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Abstract—We propose a novel approach for the reconstruction of urban structures from 3D point clouds with an assumption
of Manhattan World (MW) building geometry; i.e., the predominance of three mutually orthogonal directions in the scene. Our
approach works in two-steps. First, the input points are classified according to the MW assumption into four local shape types:
walls, edges, corners, and edge-corners. The classified points are organized into a connected set of clusters from which a
volume description is extracted. The MW assumption allows us to robustly identify the fundamental shape types, describe the
volumes within the bounding box, and reconstruct visible and occluded parts of the sampled structure. We show results of our
reconstruction that has been applied to several synthetic and real-world 3D point datasets of various densities and from multiple
viewpoints. Our method automatically reconstructs 3D building models from up to 10 million points in 10 to 60 seconds.
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1 INTRODUCTION

AUTOMATIC reconstruction of urban structures
has attracted the attention of researchers from

many different areas and it has found its way into
numerous applications such as mapping, navigation,
and computer-aided design. Common desires include
automation in the reconstruction process of one or
more buildings, robustness to noise in the measure-
ments/observations, the ability to cope with missing
data (e.g., due to occlusions), and the capacity to
handle datasets of different sampling densities within
a single scan or amongst various scans.

Numerous reconstruction methods in computer
graphics specialize in specific types of objects (e.g,
buildings and facades [1], [2], [3]) in order to make
assumptions about the sampled geometry, and focus
on customizing the reconstruction process of generic
objects according to specific modeling and rendering
objectives (e.g., [4], [5], [6]). State-of-the-art methods
for reconstructing 3D geometry from range scans and
photographs, including those focused on buildings
and facades, focus on issues related to data quality
and data completeness. On the one hand, methods
based on photographs (e.g., structure from motion or
dense stereo [7]) provide a relatively dense sampling
of a building’s exterior and, given a sufficiently large
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number of images, a sufficiently complete sampling
can be obtained as well. However, dense correspon-
dences need to be robustly and accurately established
to obtain range data. On the other hand, 3D laser
scans omit the dependence on dense correspondence
to obtain range measurements, but the sampling
density and sampling completeness can vary signif-
icantly during scanning, especially when capturing
large structures such as buildings. Scanning can be
improved by laboriously using many laser scans (e.g.,
[8]), but in general it is impractical to obtain a large
number of scans of a building’s exterior.

The main idea of our work is to incorporate as-
sumptions about building geometry to improve 3D
laser-scanning reconstruction. While some methods
pursue a local analysis in order to complete relatively
small areas of missing samples (e.g., [9], [10]), these
approaches cannot handle large missing areas and
typically assume a dense sampling most everywhere
else. Instead, we make assumptions about the possible
geometrical configurations of the building and use
them to limit the possible 3D shapes. This enables
robustly extracting the underlying 3D building model
even from sparse and incomplete 3D point clouds.
One such family of geometrical configurations are
buildings belonging to a Manhattan world (MW) [11]
which contains structures with a predominance of
three mutually orthogonal directions. The MW as-
sumption has been used in several methods to obtain
3D structure from images capturing building interiors
(e.g., [12]) and exteriors (e.g., [13], [14]).

We propose the first solution, to the best of our
knowledge, which uses the MW assumption to en-
able the automatic and robust calculation of complete
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Fig. 1. System Pipeline. a) The input to our system consists of unorganized 3D point clouds. b) A local surface
description type is assigned to each point. c) Typed points are organized into a connected set of clusters
from which a volume description is extracted. For purposes of visual evaluation, the reconstructed volume is
superimposed over the original point set, including noise and obstacles (d), and textured with photographs of the
buildings (e).

building masses from unorganized 3D point clouds
obtained from ground-level 3D laser scans, or LIDAR
(Figure 1). Our approach uses the following three key
observations:

• surface description - the local geometry repre-
sented by points sampling a MW building can
be described by at most one of four fundamental
types that are robustly identifiable and can be
used in subsequent automatic processing (tWall,
tEdge, tCorner, tEdgeCorner);

• volume description - since the buildings con-
tain only axis-aligned planes, it is possible to
describe the volumes within the bounding box
of the building that are inside and outside of
the building mass, even for non-convex building
masses; data that do not belong to the planes can
be quickly discarded, and

• data description - the data described in the mul-
tiple axis-aligned planes is inherently redundant;
this results in the ability to robustly reconstruct
portions of a building not observed from one
view direction but indirectly included in others.

