IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 1

Video Folding: Increased Framerate for
Semi-Repetitive Sequences

Chris May, Manuel M. Oliveira, and Daniel Aliaga

Abstract—We introduce a technique to synthetically increase the framerate of semi-repetitive videos (i.e., videos of motion that
repeats but not in an identical fashion) to aid in visualization. By reordering and combining frames from all repetitions, we produce a
single non-repetitive sequence with much higher temporal resolution. Then, we use a novel frame warping technique based on a dense
corrective flow to counteract differences between repetitions. The resulting video maintains smoothness of motion and additionally
allows for seamless, infinite looping. We demonstrate the effectiveness of the proposed solution both quantitatively, by measuring the
improvement over existing methods, and qualitatively, by performing a user evaluation and providing several examples in the paper and

accompanying video.

Index Terms—Computer graphics, picture/image generation, image-based rendering, image processing and computer vision, image

processing software, time-varying imagery

1 INTRODUCTION

ENERATING slow-motion video from existing footage
G is a powerful tool for content analysis, entertainment,
simulation, and games. For example, slowing down footage
of sporting events can help professionals analyze the motion
and make adjustments to athletes’ training. However, videos
are recorded at fixed framerates, so simply reducing the
playback speed results in choppy motion due to individual
frames being displayed for longer periods of time. Addi-
tional work must be done to smoothly fill in the temporal
gaps between the original frames. In addition, for video re-
timing (e.g., framerate conversion), it might be necessary to
re-sample the motion at a different speed.

Many previous works use frame interpolation to gen-
erate new in-between frames for an existing video. These
methods may use optical flow [1], deep learning [2], or
phase-based interpolation [3] to create the novel frames.
However, in general these approaches do not work well
with large motion in-between adjacent captured frames, and
in some cases the adjacent frames may not even capture
the underlying motion that occurred. Recording using faster
framerate cameras is also a possibility, but may not always
be feasible (e.g., cost or storage limitations). It also does not
address processing existing videos, and even with faster
framerates a further slow-down might be desired. Hence,
prior works are not well suited to handle large motion in-
between frames and to maintaining the motion dynamics
with such large in-between frame motion.

Our key observation is that if the motion is at least
semi-repetitive (i.e., the motion generally repeats but not
in an identical fashion), information that is lost between
consecutive frames may be recovered in later repetitions of
the same motion. We exploit this fact by reordering the input
frames so that similar frames from different repetitions

o C. May and D. Aliaga are with Purdue University. E-mails: may5,
alinga@purdue.edu.
e M. Oliveira is with UFRGS. E-mail: oliveira@inf.ufrgs.br.

Manuscript received ??.

are placed near each other. In this way, many repetitions
from the input video are interleaved, or folded, into a non-
repeating coherent sequence in the output video. As op-
posed to frame interpolation, this methodology does not
depend on creating many novel in-between frames. Instead,
we use existing re-ordered frames to create an apparently
slowed-down version of the original video.

Our video folding (VF) approach consists of three main
stages. First, during frame reordering, a video sequence is
produced having one “repetition” of the motion but using
all recorded frames. Since the fundamental motion is not ex-
actly repetitive, our one repetition corresponds to a slowed-
down playback of an “averaged” motion cycle, constructed
based on all the provided repetitions. In Figure 1, frames
from an input video are reordered into a “single repetition”,
in which similar frames are placed near each other (left).
Second, because each repetition is slightly different, correc-
tive flows are computed to bring all frames into a smooth
and coherent sequence. The insets in Figure 1 show how
the hand and foot are at slightly different positions in each
frame, and the corrective flow images (middle) show the
(color-coded) directions these features must move for them
to stay in the same place. Third, each frame is warped along
its corrective flow to produce the final video. Afterwards, a
temporal smoothing operation is performed as well. Figure
1 shows the frames after warping (right), where the hand
and foot (as well as other features) are now in roughly the
same position in each frame. Altogether, we have applied
our approach to real-world and synthetic videos of moving
humans, animals, and devices. Our method is not limited
to a frame rate range but instead depends on the motion
speed per frame and number of repetitions. Nevertheless,
we show empirical examples using frame rates of 2 to 120
frames-per-second. We show results, user evaluations, and
comparisons in the paper and accompanying video.

Our main contributions include:

e A method to create slowed-down versions of semi-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 2

Input frames

tt

2373

LU aesAALLLEEEEELULL LS

3]

144444

Frame reordering |

hd

Reordered frames

Corrective flow
computation

Warped frames

1 Corrective flows

!

md

Frame warping

[

Flow color

Fig. 1. Video folding for increasing the framerate of semi-repetitive videos. Top: frames from an input video sequence. The position of the hand
and foot are shown throughout three repetitions in the video. Left: frames after reordering into a single repetition. Despite the generally-repetitive
motion, in the insets it can be seen how the positions of the hand and foot still vary between consecutive reordered frames. This creates a distracting
jitter effect during playback. Middle: corrective flow images computed for each of the reordered frames. The colors indicate the directions in which
features must be warped to produce smooth motion, according to the legend at the bottom. Right: the same reordered frames after warping along
the corrective flows. The insets show that the hand and foot are now in roughly the same position, indicating that the motion is now smooth.

repetitive motion videos (Section 3), which fills in
missing details between frames via frame reordering,
and for which we show up to 120x slowdown;

e A corrective flow formulation (Section 3.2), based on
optical flow, which allows us to smoothly combine
frames from non-adjacent repetitions into a single
coherent sequence; and

e An image warping algorithm (Section 3.3), which
allows us to produce the final video sequence using
our corrective flow.

2 RELATED WORK
2.1

Slowing down videos typically involves some form of
frame interpolation, wherein new frames are created in-
between consecutive existing frames in the original video.
Most classical frame interpolation methods rely on dense
pixel correspondences between neighboring frames such
as optical flow [4], [5]. Some early work in optical flow
includes a global variational model introduced by Horn
and Schunck [6], as well as a local formulation by Lucas
and Kanade [7]. Many other methods have been based
on these, some of which use feature matching to detect
large motion [8], [9]. However, most optical flow algorithms
cannot correctly handle large displacements or changes in
lighting conditions, which in turn produce artifacts in the
interpolated frames. Our method uses optical flow as part
of its pipeline, but most large displacements between frames
are removed by reordering (Section 3.1), provided the semi-
repetitive motion in the input video is well sampled. There
are other frame interpolation methods that do not rely on
optical flow. Meyer et al. [3] use a phase-based method that
is computationally efficient, but is also limited in the range
of motion that can be handled. Recently, deep learning has

Frame interpolation

been successfully applied to both frame interpolation [2],
[10], [11], [12], [13], [14] and optical flow estimation [2],
[12], [15], [16], [17], [18]. However, these methods still rely
on creating novel intermediate frames using estimated mo-
tion, and suffer from artifacts when the amount of motion
between frames is large. Also, given that these methods
employ deep neural networks, they require large datasets
for training and validation, and may not generalize well to
unseen data.

