8r35z1(t) + 4z1(t)
2y22 + 4r25y

2
2 � 4r22z1(t)

2 + 8r5r
2
2z1(t) = D1

�z1(t)x
2
2 + r5x

2
2 � 2r5x1(t)x2 � 2r5y1(t)y2 + 2r25z1(t)

+d22z1(t)� r25z1(t)� r22z1(t) = D2

�4d24x1(t)x4 + 8x1(t)y1(t)x4y4 � 8r5x1(t)z1(t)x4 � 8r5y1(t)z1(t)y4
+4x1(t)

2x24 + 4y1(t)
2y24 + 8r25x1(t)x4 � 4d21x1(t)x4 + 4d241x1(t)x4

�4d24y1(t)y4 + 8r25y1(t)y4 � 4d21y1(t)y4 + 4d241y1(t)y4 + 4d24r5z1(t)
�4d241r5z1(t)� 8r5z1(t)y

2
4 + 4r25z1(t)

2 � 8r35z1(t)
+4z1(t)

2y24 + 4r25y
2
4 � 4r24z1(t)

2 + 8r5r
2
4z1(t) = D3

�z1(t)x
2
4 + r5x

2
4 � 2r5x1(t)x4 � 2r5y1(t)y4 + 2r25z1(t) + d24z1(t)

�r25z1(t)� r24z1(t) = D4

�12z1(t)x2x3 + 12r5x2x3 � 4r5x1(t)x2 � 4r5y1(t)y2 + 4r25z1(t)
+4r5z1(t)z3 � 4r25z3 + 2d22z1(t) + 2d23z1(t)

+2d223z1(t)� 4r25z1(t) = D5

4z1(t)x3x4 � 4r5x3x4 + 4z1(t)y3y4 � 4r5y3y4 � 4x1(t)x4z3
�4y1(t)y4z3 + 2d24z3 + 2d21z3 � 2d241z3 + 4r5x1(t)x4 + 4r5y1(t)y4

�4r5z1(t)� 2d23z1(t)� 2d24z1(t) + 2d234z1(t) + 4r25z1(t) = D6

y23 + z23 = D7

x23 � 2r5z3 = D8

(9)
where D1; D2; D3; D4; D5; D6 are constants. The system is unattractive.

4.3 Construction by Computation

The closed-form algebraic expressions for the point coordinates of the 5p1L prob-
lem that were obtained by the geometric reasoning described before, do not seem
to be simple enough to lead to further massive algebraic simpli�cation. However,
they are very easy to evaluate computationally, and can be used to de�ne numer-
ically a curve in a 2D coordinate space de�ned by the parameter and the distance
d34. When the curve is intersected with the nominal distance line, the real solu-
tions are obtained. As illustrated in Figure 4, p10 is on line L and p10p1 ? L, the
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angle between p10p1 and the xy-plane is �. We use � as parameter to calculate
point p1:

x

y

z

p5

d5

L θ

p1

p10

Fig. 4. Parameterization with �

p1 =

8<
:
x1(�) = �

p
d21 � r21 � r25 + 2r1r5 sin(�)

y1(�) = r1 cos(�)
z1(�) = r1 sin(�)

(10)

For practical purposes, the approach is satisfactory, since it gives a system-
atic, and suÆciently simple, procedure to �nd all real solutions. Moreover, the
solutions so found can be further re�ned with other numerical processes, since
they provide good starting points. From a theoretical perspective, the draw-back
of the procedural approach is its inability to produce, with certainty, a bound on
the number of solutions. Here are the details for our 5p1L problem, and several
example solutions.

p2 can be solved using the constraints dist(L; p2) = r2, dist(p5; p2) = d2
and dist(p1; p2) = d12. As illustrated in Figure 5, the point ps = (xs; ys; zs) in

p2

p5p1

d2
d12

s
d1

ps

h

Fig. 5. Triangle p1p2p5
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triangle 4p1p2p5 is on the line p1p5 and p2ps ? p1p5. So, we have

s = jpsp5j =
(d21 + d22 � d212)

2d1

h = jpsp2j =
q
d22 � s2

We obtain
ps = p5 +

s

d1
(p1 � p5)

Consider the vectorw = p1�p5
jp1�p5j

= p1�p5
d1

. We de�ne a plane� through the point

ps perpendicular to w. Since dist(L; p2) = r2, the point p2 is on the cylinder
� : y2 + z2 = r22 whose axis is the line L and whose radius is r2. Let pc be the
interaction point of line L and plane � , then pc = (xc; yc; zc) where

xc = xs +
wy

wx

ys +
wz

wx

zs
yc = 0
zc = 0

Using the vectors
v = w�L

jw�Lj

u = v �w

we set up a local coordinate system: (o0;x0;y0; z0), where

o0 = pc
x0 = u

y0 = v

z0 = w

The matrix transform from the global coordinate system (o;x;y; z) to the local
system (o0;x0;y0; z0) is

M =

2
64
ux uy uz 0
vx vy vz 0
wx wy wz 0
0 0 0 1

3
75

2
64
1 0 0 �xc
0 1 0 �yc
0 0 1 �zc
0 0 0 1

3
75 (11)

Figure 6 illustrates the local coordinate system (o0;x0;y0; z0) situated in the
global system (o;x;y; z).