Our approach consists of two main steps. The first
classifies each 3D point by a surface description type.
As shown in Section 3.1, in a MW building there are
47 possible local surface shapes which, after consid-
ering symmetries due to rotations and flips, can be
classified into four fundamental types: walls, edges,
corners, and edge-corners. To determine each point’s
classification, the algorithm inspects the local point
neighborhood and analyses the compatibility of the
classification with all neighboring points. In the sec-
ond step, the building mass is reconstructed from the
classified points. The classified points are organized
into a connected set of clusters from which a volume
description is extracted. Each point cluster describes
a portion of a wall that is connected to neighboring

clusters via edges and/or corners. The connected
clusters are then represented by an adaptive set of
quadrilaterals obtained from recursive subdivision. A
ray-casting algorithm is then used to calculate the
interior and exterior volumes of the building from the
quadrilaterals. The large set of small volumes that col-
lectively represent the building mass is then coalesced
and simplified to provide a polygonal description of
the MW building.

Our approach has been applied to several synthetic
and real-world 3D point datasets of various densities,
from multiple viewpoints, and with up to 10 million
points, that resulted from capturing a single build-
ing. Scans sampling more than one building need
to be previously segmented. Point sample density in
reconstructed areas ranged from under ten to a few
hundred points per square meter. All processing is
automatic and operates on a standard desktop PC.
Our reconstructions are processed from unorganized
3D point clouds in 10 to 60 seconds per building
running on a single core of the CPU.

2 PREVIOUS AND RELATED WORK

As previous work we focus on methods that use un-
organized 3D point clouds, obtained from laser scans
or LIDAR devices. A first group of methods focus
on reconstructing buildings geometry from airborne
LIDAR data. In general, this group of approaches con-
centrates on reconstructing roofs, producing building
footprints, and/or computing 2.5D building models.
The body of work in this area is large, thus we
highlight some recent papers. Zhou and Neumann
[15] proposed a streaming framework for reconstruct-
ing buildings from large aerial LIDAR datasets and
Poullis and You [16] an automatic 2.5D reconstruc-
tions from aerial data. Matei et al. [17] describe how
to obtain buildings in dense urban areas. Verma et
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al. [3] focus on segmenting points belonging to the
roof surface and to the ground surface, and then fit
a collection of roof models chosen from an a priori
defined set. While a recent work by Kelly and Wonka
[18] could be used to create additional geometry
for the 2.5D reconstructions generated by this type
of methods, their work infers facade geometry by
procedurally extruding the building footprint, and
will not use sampled data to guide the modeling
process. Numerous approaches have been proposed
in the areas of photogrammetry and remote sensing
and we refer the reader to the survey by Tarsha-Kurdi
et al. [19] for additional works.

Some reconstruction methods use assumptions
about the underlying geometry in order to improve
robustness (e.g., [20], [21]). In building reconstruction,
the assumption of planarity is one of the most com-
mon but it alone does not always result in complete
and closed 3D models. The library of assumed primi-
tive shapes can be expanded to include more complex
shape priors. Lafarge et al. [22] uses a library of 3D
parametric blocks for reconstructing simple building
models, Nan et al. [1] uses boxes to reconstruct build-
ing models from LIDAR data and relies on user input
to guide the reconstruction process.

A second group of methods focus on reconstructing
the facades of buildings, often using ground-based
scans. For example, Liu and Stamos [23] register 2D
images to 3D ground-level scans. Zheng et al. [2]
use global consolidation and manual input to com-
plete partial scans of building facades, and Früh and
Zakhor [13] generated textured facade meshes from
laser scans obtained while driving on public roads.
It is worth noting that many image-based methods
also focus on facades and produce good results but
typically require user intervention.

Several hybrid and more specialized approaches
have also been proposed that combine the previous
two groups. Früh and Zakhor [24] merge scan data
with images to obtain urban models. Grammar based
methods join procedural modeling with terrestrial and
aerial range data to detect and parse 3D point clouds
of buildings [3], [14], and to complete and reconstruct
building models. However, the reconstruction efforts
require significant manual input in the form of man-
ual model editing or specifying the grammar [25].
Progress has been made in automating the discovery
of the procedural rules that form the underlying
building grammar (e.g., [26]), but to our knowledge
such has not been applied to noisy unorganized 3D
point clouds resulting from laser scans. Our approach
builds upon the MW assumption first proposed by
Coughlan and Yuille [11]. Starting with 2D images,
the MW assumption has been used to reconstruct
building interiors [12] and exteriors [27], [14]. Related
to our approach is the work of Schindler and Bauer
[28] who propose shape priors but applied only to
facade-level details. Haala et al. [29] fit a piecewise

planar boundary representation to LIDAR data, but
assume the 3D points are triangulated and a building
floor plan is provided beforehand.