2.2

In the third phase of our pipeline (Section 3.3), frames
must be forward-warped in order to smooth the output
motion. Shade et al. [19] describe Layered Depth Images,
for which splat-based warping is effective due to the back-
to-front ordering guaranteed by epipolar geometry [20].
Mark et al. [21] perform view interpolation by triangulating
several pre-rendered images, and warping the resulting
meshes to a new viewpoint, resolving order and occlu-
sions with per-pixel depth information. However, neither
of these methods are appropriate for our pipeline because
the frames we process do not have any camera information,
nor do they have per-pixel depth. Baker et al. [4] describe
a warping algorithm that involves splatting flow vectors
onto an intermediate image, which Herbst ef al. [1] extend
to use bidirectional flows to better handle occlusions and
ordering. As both of these warping methods are specific to
frame interpolation, they require two temporally neighbor-
ing frames in order to resolve occlusions. In contrast, our
pipeline does not produce any in-between images; warping
is used to alter individual frames, not create novel frames
at intermediate timestamps. We describe a triangulation-
based forward warping algorithm. Our method addresses
the aforementioned problems using video segmentation as
a proxy for per-pixel depth, and inpainting to fill in gaps in

Image warping



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 3

| Frame reordering |

Reordered frames

Corrective flow
computation

|

| Frame warping |

Fig. 2. Our video folding pipeline. The input video is first reordered into a
single coherent non-repeating sequence. Corrective flows are computed
for each frame, using neighboring frames in the reordered sequence.
All frames are then warped along their corrective flows to produce the
output video.

the output, without relying on consecutive frames from the
source video.

3 VIDEO FOLDING

The key idea behind our method is that each repetition
within the input video is a different sampling of the same
general motion. We would like to produce a novel repetition
of this same motion, but with a much denser sampling,
resulting in a video with significantly higher framerate than
the original. This is done by interleaving all frames from
each repetition, reordering them into a sequence consisting
of a single repetition. We capitalize on the fact that during
capture of semi-repetitive motion, we obtain different phase
offsets of the same approximate motion, and by combining
them we obtain the inter-frame motion more precisely.

Ideally, the motion being recorded is exactly periodic. In
this case, provided that the frames are reordered correctly,
no frame warping is needed as there are no inconsistencies
between repetitions. However, it is crucial that the period of
motion and camera framerate are relatively prime (i.e., out
of phase). This ensures that each succeeding repetition is
captured at some temporal offset which results in recording
the motion in between frames of previous repetitions. Oth-
erwise, if the period of motion is an exact integer multiple
of the framerate, each repetition contains the same set of
frames, and there is nothing to be gained by combining
multiple repetitions.

In real life, such repetitive motion is rarely ever exactly
periodic. For organic subjects such as people and animals,
small perturbations in motion make each repetition unique.
Even mechanical subjects may not exactly repeat. These
unique repetitions cannot be simply combined by frame
reordering alone. Warping must be applied to each frame to
make it coherent with that of frames from other repetitions
at near the same instant in time relative to the period of
motion. To this end, we introduce a corrective flow formulation
based on inter-frame optical flow, and describe a frame
warping algorithm to produce the final output video.

Our approach consists of a pipeline (Figure 2) with three
main stages: frame reordering, corrective flow calculation,
and frame warping.

3.1 Frame Reordering

The first stage of our pipeline involves reordering frames
based on the period of motion. Because our work focuses on
organic semi-repetitive motion, repetitions will in general
have slightly different lengths and content, and it is non-
trivial to automatically determine a correct ordering. How-
ever, these video sequences can contain a very large number
of frames, which makes manually sorting intractable. We
describe a semi-automatic sorting method that requires a
small amount of user input and produces a reasonable
ordering of the video frames.

Before frame reordering can happen, it may be neces-
sary to stabilize the input sequence. Video stabilization is
performed in the presence of camera motion and other
large global transformations throughout the sequence. In
our current system, we detect features between frames
and compute affine transformations to best align them. We
leave to future work the integration of automatic video
stabilization (e.g., [22]). The end goal is to ensure that global
inconsistencies between repetitions are reduced. All further
operations are performed on the post-stabilized frames.

Let I be the sequence of N frames in the original video
(after stabilization), where I; is the i*? frame in the sequence,
and let t; be the timestamp of I; relative to the beginning
of a repetition, with 1 < ¢ < N and 0 < t; < 1. Then
we want to produce a permutation J of I such that ¢; is
monotonically increasing with j, and with j as an index
into J. In other words, frames in I are sorted according
to their relative timestamp to produce J. The values of
t; are determined semi-automatically. Some user input is
required to mark the first frame of each repetition (e.g., 5-
30 simple frame selections in most cases). For every such
marked frame [, we set t;, = 0. The number of frames n,. in
each repetition 7 can be determined by counting the number
of unmarked frames in between each marked frame (+1, for
the initial marked frame). For simplicity, we assume that I;
is marked; i.e., no unmarked frames occur before the first
marked frame. Then each unmarked frame I; is assigned
the relative timestamp

==k (1)

where k < i is the index in I of the previous marked frame,
r; is the repetition in which frame I; occurs, and n,, is the
number of frames in repetition r;. The frames of I are then
sorted into J according to ;. Figure 3 provides a visual
explanation of this step.

We refer to t; as a relative timestamp, but note that this
is independent from a frame’s physical timestamp given
by the camera. While physical timestamps are separated
by a fixed interval, relative timestamps depend on the
duration of the repetition in which a frame occurs. It is not
necessary for all repetitions to have the same duration; some
repetitions may take longer to complete than others. The
assignment of these relative timestamps effectively scales
the interval of time between frames so that all repetitions
have the same duration.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 4

I:

t1=0 ta=3% ts3=2% t4=0 ts=1% tg=3 tr=2 t3=0 ty=1% tio=73
J =

t1=0 t4=0 tg=0 ty=1 ta=1 ty=1% to=3 t3=32 tip=32 t;r=3

Fig. 3. Semi-automatic frame reordering. Marked frames (highlighted) represent the first frame of each repetition. The first and third repetitions
have 3 frames each, while the second repetition has 4 frames. Top: the original video sequence. Bottom: the video sequence after semi-automatic
sorting. Note that the subscript to ¢ on the top and bottom sections refers to the index into I, not .J, so as to illustrate the sorted order.

Since repetition lengths are measured in number of
frames, there might be repetitions with the same length,
which causes some frames to have the same relative times-
tamp. The relative order of these frames is undefined by the
above semi-automatic sort. In order to break these ties, the
user can choose to manually sort only the marked frames,
which determines a sorted order for all repetitions. Any
frames that have equal relative timestamps will then be
sorted by this repetition order instead. This logic assumes
the speed of motion is the same across all repetitions. If this
is not the case, the resulting sequence will be only partially
ordered.