From the construction process we know that the point p2 lies on a circle
in the plane � with radius h. Let p0s = Mps, in the local coordinate system
(o0;x0;y0; z0). Then the equation of the circle is

(x0 � x0s)
2 + (y0 � y0s)

2 = h2 (12)

Now the vector along line L is L : (1; 0; 0), the angle between L and w is �, and
the intersection of plane � and cylinder � is an ellipse on plane � . In the local
system (o0;x0;y0; z0), the ellipse equation is

x0
2

r22 csc
2(�)

+
y0
2

r22
= 1 (13)
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Fig. 6. Local Coordinate System (o0;x0;y0; z0)

Solving equations (12) and (13) simultaneously, we get p02 and from it, in turn,
p2:

p2 = (x2(�); y2(�); z2(�))

Note that there are up to 4 real solutions for p2.
Similarly, we compute p4 from its constraints with the line L and the points

p1 and p5. Finally, we compute p3 from the constraints with line L and points
p2 and p5

p3 = (x3(�); y3(�); z3(�))
p4 = (x4(�); y4(�); z4(�))

d34(�) is a complicated curve in a coordinate space de�ned by the parameter �
and the distance dist(p3(�); p4(�)). The curve would be hard to express symbol-
ically. However, we can trace it numerically.

Given a step length d�, we calculate d34(�) for every step � = � + d�, and
so obtain the curve C� : d34(�)� � numerically. Let the absolute error of d34(�)
and the nominal distance line d34 be

�(�) = jd34(�)� d34j

Obviously, the smaller �(�) is, the nearer � is to a real solution of the 5pL1
problem. Call a point (�; d34(�)) a coarse solution if � satis�es

d34(�) < Æ

for a chosen tolerance Æ. The coarse solution set SÆ is then

SÆ = fq� = (�; d34(�))j�(�) < Æ; q� 2 C�g

Æ is the threshold of the coarse solutions, and the size of jSÆ j diminishes with
Æ. The coarse solutions can be further re�ned with Newton-Raphson iteration
since they provide good starting points.
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r1 5.12863551744133

r2 3.4797204504532

r3 5.12009033478805

r4 4.48866237372967

r5 0.854823450422681

d1 5.40391247291482

d2 4.92751853999451

d3 6.556901760918

d4 5.04776146732994

d12 2.49916074098941

d23 9.55687124240852

d34 9.15

d41 7.1858882412183

Table 1. An Constraint Set of the 5p1L Problem

4.4 An Example

Table 1 gives an example of constraint set of 5pL1 problem, by de�ning d� =
1:0o, Figure 7 gives the discrete curve. In our example, if Æ = 0:1, jScj = 108,
if Æ = 0:2, jScj = 224. When Æ = 0:1 we can get 20 re�ned real solutions; when
Æ = 0:2 we can get 24 re�ned real solutions; when Æ > 0:2 we have more than 224
coarse solutions but the re�ned real solution number is still 24. Therefore, the
maximum real solution number of the example is 24. The circles on the nominal
distance line in Figure 7 represent the real solutions, Table 2 gives all the 24
real solutions of this example.

The computation was carried out using a tolerance-driven search for potential
solutions followed by a Newton iteration re�ning the initial values. On a PC with
a 500MHz Pentium 3 the initial search took 100 milliseconds with a tolerance
of 0.2, and the subsequent re�nement took an additional 233 ms. This contrasts
favorably with the computation times obtained by Durand on a Sun SPARC 20
using homotopy continuation where 24 paths were evaluated in approximately
30 sec. The homotopy evaluation on the slower machine was a completely general
implementation, while our computation of the solution was speci�cally designed
for this particular problem. It would be interesting to test this problem on general
multi-variate interval Newton solvers.