3 SURFACE DESCRIPTION

Our approach for building reconstruction proceeds
in two main steps (Figure 2). First, input 3D points
are classified by calculating the local surface shape
classification. The classification eliminates unwanted
points from the dataset, provides robustness to noise,
and later helps to complete missing data. In particular,
since within a point’s neighborhood there might be
points from surfaces at different orientations, explic-
itly classifying points as belonging to either segments
of walls, corners, or edges is useful to recover local
shape. In the second step, the building volume is
described by merging the classified points and filling-
in the volume. The classification provided by the
first step implicitly indicates the connectivity between
different faces of the model.
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Our approach builds upon the Manhattan-world 

assumption first proposed by Coughlan and Yuille [3]. 

Starting with 2D images, the MW assumption has been 

used to reconstruct building interiors [6][10] and exteriors 

[5][23]. Related to our approach is the work of Schindler 

and Bauer [19] who propose shape priors but applied only 

to façade-level details. Haala et al. [7] fit a piecewise 

planar boundary representation to LIDAR data, but 

assume the 3D points are triangulated and a building floor 

plan is provided beforehand. Toldo and Fusiello [XX] 

classify points to a distinct set of planes; however, their 

method does not provide our additional classification as 

edges and corners and their approach does not clearly 

scale efficiently to millions of 3D points. In contrast, we 

use the MW assumption to define a compact and complete 

set of shape priors. Further, our method is able to process 

millions of points in one minute or less, produces 

complete 3D building mass models despite strong 

occlusions and varying density levels of unorganized 3D 

point clouds, and does not require any prior assumption of 

triangulation or floor plan knowledge.  

3. Surface Description 

Our approach for building reconstruction proceeds in 

two main steps (Figure 2). First, input 3D points are 

classified by calculating the local surface shape 

classification. The classification eliminates unwanted 

points from the dataset, provides robustness to noise, and 

later helps to complete missing data. In particular, since 

within a point’s neighborhood there might be points from 

surfaces at different orientations, explicitly classifying 

points as belonging to either segments of walls, corners, or 

edges is useful to recover local shape. In the second step, 

the building volume is described by merging the classified 

points and filling-in the volume. The classification 

provided by the first step implicitly indicates the 

connectivity between different faces of the model. 

It is worth nothing that in our method we do not assume 

sampled points to be exactly located at walls, corners, or 

edges – instead, we classify the local shape around each 

point and find a potentially different, but nearby, pivot 

point. A pivot point corresponds to the corner point or to a 

point on the edge axis. Thus, a building corner can lie “in 

between” point samples.  

Without loss of generality, we assume the point cloud 

has been rotated so that the dominant triple of directions in 

the MW world are aligned with the  -,  -, and  -axis.  

3.1. Manhattan World Local Shapes 

Three predominant surface directions in MW geometry 

give rise to three possible surface normal directions and 

four fundamental local shape types. The local shape 

surrounding a point of a MW surface manifold must 

belong to one of tWall, tEdge, tCorner, tEdgeCorner 

(Figure 3). Each shape type has several possible directions 

and rotations. The signed direction indicates the dominant 

orientation of the shape (i.e., along the positive or negative 

     or   axis) -- an unsigned direction implies the same 

shape type can be oriented in either direction. Each shape 

type can also be rotated around the axis of the given 

direction (i.e., a rotation by          or     ). Using the 

aforementioned shape types, tWall has 3 unsigned 

directions, and 1 unique rotation per direction, for a total 

of 3 tWall types. Shape type tEdge has 3 unsigned 

directions and 4 unique rotations per direction, for a total 

of 12 tEdge types. Shape type tCorner has no orientation 

and 8 unique rotations. Shape type tEdgeCorner has 3 

signed directions and 4 unique rotations per direction, for 

a total of 24 tEdgeCorner types. Altogether, there are 47 

possible local shapes in a MW building, but each can be 

described by one of four fundamental shape types. 

In unorganized 3D point clouds, the surface normal or 

local point connectivity information needed for estimating 

the local shape is typically not provided but can be 

estimated from the local neighborhood of each point. The 

optimal neighborhood size to estimate the fundamental 

shape type depends on the local density of the sample 

points and on the amount of the noise in the input samples. 

In practice, the point sample density varies and point 

samples have error. Thus, in order to determine a plane, 

the neighborhood must contain at least three points but 

having more points is beneficial. 