While the above algorithm produces reasonable order-
ings for semi-repetitive motion videos, in practice the results
are not perfect. After applying this sort to various input
videos and comparing to a fully manual sorted ordering,
the number of inversions is typically O(N), which can be
remedied by manually swapping neighboring frames until
a desired order is achieved. Note however that it may not
be strictly necessary to fine-tune the order of frames in
this way. Even if the frames are only partially ordered, the
corrective flow is computed over a local neighborhood, so
most inversions will have a negligible effect on the output
frames. In the results section we show the robustness of our
method to some ordering inaccuracy.

We highlight that depending on the content of the video
there may not be a single correct ordering of frames. This
may be caused by different areas of the subject moving at
varying speeds over many repetitions. Take for example a
video of a running horse (e.g., Figure 6). In each repetition,
the front legs are moving at a slightly different speed than
the back legs, causing the legs to be not perfectly synchro-
nized. If the sorting order is defined on the front legs, then
the back legs will appear to move out of order. While this
behavior is a limitation of our method, we have found that
the warping phase does a reasonable job at reducing such
visual artifacts.

3.2 Corrective Flow Computation

The nature of organic, semi-repetitive motion is such that
each repetition is slightly different from the others. Small

Ji—2 Ji—1 Ji Jit1 Jito Wi
+ + + -
Foio Fiia Fiiy  Fiigo C;
T T T
|| } } |
—HH+ + e
| |
\ \
Aj o A A Ao Ci

)

Fig. 4. Corrective flows. Top: video frames in the reordered sequence,
with a tracked feature in blue. W; is the result of warping frame J; along
either corrective flow. Middle: optical flow fields from frame J; to each
other frame in the neighborhood, with window size s = 2; C; is the
direct corrective flow, obtained with Equation (5). Bottom: accumulated
flow fields from frame J; to each other frame; C/ is the accumulative
corrective flow, obtained with Equation (4).

perturbations between repetitions become very noticeable
when played as a single sequence. Thus even if a perfect
ordering is achieved, the resulting sequence will not contain
smooth motion. Instead, each frame must be warped to
a configuration that changes gradually and naturally over
the duration of the video. To this end, we define a per-
pixel corrective flow, which we later use to warp individual
frames to produce the final motion. This corrective flow
is calculated using the dense optical flow between frames.
Since computing optical flow is typically computationally
expensive, we define two variations of corrective flow: ac-
cumulative and direct corrective flow. The former uses fewer
optical flow fields than the latter, but is also less accurate.

Accumulative corrective flow sums optical flow fields
throughout a local neighborhood. This formulation only
requires optical flows to be computed between direct neigh-
bors in the reordered sequence. In more detail, let F; ; be
the per-pixel optical flow from frame J; to frame J; in the



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 5

reordered sequence. That is,
Jj(X—i-Fi,j(X)) = Jz(X) (2)

We define a recursive flow accumulation A; j as the accu-
mulated optical flow from frame J; to frame J;;j, as an
approximation to the direct optical flow between the frames:

Ai o1 (%) + Fippgr,ivn (X + Ajpp1(x)) E<O

Air(x) =40 k=0
Aip—1(X) + Figp—1,iv6(x+ A 51(x)) k>0

3)

This formulation concatenates flow vectors along successive
optical flow fields, sampled at the previous accumulated
flow’s destination, until the destination frame is reached.
Optical flow fields are sampled using bilinear interpolation,
clamped to the image boundaries. The accumulated flow is
then used to calculate the accumulative corrective flow:

D e Aik(x) w(k)
RS> SO

where s is a scalar window size, and w(k) is a weight
function. Indices outside the interval [1, N] wrap around, as
the sequence is expected to be cyclic. The window size deter-
mines the range of neighboring frames in the reordered se-
quence that affect the corrective flow. This parameter should
be proportional to the number of repetitions in the sequence,
since we expect the surrounding frames to capture a similar
instant in time relative to the period of motion. The weight
function can be chosen to be uniform (i.e., w(k) = 1) or
varying (e.g., a Gaussian curve so as to reduce the influence
of frames that are further away from the current frame).
The corrective flow C;, when applied to frame J;, produces
an output frame whose content is warped to the average
configuration over a local neighborhood. Because adjacent
frames’ corrective flows have overlapping contributions,
this average configuration changes gradually over time,
resulting in smooth output motion. However, errors in the
individual flow fields quickly add up, leading to noticeable
artifacts in the resulting corrective flows and warped results.

Alternatively, we also define a direct corrective flow, which
does not accumulate optical flows between frames:

_ Yore s Fiivr(x) w(k)
Do w(k)

This formula requires optical flow computation between
each frame and a number of its surrounding frames. If the
window size is large, this can mean that a great many flows
must be computed, which may be impractical due to the
computationally expensive nature of most optical flow algo-
rithms. However, since there is no accumulation of errors in
individual flow fields, this variation is much more accurate
than the accumulative corrective flow. When possible, it
is recommended to use direct corrective flows instead of
accumulative corrective flows and such is what we use in
all our reported examples. Figure 4 shows the difference
between direct and accumulative corrective flows.

Whether using direct or accumulative corrective flow,
the resulting flow field will contain errors. These errors stem
from the underlying optical flow computations, which in
general have trouble handling motion discontinuities [4].

4)

Ci(x) ©)

Ji—1 Wi_1
J; Wi
Jit1 Wit1

Fig. 5. Frame warping. Left: a selection of reordered frames. Foreground
pixels are red, background pixels are green. Middle: warping steps for
the center frame J;. First the image is triangulated, followed by vertex
translation along the corrective flow. Stretched and flipped triangles,
shown with dashed edges, are culled before rasterization. Right: the
frames after warping, during infilling. Holes are shown as gray pixels.
The blue lines indicate which non-hole pixels from neighbor frames are
used to fill the holes in W;.

As both formulations of corrective flow combine multiple
optical flow fields, these errors are expected to accumulate.
We attempt to combat these errors by applying a bilateral
filter [23] to the corrective flow fields prior to using them
for warping. Qualitatively, the results appear to have fewer
artifacts with the bilateral filter than without it.

3.3 Frame Warping

To produce the output video, each frame J; in the reordered
sequence must be warped along its corrective flow field C;
to produce a sequence W of warped frames W;. This stage
of the pipeline is challenging for the following reasons.

o The corrective flows are forward mappings, requir-
ing a forward warping technique.

e The frames to be warped are not from contiguous
time segments in the source video.

e Thus the usual strategy of using adjacent frames to
help ameliorate occlusions, dis-occlusions, and holes
is not possible — an alternative approach is needed.

e We do not assume per-pixel depth information, so it
must be approximated.

3.3.1 Forward warping

The corrective flow defines a mapping from each pixel in
the input image to a location in the output image. This
mapping is not invertible — we cannot map each pixel in
the output image to a location in the input image due to
foldovers and disocclusions. If this were the case, warping
would be a simple matter of assigning to each pixel in the
output image the sampled color at the mapped location in
the input image. Since we only have a forward mapping, we
must employ a forward warping method to produce each
warped frame.