5 Further Discussion

The Construction by Computation approach can be used more generally. Let
F (X) = 0 be a system of n nonlinear equations F = ff1; : : : ; fng with n

unknowns X = fx1; : : : ; xng. To �nd all real solutions of F (X) = 0, we can
choose a real parameter set T = ft1; : : : ; tkgk<n such that X can be solved as
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Fig. 7. d34(�)� � Curve

X(T ) = fx1(T ); : : : ; xn(T )g by using n� k equations

Fn�k = ff ijf i 2 F; 1 � i � n� kg � F

Let
Fk = F � Fn�k = ff j jf j 62 Fn�k ; f

j 2 F; 1 � j � kg � F

and de�ne
�(T ) =

max

8f j 2 Fk
(jf j j)

Let domain of T be DT = [t1min; t1max] � � � � � [tkmin; tkmax], and for every
ti 2 T de�ne a step size dti such that we can calculate �(T ) on DT numerically
for every [t1 = t1 + dt1] � � � � � [tk = tk + dtk]. Obviously, T � �(T ) � <k+1

is a hypersurface. Given a small positive real number Æ, we can get the Coarse
Solution Set

Sc = fqT = (T; �(T ))j�(T ) < Æ; qT 2 T � �(T )g

For every qT 2 Sc we can get an starting point X0. Using Newton-Raphson
iteration, we may re�ne the starting point to a real solution of F (X) = 0. After
calculating all qT 2 Sc we can get the real solution set Sr. If the step sizes
dti; i = 1; : : : ; k, are small enough and Æ is large enough, we can �nd all real
solutions of F (X) = 0.
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p1 p2 p3 p4
1 (2.06,4.98,1.21) (3.30,3.46,-0.34) (-4.87,2.43,4.51) (3.45, -1.36, 4.28)

2 (-2.06,4.98,1.21) (-3.30,3.46,-0.34) (4.87, 2.43, 4.51) (-3.45, -1.36,4.28)

3 (2.28,4.81,1.77) (3.85,2.88,1.96) (-2.79,1.73,-4.82) (-3.46,1.30,4.30)

4 (-2.28, 4.81,1.77) (-3.85,2.88,1.96) (2.79,1.73,-4.82) (3.46,1.30,4.30)

5 (2.93,3.48,3.77) (3.72,3.18,1.42) (-4.95,1.29,4.95) (-0.37,3.65,-2.61)

6 (-2.93,3.48,3.77) (-3.72,3.18,1.42) (4.95,1.29,4.95) (0.37,3.65,-2.61)

7 (3.04,3.04,4.13) (4.14,0.94,3.35) (-4.93,-1.65,4.85) (-1.58,4.32,-1.23)

8 (-3.04,3.04,4.13) (-4.14,0.94,3.35) (4.93,-1.65,4.85) (1.58,4.32,-1.23)

9 (3.26,1.39,4.94) (4.01,2.20,2.70) (-3.22,3.90,-3.32) (-3.47,-1.07,4.36)

10 (-3.26,1.39,4.94) (-4.01,2.20,2.70) (3.22,3.90,-3.32) (3.47,-1.07,4.36)

11 (3.29,0.79,5.07) (4.15,-0.84,3.38) (-4.92,1.82,4.79) (1.72,4.39,-0.95)

12 (-3.29,0.79,5.07) (-4.15,-0.84,3.38) (4.92,1.82,4.79) (-1.72,4.39,-0.95)

13 (3.29,-0.79,5.07) (4.15,0.84,3.38) (4.92,-1.82,4.79) (1.72,-4.39,-0.95)

14 (-3.29,-0.79,5.07) (-4.15,0.84,3.38) (4.92,-1.82,4.79) (-1.72,-4.39,-0.95)

15 (3.26,-1.39,4.94) (4.01,-2.20,2.70) (-3.22,-3.90,-3.32) (-3.47,1.07,4.36)

16 (-3.26,-1.39,4.94) (-4.01,-2.20,2.70) (3.22,-3.90,-3.32) (3.47,1.07,4.36)

17 (3.04,-3.04,4.13) (4.14, -0.94,3.35) (-4.93,1.65,4.85) (-1.58,-4.32,-1.23)

18 (-3.04, -3.04,4.13) (-4.14,-0.94,3.35) (4.93,1.65,4.85) (1.58,-4.32,-1.23)

19 (2.93,-3.48,3.77) (3.72,-3.18,1.42) (-4.95,-1.29,4.95) (-0.37,-3.65,-2.61)

20 (-2.93,-3.48,3.77) (-3.72,-3.18,1.42) (4.95,-1.29,4.95) (0.37,-3.65,-2.61)

21 (2.06,-4.98,1.21) (3.30,-3.46,-0.34) (-4.87,-2.43,4.51) (3.45,1.36,4.28)

22 (-2.06,-4.98,1.21) (-3.30,-3.46,-0.34) (4.87,-2.43,4.51) (-3.45,1.36,4.28)

23 (2.28,-4.81,1.77) (3.85,-2.88,1.96) (-2.79,-1.73,-4.82) (-3.46,-1.30,4.30)

24 (-2.28,-4.81,1.77) (-3.85,-2.88,1.96) (2.79,-1.73,-4.82) (3.46,-1.30,4.30)

Table 2. Real Solution Set of the Example
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