3.2. Shape Classification 

The classification of a MW point sample    
          , for        , is achieved by defining a 

neighborhood ball around the sample point, determining 

the value of a fitting function to the MW planes, 

computing the pivot points of such planes, and 

determining the direction and rotation of the 

corresponding shape type. The pivot point is the center of 

the shape type about which the local surface produces the 

edges of the shape type; however, the pivot point does not 

need to coincide with the point’s location but is expected 

to be nearby. Further, the initial shape types are refined 

Figure 2. System overview. 
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Fig. 2. System overview.

It is worth noting that our method does not assume
sampled points to be exactly located at walls, corners,
or edges - instead, we classify the local shape around
each point and find a potentially different, but nearby,
pivot point. A pivot point corresponds to the corner
point or to a point on the edge axis. Thus, a building
corner can lie “in between” point samples.

While existing approaches were considered for clas-
sifying the sampled points (e.g., [30], [31]), we opted
to create a new method that specifically exploits the
MW assumption in order to achieve classification in
linear time on the number of points (i.e., constant time
per point) and to support classifying points based
not only on the normal directions of their containing
plane, but also on the local surface shape. A related
work is that by Toldo and Fusiello [30], which pro-
poses J-Linkage to fit arbitrary planes to data points
corrupted by noise and outliers, and then classifies the
points based on these planes. Their classification does
not detect points that belong to two or more planes,
and has superlinear complexity, thus not well-suited
for scaling efficiently to millions of points.

For the description of our approach, we assume
without loss of generality, that the point cloud has
been rotated so that the dominant triple of directions
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in the MW world are aligned with the x-, y-, and z-
axis.

3.1 Manhattan World Local Shapes

Three predominant surface directions in MW geome-
try give rise to three possible surface normal direc-
tions and four fundamental local shape types. The
local shape surrounding a point of a MW surface
manifold must belong to one of the categories denoted
as tWall, tEdge, tCorner, tEdgeCorner (Figure 3). Shape
types tWall, tEdge and tCorner have respectively one,
two and three predominant surface directions. Shape
type tEdgeCorner is used to denote a region where a
plane and an edge intersect and form a shape that re-
sembles a concave corner. Each shape type has several
possible directions and rotations. The signed direction
indicates the dominant orientation of the shape (i.e.,
along the positive or negative x, y, or z axis) – an
unsigned direction implies the same shape type can be
oriented in either direction. Each shape type can also
be rotated around the axis of the given direction (i.e., a
rotation by 0, π/2, π, 3π/2). Using the aforementioned
shape types, tWall has 3 unsigned directions, and 1
unique rotation per direction, for a total of 3 tWall
types. Shape type tEdge has 3 unsigned directions and
4 unique rotations per direction, for a total of 12 tEdge
types. Shape type tCorner has no orientation and 8
unique rotations. Shape type tEdgeCorner has 3 signed
directions and 4 unique rotations per direction, for a
total of 24 tEdgeCorner types. Altogether, there are 47
possible local shapes in a MW building, but each can
be described by one of four fundamental shape types.
Figure 4 shows 35 of the 47 shapes.

tWall tEdge tCorner tEdgeCorner 

Fig. 3. Shape classification. Each of the 4 shape types
are shown.

In unorganized 3D point clouds, the surface normal
or local point connectivity information needed for
estimating the local shape is typically not provided
but can be estimated from the local neighborhood of
each point. The optimal neighborhood size to estimate
the fundamental shape type depends on the local
density of the sample points and on the amount of
the noise in the input samples. In practice, the point
sample density varies and point samples have error.
Thus, in order to determine a plane, the neighborhood
must contain at least three points but having more
points is beneficial.

3.2 Shape Classification

The classification of a MW point sample pi =
(xi, yi, zi), for i ∈ [1, N ], is achieved by defining a
neighborhood ball around the sample point, deter-
mining the value of a fitting function to the MW
planes, computing the pivot points of such planes,
and determining the direction and rotation of the cor-
responding shape type. The pivot point is the center of
the shape type about which the local surface produces
the edges of the shape type. The exact pivot point will
in most cases not coincide with any sampled point
but it is expected to be nearby, and it is assumed that
at least one of the points within the neighborhood
ball is a reasonable approximation. Further, the initial
shape types are refined using a reinforcement scheme
(Section 3.3) and the direction/rotation of the shape
type is later used for the volume description process
(Section 4). Not all input points are classified - points
with a high fitting-error or points insufficiently rein-
forced are ignored.