Unlike inverse warping, forward warping is challenging
for two reasons. First, not all pixels in the output image will



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 6

be mapped to. Divergent flows create disocclusions, which
appear as holes in the output image. These holes must be
intelligently filled to maintain image quality. Second, multi-
ple pixels in the input image might map to the same output
image pixel. This is primarily caused by occlusions, when
objects move to overlap one another in the output image.
In these cases, special consideration must be given to which
sample to display at the mapped location; i.e., which pixel
from the input image is visible in the output image. Forward
warping techniques can be found in frame interpolation [1],
[4] and view interpolation [19], [21]. However, these meth-
ods use information from neighboring frames or per-pixel
depth in order to resolve the aforementioned challenges. In
our case, the warped image W; is not an intermediate frame,
nor do we have per-pixel depth information, so we cannot
rely on the same occlusion reasoning logic.

We instead approximate per-pixel depth by using video
segmentation prior to warping. Our implementation em-
ploys the semi-supervised technique of Marki et al. [24]
to efficiently label pixels in all frames I; of the original
sequence (i.e., before reordering) as either foreground or
background. This labeling L; is a real-valued image, with
pixels in the range of [0,1] (foreground to background),
representing the label assignment as well as the confidence
of such assignment. It is later used to resolve occlusions.
Video segmentation is performed on the original sequence
instead of the reordered sequence because the segmentation
process relies on temporally cohesive regions within video
frames. The reordered sequence is less cohesive over adja-
cent frames than the original sequence, since neighboring
frames are from different repetitions.

To generate the warped image W;, we first convert the
input frame J; into a regular triangle mesh. Each pixel is
represented by a vertex located at the pixel coordinates, with
a vertex color equal to the input pixel color. Additionally,
each vertex is given a depth value according to the seg-
mentation labeling L;. A regular triangulation is constructed
from these vertices, with each triangle defined by a counter-
clockwise vertex ordering. Then, each vertex is individually
translated along its corrective flow vector to its destination
location, without altering connectivity. The resulting mesh
represents the warped frame, and is rasterized onto the
output image. Figure 5 illustrates this step.

3.3.2 Resolving occlusions and disocclusions

Disocclusions in the warped frame appear as stretched
triangles, which must be removed from the mesh before
rasterization. A triangle is determined to be stretched if its
area is greater than a multiple « of the original area, or if the
ratio of its longest edge to its shortest edge is greater than a
threshold . In practice, we have found that setting oo = 2
and 8 = 3 produces good results. These stretched triangles
are removed from the mesh prior to rasterization, creating
holes that are later filled.

Occlusions appear as folds in the mesh, with occlud-
ing objects represented by overlapping groups of triangles.
Some of these triangles are flipped, particularly those that
span occluding object boundaries. These flipped triangles
are detected by their clockwise vertex order, and are auto-
matically culled with back-face culling enabled. The remain-
ing front-facing overlapping triangles are also automatically

resolved by rendering with depth testing enabled. Back-
ground triangles have a greater depth value assigned by the
labeling, and thus will be occluded by foreground triangles.
In some cases, overlapping triangles will share depth values,
caused by a lack of true depth from the video segmentation
labels. The resulting pixel color in these cases is ambiguous,
determined by the rasterizer used. This is a limitation of our
method, and is likely grounds for future work.

After rasterizing the warped mesh onto the output
image, holes caused by disocclusions must be filled. This
process uses color information from neighboring frames in
the warped sequence (and not using neighboring frames in
the original sequence as is typically the case), thus this phase
must occur after all frames have undergone warping. As
part of the warping process, we produce a binary mask M;
to represent holes in the output image:

if x is not in a hole,
(6)

1 if xisin a hole.

Holes are then filled as follows:
Sy (Mi A=Migy) X Wig w(k)
D ohe—s (M A=Miy ) w(k)
)

In other words, each pixel that is in a hole in W; is filled
with the average color of pixels in neighboring warped
frames at the same location, that are also not in holes in
the neighboring warped frames, within some neighborhood
window size s. In Figure 5, holes are shown as gray pixels,
which are filled by neighboring warped frames. w(k) is a
weight function that can be uniform (i.e., w(k) = 1), or can
be chosen to reduce the influence of far away neighboring
frames (e.g., a Gaussian curve). In the above equation, x, +,
—, and A are all per-pixel operators.

As the corrective flow represents the flow to the average
frame configuration within a neighborhood, most disoc-
clusions caused by the warp are likely to be unoccluded
in some neighboring frames. Thus, we expect the above
algorithm to fill most holes caused by such disocclusions.
Still, it is possible that some holes remain after this filling
process. Any such remaining holes are filled by a simple
outside-in approach, where pixels in holes are filled by the
average color of neighboring non-hole pixels in the same
image, until all holes have been filled.

The resulting warped sequence exhibits the same general
motion as the input video, but at a much higher framerate
while also maintaining smoothness of motion. However, if
there are slight illumination changes between repetitions,
the output sequence appears to flicker. To reduce this effect,
we apply a smoothing operation on the output sequence,
whereby each warped frame is averaged with its two
neighboring frames. This substantially reduces the flickering
effect, at the cost of a small degree of additional blur.

W; =-M; x W; +

4 RESULTS

In this section, we show several results of our method. While
we include pictures in this section, we encourage the reader
to view our accompanying video for further results analysis.

The time to process a single video is dominated by
the optical flow calculation. We experimented with several



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 7

optical flow algorithms (i.e., [8], [15], [25], [26]), and found
that MDP-Flow [8] overall produces output with the fewest
visual artifacts, and hence is our preferred flow estimation
algorithm when time permits. MDP-Flow is, however, com-
putationally expensive, requiring on average 3.5 minutes to
compute the optical flow between a pair of frames for the
videos we have processed, typically around 512x512 pixels
in size. Using direct corrective flows, this can quickly add
up to days of computation time. We alternatively use PWC-
Net [15], which takes 4 seconds per flow on average using
a Nvidia GeForce RTX 2080. Depending on the number of
repetitions used and on the number of frames per repetition,
the total compute time for a video typically varies from
around 10 to 30 hours using PWC-Net.

4.1 Framerate increase

Figure 1 demonstrates the application of our method. The
top row displays a subset of frames from an input video in
their original order. Three repetitions of the overall motion
are visible, and in this example the positions of the left hand
and right foot are shown throughout the sequence. After
frame reordering (left), we obtain a non-repeating coherent
sequence. These frames are from separate repetitions, but
all occur at roughly the same point in time relative to the
period of motion. The global positions of features within
these frames are similar, but by zooming in on the hand
and foot, you can see that there are notable positional
differences between them. When played in a video, these
small differences become very evident and distracting. The
middle of the figure shows color-coded corrective flows for
the zoomed-in areas of each frame. The hand/foot features
are assigned different directions in each corrective flow field,
corresponding to the displacement towards the average
position of these features over a local neighborhood. The
reordered frames are then warped along their corrective
flows (right). In the closeups, the hand and foot are closer to
the same areas in each frame. When played in a video, the
resulting motion is smoother than before warping.