3.2.1 Neighborhood Ball

For each sample point pi, a neighborhood ball cen-
tered on pi and of radius r is defined as

B(pi, r) := {pk : |pk − pi| < r, k ∈ [1, N ]}

and contains all the sample points pk that lay in-
side the ball. We denote the elements of B(pi, r) by
{b1, . . . , bmi

}. In our implementation, the radius r is
either automatically computed to be large enough to
ensure a user-specified minimum number of points
or is provided by the user. For brevity, we define
Bi = B(pi, r).

3.2.2 Fitting Function

To fit to the MW planes and to compute the pivot
point, we use a function that measures the deviation
of every point within Bi from each of the possible MW
planes. For every neighborhood Bi there is a pivot
point b∗i such that the fitting error is minimized when
the planes are pivoted at b∗i . In order to find a good
pivot point, we use every point bi ∈ Bi and evaluate
the fitting error using

εij =
∑

bj∈Bi

(
min

(
|bix − bjx | ,

∣∣biy − bjy ∣∣ , |biz − bjz |))
where bj ∈ Bi refers to all points bj inside ball Bi and
i 6= j. We choose the bj that minimizes εij and denote
it by b∗i . The associated fitting function is called ε∗i .
Because of the noise in the data, there is in general
no more than one point that minimizes εij .

3.2.3 Shape Types and Directions

For each point pi, we inspect the number of times the
value of ε∗ij was obtained from each of the x, y, or z
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tCorner (8) 

tEdge (12) 

tEdgeCorner (24) 

tWall (3) 

… 

Fig. 4. Local shapes in a MW building. All of the shapes for types tWall, tEdge and tCorner are shown, together
with 12 of the 24 shapes for type tEdgeCorner.

components and choose the best fitting shape type. In
particular, we define

Cidim =
∑

bj∈Bi

(
argmin ε∗ij == dim

)
where dim denotes the axis x, y, and z. The counters
Cix , Ciy , and Ciz are used to determine the direction
of the shape type of pi using the following reasoning.
The dominance (or lack of it) of a direction is an
indicator of the point’s shape type. For instance, if
Cix/mi ≈ 1, then for most points in Bi the component
along which the distance was minimum is x. This
implies the points in Bi likely lie on a single plane
and the normal vector of the plane is the x axis. The
shape type then becomes tWall on the Y Z plane. Anal-
ogously

(
Cix + Ciy

)
/mi ≈ 1 indicates most points in

Bi are likely to lie on two planes forming an L-shaped
edge along z axis; the shape type in this case is a
tEdge spanning the XZ and Y Z planes. If all counts
have approximately the same values, then there are no
dominant directions and the points in Bi are likely to
lie on three planes forming a corner.

The shape type classification computes for each
point the aforementioned ratios for all possible shape
types. The shape type with the largest ratio, yet
above a minimum threshold (set experimentally to
0.8), is chosen. Outliers will be detected, and removed,
during the later reinforcement step.

3.2.4 Shape Rotations
While points of type tWall are invariant to rotation,
the rotations of points of type tEdge, tCorner, and
tEdgeCorner do need to be computed. We define
signed distance values

Sidim
=
∑

bj∈Bi

(bjdim
− b∗dim)

where each term evaluates for an axis dim = x, y, z,
as the sum of the signed differences between all the
points in Bi and the pivot b∗. The signs of Six , Siy ,
and Siz are used to determine the rotation of the
shape type. For instance, if the shape type has been
determined to be a tEdge along the z axis, then there
are four possible rotations about z. Each rotation will
place the shape in a different quadrant of the XY

plane. If Six > 0 and Siy > 0, then the shape is in
the positive X and positive Y quadrant. If Six < 0
and Siy > 0, then the shape is in the negative X and
positive Y quadrant, and so forth.

3.3 Reinforcement
Given the initial shape types, the classified points
within each neighborhood ball are used to reinforce
tEdge/tEdgeCorner and tCorner classifications and to
further improve the accuracy of each pivot location.
For instance, a sample point pi classified as tEdge
spanning the XZ and Y Z planes should have a
large fraction of its neighbors (e.g., > 0.75) be tWall’s
on the XZ and Y Z planes. If this is the case, the
position of the pivot point b∗i will be modified by
making the x coordinate equal to the mean x coor-
dinates of its Y Z plane tWall neighbors, and the y
coordinate equal to the mean y coordinates of the
XZ plane tWall neighbors. If this is not the case,
the point is considered unclassified. To prevent cir-
cular dependencies, the reinforcement process is ap-
plied sequentially: points classified as tWall reinforce
tEdge’s/tEdgeCorner’s, then tEdge’s/ tEdgeCorner’s re-
inforce tCorner’s. The result is a potentially smaller,
but more accurate, set of classified point samples and
their corresponding pivots.

4 VOLUME DESCRIPTION

In the second step, our method uses the previously
classified points to construct volumes that approxi-
mate the geometry sampled by the points. This sec-
ond step is performed in several sub-steps. First the
classified points are joined to form nearly co-planar
clusters, which, in turn, are connected to their adja-
cent clusters. Then, a set of thin boxes is adaptively
subdivided to approximate each cluster. A ray-casting
algorithm is then used to connect and fill the interior
volumes and the boxes are used to accelerate this
process. Finally, the volume is filled-in and simplified
to yield the final 3D polygonal model.

4.1 Classified Point Clustering
The classified-point clustering algorithm produces a
set of triangulated and interconnected clusters and
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exploits our MW assumption to compute a set of axis-
aligned bounding boxes for approximating the cluster.
The input to clustering is the set of classified points pi
whose fitting error ε∗i is less than a given threshold.

4.1.1 Cluster Creation and Triangulation
Two points pi and pk are in the same cluster if
and only if there is a valid path of classified points
between them. To succinctly describe what constitutes
a valid path let’s restrict ourselves to a cluster of
points in the Y Z plane. We use the notation tWallX
to imply a tWall whose normal is along the x-axis.
Similarly, tEdgeXY, tEdgeXZ, and tCornerXYZ implies
the normals of the edge or corner are along the x-
axis, y-axis and/or z-axis as implied by the labeling.
A valid path is composed of an ordered sequence of
points {q1, q2, . . . , qm} that satisfy:

(i) q1 = pi and qm = pk,
(ii) ∀i : T (qi) = (tWallX|tEdgeXY |

tEdgeXZ|tCornerXY Z),
(iii) ∀i : |qi − qi+1| < r, and
(iv) |qix − q(i+1)x | < ε.

The criterion (i) requires pi and pk to be the starting
point and ending point of the path. The criterion (ii)
specifies that all points in the path must be of the
same type/direction or of a compatible type sharing
a common plane and the operator T (·) returns the
shape type of a given point. The criterion (iii) en-
sures adjacent path points are closer than a threshold
distance r. The last criterion (iv) specifies that any
two consecutive path points must be approximately
coplanar (i.e., on the Y Z plane in this case). For
example, a valid path can exist between two tWalls
on (nearly) the same plane, or a valid path can exist
between a tEdge sharing a plane with a tWall.

The aforementioned clustering criteria produce a
partitioning of the tWall’s (i.e., a tWall is assigned
exactly to one cluster) and produces shared points
only for tEdges, tCorners, and tEdgeCorners spanning
the expected planes implied by their directions and
rotations.

The points in the same cluster are then triangulated
to obtain a mesh-based representation of the cluster.
Large triangles are omitted. In practice, the resulting
triangulation produces a fairly accurate representation
of convex and non-convex building faces (e.g., Figure
10b).

4.1.2 Adaptive Bounding Boxes
For each triangulated cluster, we calculate a recur-
sive set of axis-aligned bounding boxes (AABBs).
The AABBs will speed-up the process of ray casting
described in the next section. Because of the near-
coplanarity criterion during cluster creation, the depth
of an AABB (i.e., the length of the side perpendicular
to the dominant plane) is usually small. The initial
AABB is the bounding box of the entire cluster whose

width and height are recursively split until reaching a
minimum box size (i.e., the box is not split along the
depth dimension) (Figure 5). The minimum box size
is set by default to one meter and can be modified by
the user to control the detail of the reconstruction.

Fig. 5. Adaptive bounding boxes for cluster represen-
tation.

4.2 Volume Rays

Volume rays are used to compute the 3D region
enclosed by the meshes created during the cluster-
ing step. For a selected MW axis, the AABBs can
be used to create two structured grids representing
both facades of the building along the selected axis.
One possible algorithm to recover the interior volume
from these grids consists in sorting the faces (i.e.,
planar components of the structured grid at different
coordinate values along the axis) in ascending order
along the axis and sweeping them in sorted order.
Given an initial face, it is swept along the axis until
it is obstructed by another face. Then, the obstructing
face starts sweeping and the unobstructed portion of
the previous face continues sweeping. The sweeping
(extrusion) of these regions results in a set of adjacent
and non-intersecting volumes.