4.2 Frame reordering

During frame reordering, frames within the video sequence
are sorted according to their approximate position within
a repetition. However, since the motion is organic, it may
be difficult or even impossible to achieve an exact ordering
of frames. Despite this fact, the warping phase corrects
inconsistencies between repetitions, including those caused
by out-of-order frames. Thus, it is only necessary to obtain
a partial ordering of the video sequence in order to obtain
smooth results. Figure 6 demonstrates that even if the exact
sorted order is unknown, the warping phase can produce
reasonable results. Close-ups of a warped frame from three
different orderings of a sequence are shown. The left-most
frame shows the result of warping a completely manually
sorted sequence. It is considered as close to the perfect order
as possible. The other two frames show the result when
the sequence is only partially ordered. As the sequence
becomes less ordered, the quality degrades. These partial
orderings are generated by starting from the manually
sorted sequence, and introducing random swaps between
neighboring frames. The algorithm for generating a partial

P=0

Fig. 6. The effects of a partial ordering on the final results. Top: a
representative frame from a sequence of a horse on a treadmill. Bottom:
closeups of a front leg after warping under different partial orderings.
Left: the result of warping when the sequence is completely manually
sorted. Middle: warping with 20% random adjacent swaps. Right: warp-
ing with 50% random adjacent swaps.

g

Flow color

Direct flow

=
)

Fig. 7. Accumulative flow vs. direct flow. Accumulative flow is calculated
with increasing window sizes to demonstrate the accumulation of errors.
The closeups show the warped results paired with color-coded correc-
tive flow images. Direct flow is calculated with the largest window size
shown for accumulating flow, but there are far fewer artifacts.

Accumulating flow

ordering is as follows. N2 Bernoulli trials are performed
with a probability P. If a trial succeeds, then an index i
between 1 and N — 1 is uniformly randomly chosen and
frame J; is swapped with frame J; ;.

For the middle frame in Figure 6, P is set to 0.2. The
resulting frames contain more blur than those in the manu-
ally sorted sequence, but the motion in the video sequence
is still smooth. In the right-most frame, P is set to 0.5. The
images for this sequence contain even more blur, and the
video quality degrades significantly.

4.3 Corrective Flow

Corrective flow is calculated to counteract small differences
between repetitions. As previously mentioned, there are two
variations of corrective flow: accumulative corrective flow
and direct corrective flow. The former requires fewer optical



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 8

Accumulative Flow Direct Flow

>

n

&

o ‘ ‘*

n

oW

&

10 ’

n

Ay

[

o ’

o)

B
| |

n

@

2 )

w=1 w=>5 w =10 w =10

Fig. 8. Accumulative flow vs. direct flow at various framerates. For all
framerates, accumulative flows exhibit bigger noisef/irregularities due
to chaining of multiple optical flow fields. Both methods present less
irregularities at higher framerates but overall direct flow always presents
less error. See main text for further explanations.

flow fields to be calculated, but is much less accurate than
the latter. Figure 7 demonstrates the difference between the
two flows. For accumulative flow, the errors accumulate
with the window size w. This is because many optical
flow fields are chained together during calculation of the
corrective flow. At the largest window size shown, the flow
fields have a lot of noise around the object boundaries. On
the other hand, the direct flow is calculated at the largest
window size shown, but does not exhibit such artifacts.

Figure 8 further shows accumulative and direct correc-
tive flows but at various framerates, using the video shown
in Figures 9 and 15. Here it can also be seen that, for all
framerates, as the window size w increases, the accumula-
tive flow field gains more noise and irregularities (e.g., in
the background and the border of the moving foreground).
For example, at w = 10 and 8 FPS there is considerably
more noise/irregularities as compared to w = 1 and 8
FPS. At that same framerate, the direct flow appears less
noisy. Since we know the rigid background is not moving
(or at most is uniformly moving to the left as indicated by
the blueish tone), any color variation in the background is
incorrect. Similarly, the foreground objects (e.g., legs, arms)
are smoothly moving so irregularities on their borders is
an indication of incorrect flow. Further, we can observe in
general at higher framerates the overall noise/irregularities
is reduced (e.g., w = 10 at 60 FPS has less noise than at 8
FPS) but still direct flow presents itself better.

Ours

Splat size 1 Splat size 3

=7

Fig. 9. Mesh-based warping vs. splatting. At smaller splat sizes, holes in
stretched regions appear. Larger splat sizes fill in the holes, but produce
more pronounced staircase artifacts around the motion boundaries.

4.4 Frame Warping

Many existing methods (e.g., [1], [4], [19]) employ a
splatting-based approach for forward warping, while others
(e.g., [21]) use a mesh-based approach. While both ap-
proaches are capable of forward-warping images, splatting
a stretched region can produce holes in between mapped
samples that must be infilled. Further, if such a region oc-
cludes another region, samples from the occluded one may
be visible though these holes, creating errors for infilling. A
mesh-based approach, on the other hand, treats the image
as a continuous surface, thus holes in general do not appear
unless triangles are removed. The surface representation
also automatically resolves occluded regions by simply ras-
terizing with backface culling and depth testing enabled.
Figure 9 compares our warping technique to a simple
splat-based approach, which draws colored pixels at each
input pixel’s destination according to its corrective flow vec-
tor, as in Equation 2. With 1x1 pixel splats, stretched regions
create holes in the output image. Increasing the splat size to
3x3 pixels can fill in these holes, but the motion boundaries
suffer from the larger splats, creating “chunky” regions. Our
mesh-based approach has neither of these limitations.

4.5 Comparison to frame interpolation

To evaluate the results of our method, we compare to two
state of the art frame interpolation methods, DAIN [14] and
SepConv [10]. Starting with a video of a bicyclist recorded
at 240 FPS, we reduce the framerate to 8 FPS by removing 29
of every 30 frames from the sequence. Since normally there
will be significant motion blur for low framerate videos, the
remaining frames (keyframes) are blended with the adjacent
29 removed frames to simulate a longer exposure time. We
also generate a non-blended version to study the effects of
our method on sharp image content.

We apply our method and both frame interpolation
methods to these reduced framerate videos. For frame in-
terpolation, we generate 29 intermediate frames between
each pair of keyframes to bring the output framerate back
to 240 FPS. Since both of these methods generate a single
interpolated frame halfway between both input frames, we
apply each method recursively in a binary search pattern,
using intermediate interpolated frames as input, to obtain



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 9

the desired number of interpolated frames between each
pair of keyframes. For our method, we limit ourselves to
using 30 repetitions of the reduced framerate video, to bring
the output framerate to approximately 240 FPS. Our actual
output framerate is not exactly 240 FPS due to differences in
speed between repetitions.

The result of each method is compared to the ground
truth, which is the original 240 FPS video without discarding
any frames. A simulated motion blur version is also gen-
erated by blending together every 30 frames, but without
removing any from the sequence. This resembles a high
framerate video with overlapping exposure times.

The comparison is done using the CW SSIM metric [27],
which measures structural similarity between images while
reducing the impact of localized spatial transformations.
This is important because our method warps image con-
tent to its average position over many repetitions, thus its
shape is slightly different from the original video and frame
interpolation. Additionally, each repetition in the original
sequence has a slightly different duration, while our method
outputs a single repetition with the average duration. To
ensure our output is synchronized with the ground truth,
we compare to a single repetition with a longer duration
than our output, and drop frames from the ground truth and
both interpolation outputs such that the keyframes occur at
the same frame number in all outputs.

Figure 10 shows the results of these comparisons. With-
out motion blur, neither frame interpolation method is able
to accurately reconstruct the ground truth for intermediate
frames that are far from keyframes (i.e., halfway between
two keyframes). The interpolated frames have significant
artifacts because the motion between the two keyframes is
too large. Our results do not depend on distance between
keyframes, and the visual quality is vastly improved be-
cause the reordered frames are warped to a far lesser extent.
Near keyframes, the distortion in the frame interpolation
outputs is greatly reduced. For the simulated motion blur
results, there is still distortion in the frame interpolation
outputs, but the image content is much more forgiving.

The CW SSIM values are plotted in Figure 11. The metric
is calculated on a subregion of each frame, highlighted in
Figure 10, that excludes largely-static regions. Each peak
corresponds to a keyframe, at which the frame interpo-
lation error is zero. Interpolation error is evident in the
valleys between keyframes. While both frame interpolation
methods show a regular oscillation in error, our method’s
performance is irregular. This is because each consecutive
frame of our output is from a different point in the original
sequence. While our results are never as high as frame in-
terpolation near keyframes, there is overall less error in the
areas between keyframes without simulated motion blur.
With the simulated blur, all methods have lower error and
the relative differences are less obvious. Nonetheless our
method tends to show better values in between keyframes.

In both cases, with and without simulated motion blur,
frame interpolation fails to accurately capture the motion
that occurs between keyframes. Whereas the ground truth
motion of the feet is smooth and circular, the frame in-
terpolation outputs exhibit a piece-wise linear transition
between feet positions in the keyframes. Still images are
insufficient to observe this behavior; we refer the reader to

our supplementary video for examples of this motion.

It is worth noting that, because the frame contents in
our results are slightly different from the original video, a
quantitative comparison will be biased towards frame inter-
polation results. The use of CW SSIM is intended to reduce
this bias by allowing for localized spatial transformations,
but it is very difficult to eliminate the bias completely. This
metric also does not take into account temporal motion
smoothness, and only looks at individual frame similarity.

4.6 Varying framerates and repetitions

We study the performance of our method given different
framerates and number of repetitions as input. Implicitly,
this analysis depends on the speed of the recorded motion,
thus the absolute numbers reported are not universal — it
does show, however, how repetitions can be used to effec-
tively slow-down a video to rates beyond that possible using
a single repetition. In Section 4.5 we reduce the framerate
of a 240 FPS video to 8 FPS. In a similar manner, we also
generate versions of this video at 2, 4, 15, 30, 60, and 120 FPS,
and apply simulated motion blur to each. These videos are
processed with our method, using the appropriate number
of repetitions to restore the output framerate back to 240 FPS
(e.g., for 15 FPS input, we use 16 repetitions).

For each reduced-framerate input video, we also alter the
number of repetitions that are used, producing different out-
put framerates. For example, with a 15 FPS input video, we
use 2, 4, 8, and 16 repetitions to produce output framerates
of 30, 60, 120, and 240 FPS, respectively. Outputs from all
combinations of input framerate and number of repetitions
are evaluated against their respective ground truth videos,
which are generated as in Section 4.5, along with dropping
frames to match the output framerates.

We compare our results for each of these combinations
to a simple optical flow-based frame interpolation method,
which behaves as follows. Adjacent keyframes are warped
along their optical flows towards an intermediate frame,
proportionally according to the interpolated frame’s times-
tamp. These warped keyframes are blended proportionally
to produce the intermediate frame. This frame interpolation
method is applied to all combinations of input framerate
and number of repetitions, producing videos with the same
output framerate as our method and the ground truth.

Both our method and frame interpolation are evaluated
quantitatively against ground truth using the CW SSIM met-
ric [27]. Figure 12 shows the results of these comparisons.
Each combination of framerate and number of repetitions is
represented by a cell in the graph, colored according to the
difference between the CW SSIM index for our results and
that for frame interpolation, both using the ground truth as
the baseline. A green cell indicates our result is closer to
ground truth than frame interpolation. The CW SSIM index
is calculated per frame, then averaged over the duration of
the video to produce the values in the graph.

These values indicate that our method performs better
at lower input framerates and with more repetitions. At
higher framerates, with less motion in between frames,
frame interpolation performs better than our method. At
very low framerates, a single frame occupies a very large
portion of the period, so most of the motion is lost, and



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 10

9[1]'81}1{9){ woay req

aureljAoy IeoN

.
SepConv

Ours

Ground truth AIN

3[1]'81}1{9)’[ woay req

aureIjAoy IeoN

&/
SepConv

Ours

Ground truth AIN

Fig. 10. Comparison to frame interpolation methods, with and without blur, for output frames near a keyframe and near the halfway point between
keyframes. Left: results without simulated motion blur. The large motion between keyframes introduces errors to frame interpolation methods,
whereas our results are mostly without artifacts. Right: results with simulated motion blur. All methods perform better, but the blur obscures most
details. Note: the shown ground truth is for the frames corresponding to far from keyframe (top row, which represents frame 46 in Figure 11).

Without Motion Blur

0 20 40 60 80 100 120

Lo With Motion Blur

CW SSIM index

0.9
0.8
0.7
0.6

0'5() 20 40 60 80 100 120

Frame number — DAIN
— SepConv
— Our method

Fig. 11. Plot of CW SSIM against the ground truth, for a single output
repetition, evaluated within the highlighted region in Figure 10. The
peaks correspond to keyframes in the input, and the highlighted columns
correspond to the compared frames in Figure 10. Our method performs
comparably to frame interpolation in the presence of motion blur, and
performs slightly better without motion blur.

neither method performs well. Note that while these results
seem to indicate that our method only works best at low
framerates, we are actually able to produce high quality
videos at much higher speeds. The black cells in Figure
12 would have higher output framerates than the original
video, thus we have no ground truth datasets to compare to
so we leave the cells empty.

We also provide a qualitative comparison to frame in-
terpolation in the form of a user evaluation. 20 partici-
pants, aged 24 to 36, were presented 42 pairs of videos in
random order, and asked to choose which video in each
pair appeared more natural. Each pair contained our results
alongside frame interpolation results, with two pairs for
each combination of framerate and number of repetitions
(one with our results on the left, and the other with our

%1072
120

60

30

n

=

S

:)‘; 16 —0.002 = 4.52

~ e

B3
8 —4.098 —2.564 = 5.867 4.461 —0.36
4 —3.587. 5.543 | 2.034 -0.241
21-0.519 —0.941 —2.711 —4.248 —1.473 —1.142 —0.478

120 FPS 60 FPS 30 FPS 15 FPS 8 FPS 4FPS 2FPS

Framerate

Fig. 12. Quantitative comparison of our method vs. frame interpolation,
measured by CW SSIM. Each cell is a combination of framerate and
number of repetitions, with the value as difference between our method
and frame interpolation, scaled by 102 (i.e., green means our method is
more similar to the ground truth, and red means it is less similar).

results on the right). Participants had no knowledge of
which video corresponded to which result set.