An alternative simple and efficient method is to
densely sample the structured grid (faces) with rays.
Provided there are no missing or incomplete faces in
the dataset, each ray will intersect an even number
of faces. From the sorted list of faces intersected by a
ray, the portions of the ray that lie inside the geometry
can be easily determined. The reconstructed volume
would be defined by the union of all the volume
ray portions that were determined to lie inside the
building (Figure 6).

In practice, reconstructed faces can be missing or in-
complete, and the number of faces intersected by a ray
can be odd indicating an incomplete geometry. Hence,
in our method, we make a conservative decision to
ignore the volume regions returned by rays with an
odd number of intersections (i.e., we only keep rays
with even number).

A benefit of our approach is that by combining
the results of using volume rays along multiple axes,
we obtain redundancy which can be exploited to
account for the aforementioned missing data samples.
Therefore, a volume that is not described by one of
the grids of rays is often successfully captured by the
others.
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Fig. 6. Color coded number of intersections for each
volume ray. An even count indicates the volume ray
contains building interior.

4.3 Smoothing and Simplification
Several post-processing steps are followed to obtain
a smoother, more accurate and more compact repre-
sentation of the building volume including removing
rays of low confidence, adding support rays, snapping
rays to other rays of high endpoint frequency, and
simplifying rays.

4.3.1 Estimating Ray Confidence
Similar to the reinforcement process for classifying
points using contextual information (i.e., the shape
types of neighboring points), the confidence of a ray is
evaluated based on the coherence with its neighboring
rays. Ray confidence is useful to remove thin groups
of one or more rays that may result from regions
where the intersection count was falsely even. To
evaluate the confidence of a ray r, we first compute
the overlap between r and each of its neighbors. The
neighborhood of a ray is a d×d sub-grid of the struc-
tured ray grid, centered in r (d was experimentally
set to 5). Then, for each neighbor s of r, we compute
the ratio between the length of the projection of s
onto r, and the length of r. The confidence of r is a
normalized sum of these ratios, weighted by the grid-
distance from s to r. The length of a ray is the sum of
the lengths of the portions of the ray that lie inside the
geometry Intuitively, the confidence of a ray is raised
by the presence of other rays with similar extents in
the immediate neighborhood.

4.3.2 Adding Support Rays
An optional criterion that is useful for buildings
whose XY cross-sections are monotonically decreasing
upwards (i.e., the building cross-section of floor f+1
is always contained in the building cross-section of
floor f ) is to add support rays in all the vertical
positions under the ray, all the way to the base of
the building. Often in street-level LIDAR datasets only
the uppermost portion of a building is not occluded
by other faces. Downwards completion makes a basic
inference of the presence of rays that are not observed
in the data but that should nevertheless be in the
building given MW assumptions.

4.3.3 Snapping and Simplification

We perform additional snapping and simplification
operations. Small deviations in the ray endpoints can
be compensated for by snapping such endpoints to
nearby planes where a significantly higher number of
ray endpoints already lie. This step uses information
of the grid in one of the directions (e.g., grid on Y )
to modify the rays in the other direction (e.g., grid on
X).

Further, to avoid the number of recovered rays
from growing too quickly, simplifications are made
after any of the above post-processing operations,
including closing small gaps in consecutive rays, and
merging overlapping rays on a same ray grid position.
Interior rays (i.e., rays that are surrounded by other
rays in all neighbors) are also removed after post-
processing.

The end result is a sparse collection of rays that
collectively describe the building volume. The volume
occupied by each ray can be coalesced and exported
for subsequent geometrical modeling tasks.

5 IMPLEMENTATION DETAILS

Since the datasets we use contain up to 10 million
points, we use a hash-based spatial partitioning data
structure to efficiently store and access the 3D points.
For instance, our breadth-first clustering algorithm
(Section 4.1) is reduced to nearly O(N) complexity on
the number of classified points. This is achieved by
performing comparisons only with points in nearby
neighbors that are extracted in constant time from the
hash structure, instead of running costly comparisons
between all pairs of points. Our hash function uses
the x, y, and z coordinates of each point to compute
the index of the partition element in which the point
belongs.

To efficiently access the rays, we use an additional
ray grid data structure which allows for constant-time
access to any ray when given its starting position.
Since neighbors of rays are very frequently queried,
providing such a constant lookup time is highly bene-
ficial as it avoids a potential bottleneck of the system.