Figure 13 shows the results of the user study. Each
cell represents a combination of framerate and number of
repetitions, with each cell listing the proportion of responses
that favored our results over frame interpolation. Overall,
users found that our results looked more natural than frame
interpolation for lower framerates with many repetitions,
but were less decisive about combinations of high framer-
ates and fewer repetitions. We highlight that the quality of
an output video is inherently subjective, and quantitative
metrics are limited in their ability to capture such aspects.
Thus, the results of the subjective experiment perhaps are
more useful than the quantitative results.

We show results at different framerates and repetitions
in Figure 14. On the left of each image-pair is an image
from frame interpolation, and on the right is the same frame



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 11

60

30

—_
SN

# Repetitions
oo

2 0.125

0.525

0.375  0.275 0.65 0.225

120 FPS 60 FPS 30 FPS 15 FPS 8 FPS
Framerate

4 FPS

Fig. 13. Quality comparison of our method vs. frame interpolation, as
evaluated by user study participants. Each cell represents a combina-
tion of framerate and number of repetitions, with the value being the
proportion of user selections that favor our results over those of frame
interpolation.

from our results. As framerate decreases, the amount of blur
predictably increases. In the middle set, frame interpolation
appears to have more noticeable artifacts than our method,
despite scoring closer to the ground truth. In the right-most
set, one can clearly see strong artifacts with frame inter-
polation due to optical flow failing to correspond between
neighboring frames with a lot of motion. Our results, on the
other hand, look much cleaner.

Additionally, we show a comparison to frame interpo-
lation methods DAIN [14] and SepConv [10] for various
framerates using another video (Figure 15). The original
version of this video was filmed at 60 fps, and reduced-
framerate versions were created by dropping frames. For
each reduced-framerate version, we apply our method using
20 repetitions (i.e., 20x slowdown), and also apply frame in-
terpolation on a single randomly-chosen repetition, produc-
ing 19 intermediate frames between each pair of keyframes.
Figure 15 shows closeups of interpolation artifacts taken
from a center intermediate frame (i.e., equidistant between
two keyframes), along with the corresponding warped
frame produced by our method. The frame interpolation re-
sults display visual artifacts, especially at lower framerates,
due to the large motion in between keyframes, whereas our
results appear to have fewer artifacts at all framerates.

4.7 Background stabilization

While this work focuses on ensuring the subject undergoes
smooth motion throughout the sequence, a side effect of
warping is that the background becomes stabilized. Espe-
cially in the cases of hand-held cameras, the background can
move relative to the subject. Since frames from many dif-
ferent repetitions are reordered, it is likely that consecutive
frames in the reordered sequence will have very different
camera positions, and the background will appear to shift
significantly. Because optical flow is a dense mapping, the
corrective flow will also account for the movement of the
background. Thus, after warping, the background will stabi-
lize, even if it moves independently from the object of focus.

Figure 16 demonstrates this property by comparing blended
frames from before and after warping. Before warping, two
consecutive frames display the shift in the background,
while after warping, the same two frames are aligned.

4.8 Applications

The proposed technique lends itself to some interesting
applications. The most obvious would be playback of semi-
repetitive videos in super slow motion. This could be to
achieve a particular impact on the viewer, or to assist in sci-
entific analysis of fast, repetitive processes (e.g., movement
of humans, wing motion of a hummingbird).

Another side-effect of applying our method is that the
resulting video exhibits seamless, infinite looping. While
the original video may have many repetitions, there is often
a sharp discontinuity between the last and first repetitions
when played repeatedly. The output of our pipeline, how-
ever, has no such discontinuity because all repetitions are
merged into one. This can be useful if the intended ap-
plication requires repeating the video for an undetermined
amount of time (e.g., in video games).

There is also potential for our method to assist in video
motion deblurring. Deblurring is considered to be an ill-
posed problem because frequency information is lost in the
blurred frames. However, Agrawal et al. [28] have shown
that an invertible point-spread function (PSF) can be con-
structed from multiple exposures of the same motion by
varying the exposure time. In a similar fashion, a sharp
frame can be recovered from multiple blurry exposures
that contain that same instant in time. If we consider each
repetition of an input video to cover the same interval in
time, then frames from different repetitions overlap in time,
allowing us to recover sharp frames corresponding to the
overlapping time intervals. Figure 17 shows preliminary
results of such a video deblurring method. However, this
only works if the motion is exactly repetitive. If the motion
is only semi-repetitive, such as the videos used in this work,
then the overlapping exposures contain different motions,
making deblurring more challenging. Our technique may
enable deblurring of such semi-repetitive videos, since all
repetitions are combined and warped, effectively creating
exactly repetitive motion. This is potential future work.

5 LIMITATIONS AND FAILURE CASES

Our approach is mainly limited by the amount and type of
repetitions in the input video as well as the ability to com-
pute an optical flow. If the motion is not repetitive enough,
or there are significant changes in lighting or background,
our method will not produce a high-quality output. There is
also an issue if the motion is exactly repeating, without any
phase offset between repetitions (i.e., each repetition con-
sists of the exact same set of frames repeated). In this case,
there is nothing to be gained from reordering and warping,
since there is no extra information to take advantage of.
Our method also depends on the quality of the optical flow
between adjacent frames in the reordered sequence.

Additionally, we are currently constrained to a single
period of motion within a video. Multiple objects simul-
taneously undergoing repetitions of different lengths are
problematic, because the duration of repetition determines
the order of frames in the output video.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 12

1 ]
Our method

60 FPS, 4 repetitions

- \
Frame interpolation

Frame interpolation

30 FPS, 8 repetitions

Frame interpolation Our method

8 FPS, 30 repetitions

. \
Our method

Fig. 14. Frames comparing our results to frame interpolation using 60 FPS and 4 repetitions (left), 30 FPS and 8 repetitions (middle), and 8 FPS

and 30 repetitions (right).

Input frame

30 FPS

DAIN SepConv Ours DAIN SepConv

Fig. 15. Comparison to frame interpolation methods at various framer-
ates. Visual artifacts in the frame interpolation results can be clearly
seen at lower framerates (8 FPS), while at higher framerates (15 and 30
FPS) they start to disappear. Artifacts in our results are less noticeable
at all framerates.

Before warping

After warping

Fig. 16. Background stability. Closeups show blends of two frames,
focused on a portion of the background. Before warping (left closeup),
the background is shifted due to different camera positions between
repetitions. After warping (right closeup), the background is aligned.

Fig. 17. Deblurring. A blurry video of a spinning fan (left) is deblurred
using overlapping time segments (right).

6 CONCLUSIONS AND FUTURE WORK

We have presented a method to transform semi-repetitive
videos into high-framerate versions that can be played back
in slow motion. As opposed to existing techniques that
rely on frame interpolation, our method only uses existing
frames, capitalizing on the extra motion information gained
by repeated movements. We achieve extremely slow mo-
tion by reordering all repetitions from the original video
into a non-repeating coherent sequence, and then warping
individual frames such that the resulting motion remains
smooth. Our pipeline requires minimal user input, and is
shown to recover motion details that are lost with existing
methods. We have demonstrated the effectiveness of our
technique through quantitative and qualitative experiments.
As future work, we foresee several items. For instance,
a deep learning based warping method might assist in
providing smoother motion output. Further, although we
use current video stabilization methods, further stabilization
between the different repetitions can be improved. Finally,
we may investigate the possibility of multiple repetition
periods, involving motion segmentation, as well as the
previously mentioned video deblurring extension.

ACKNOWLEDGMENTS

This work is funded by NSF 1816514, 10001387, and
NSF 1835739, and Manuel M. Oliveira acknowledges
CNPq-Brazil fellowships and Grants 312975/2018-0 and
423673/2016-5.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?, ??? 20?? 13

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

E. Herbst, S. Seitz, and S. Baker, “Occlusion reasoning for tem-
poral interpolation using optical flow,” Department of Computer
Science and Engineering, University of Washington, Seattle, WA,
Tech. Rep. UW-CSE-09-08-01, 2009.

H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and
J. Kautz, “Super slomo: High quality estimation of multiple inter-
mediate frames for video interpolation,” in Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

S. Meyer, O. Wang, H. Zimmer, M. Grosse, and A. Sorkine-
Hornung, “Phase-based frame interpolation for video,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 1410-1418.

S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and
R. Szeliski, “A database and evaluation methodology for optical
flow,” International Journal of Computer Vision, vol. 92, no. 1, pp.
1-31, 2011.

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of
optical flow techniques,” International Journal of Computer Vision,
vol. 12, no. 1, pp. 43-77, 1994.

B. K. Horn and B. G. Schunck, “Determining optical flow,” Artifi-
cial intelligence, vol. 17, no. 1-3, pp. 185-203, 1981.

B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in Proceedings of
the 7th International Joint Conference on Artificial Intelligence, vol. 2,
1981, pp. 674-679.

L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical
flow estimation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 9, pp. 1744-1757, 2012.

T. Brox and ]. Malik, “Large displacement optical flow: descriptor
matching in variational motion estimation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 500-513,
2011.

S.Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adap-
tive separable convolution,” in Proc. IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 261-270.

S. Niklaus and E. Liu, “Context-aware synthesis for video frame
interpolation,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Z.Liu, R. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame syn-
thesis using deep voxel flow,” in Proc. IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 1742-1750.

S. Meyer, A. Djelouah, B. McWilliams, A. Sorkine-Hornung,
M. Gross, and C. Schroers, “Phasenet for video frame interpola-
tion,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

W. Bao, W.-S. Lai, C. Ma, X. Zhang, Z. Gao, and M.-H. Yang,
“Depth-aware video frame interpolation,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

D. Sun, X. Yang, M.-Y. Liu, and ]. Kautz, “Pwc-net: Cnns for
optical flow using pyramid, warping, and cost volume,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

G. Long, L. Kneip, J. M. Alvarez, H. Li, X. Zhang, and Q. Yu,
“Learning image matching by simply watching video,” in Proc.
European Conference on Computer Vision (ECCV), 2016, pp. 434-450.
A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning op-
tical flow with convolutional networks,” in Proc. IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 2758-2766.

E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep
networks,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

J. Shade, S. Gortler, L.-w. He, and R. Szeliski, “Layered depth
images,” in Proc. SIGGRAPH '98. ACM, 1998, pp. 231-242.

L. McMillan and G. Bishop, “Head-tracked stereoscopic display
using image warping,” in Stereoscopic Displays and Virtual Reality
Systems II, vol. 2409. International Society for Optics and Photon-
ics, 1995, pp. 21-31.

W. R. Mark, L. McMillan, and G. Bishop, “Post-rendering 3d
warping,” in Proceedings of the 1997 Symposium on Interactive 3D
graphics. ACM, 1997, pp. 7—ff.

J. Yu and R. Ramamoorthi, “Selfie video stabilization,” in Proc.
European Conference on Computer Vision (ECCV), 2018.

[23] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. IEEE International Conference on Computer Vision
(ICCV), 1998, pp. 839-846.

[24] N.Mairki, E. Perazzi, O. Wang, and A. Sorkine-Hornung, “Bilateral
space video segmentation,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 743-751.

[25] G.Farnebick, “Two-frame motion estimation based on polynomial
expansion,” in Scandinavian conference on Image analysis. Springer,
2003, pp. 363-370.

[26] M. Drulea and S. Nedevschi, “Total variation regularization of
local-global optical flow,” in Intelligent Transportation Systems Con-
ference (ITSC), 2011, pp. 318-323.

[27] Z. Wang and E. P. Simoncelli, “Translation insensitive image
similarity in complex wavelet domain,” in Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
vol. 2, 2005, pp. ii-573.

[28] A. Agrawal, Y. Xu, and R. Raskar, “Invertible motion blur in
video,” in ACM Transactions on Graphics (TOG), vol. 28, no. 3, 2009,
p- 95.

Chris May is currently a PhD student at Pur-
due University as well as a graduate research
assistant. He received a BS degree in computer
science from Purdue University West Lafayette
in 2013. His research interests include computer
graphics, image processing, 3D reconstruction,
and urban modeling.

Manuel M. Oliveira is a Full Professor at
the Federal University of Rio Grande do Sul
(UFRGS) in Brazil. He received his Ph.D. from
the University of North Carolina at Chapel Hill in
2000. Before joining UFRGS in 2002, he was an
assistant professor at SUNY Stony Brook (2000-
2002). In the 2009—2010 academic year, he was
a visiting associate professor at the MIT Media
Lab. His research interests cover most aspects
of computer graphics, especially in the fron-
tiers among graphics, image processing, pattern
recognition, and vision (both human and machine). He is an associate
editor of ACM TOG and a former associate editor of IEEE TVCG and
IEEE CG&A.

Daniel Aliaga is an Associate Professor of Com-
puter Science at Purdue University. He obtained
his Ph.D. and M.S. degree from UNC Chapel Hill
and his B.S. degree from Brown University. Dr.
Aliagas research is primarily in the area of 3D
computer graphics but overlaps with computer
vision. His research is in the multi-disciplinary
area of urban inverse modeling and design,
codifying information into images and surfaces,
and visual computing frameworks including high-
quality 3D acquisition methods. To date Prof.
Aliaga has over 110 peer reviewed publications and has chaired and
served on numerous ACM and IEEE conference and workshop commit-
tees.