6 RESULTS AND DISCUSSION

We have applied our method for reconstruction of
several real-world buildings using publicly available
3D point datasets [32]. Results are shown in Figures 1,
12, 10 and 11. All reconstructions are fully automated
and take from 10 to 60 seconds. For each building, the
system automatically computes a neighborhood ball
radius to ensure that at least half of the balls have 20
or more points inside them.
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6.1 Classification and Clustering
Computing the type of each point in the dataset
and partitioning them into clusters are the key com-
ponents of the pipeline. Figure 7 shows how the
reinforcement process (Section 3.3) further improves
the quality of the classification. Figure 8 focuses on
some points of type tWall (a) and tEdge (b). The colors
indicate the direction of each type. Points of type
tWallX are shown in red, and points of type tWallY
are shown in green. Points of type tEdge are shown as
an extruded L rendered in two colors, corresponding
to the estimated directions of the faces that meet at
them. Figure 8c shows a close-up of the two clusters
of points of type tWallX and tWallY that connect at
several points of type tEdgeXY. Notice how the use
of typed points allows for a correct clustering of the
points in regions where the classification uncertainty
is high (gap between green wall and red wall in part
(a)).

Before After 

Fig. 7. Type reinforcement based on neighboring clas-
sified points.

tWalls 

tEdges 

tWalls + tEdges a 

b 

c 

Fig. 8. Clusters of points (c) connecting tWalls (a) and
tEdges (b).

6.2 Robustness to Point Sample Noise and Den-
sity
We have evaluated the sensitivity of our approach
to varying levels of noise and density in the point
sample. For this purpose, the fitting errors between
a ground-truth geometry and its reconstructions are
computed and visualized (Figure 9). The ground-truth
geometry is a synthetic model of an artificial building
that was devised to exhibit the three tWall types and
at least five different types of each one of the other
shape categories (tEdge, tCorner, tEdgeCorner). We use
a synthetic model instead of a particular real-world

building for the evaluation because (i) a model of
an existing building will necessarily have non-zero
error, and (ii) the mass model of any real-world MW
building can be constructed by assembling one or
more of these shape types.

Figure 9 shows in the top row the synthetic sample
model, one of the point samples that were computed
on it, and the reconstructed 3D model for that par-
ticular sample. The matrix at the bottom of the fig-
ure shows the computed reconstructions for varying
levels of point density (horizontal axis) and noise
(vertical axis). The local error of the reconstruction
is visualized on the surface of the model using the
color coding defined by the color scale on the right
side of the figure. The error of a reconstructed face is
computed by measuring its distance to the closest par-
allel face in the ground-truth model. As it is expected,
the reconstruction error is minimal for a point sample
with high density and low noise (bottom right model),
and becomes larger as the density decreases or as the
noise increases. In general, the amount of noise in
the input data most directly affects the reconstruction
error and also the amount of reconstruction error is
usually on par with the noise level.
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Fig. 9. Reconstruction error for varying point sample
density and noise. Starting from point samples gener-
ated on the surface of a synthetic model (top), several
reconstructions are computed using our method (bot-
tom). The error of several reconstructions generated
from point sets of varying levels of density and noise is
computed and visualized using a color coding (right).
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6.3 Reconstructed Buildings
Figure 10 shows the reconstruction of the mass of
a castle-like building with two towers. Figure 10a
shows the raw input data that is used for reconstruc-
tion, which includes points sampled on nearby trees
and other objects that are not part of the building
structure. Figure 10b shows the triangulations of the
clusters of typed points that are further used to es-
timate the volume (Figures 10d-e). To highlight the
importance of counting the number of cluster boxes
intersected by volume rays, Figure 10c shows the
result of computing volume rays without counting.
This criterion is essential to accurately reconstructing
the mass of buildings with non-convex volumes.

Figure 11 pictorially shows the pipeline of our
method. The images in the left column show the
input points (top) and their classification into tWall
types (middle) and tEdge types (bottom) for surface
extraction. The middle column shows the clustering of
points (top), the triangulation of each cluster (middle)
and the subdivision bounding boxes used to represent
each triangulation. Notice how non-convex facades
(e.g., the front ones) are accurately represented by
these boxes. The right column shows the raw vol-
ume rays before post-processing (top), the extracted
volume after ray cleaning (middle), and a manually
texture-mapped model (bottom). The good fit of the
reconstructed geometry to the 3D points is evidenced
by the overlap of the points with the volume (middle)
and by the good match of the texture (taken from a
front photograph of the facade) to the building mass.

Figures 1 and 12 show two more reconstructed
buildings, together with the 3D points, and for Figure
1, the typed points and cluster triangulations. All
contained points sampled on trees, benches, lamps,
and/or nearby parked vehicles, that were automati-
cally discarded by our approach, omitting any data
clean-up preprocessing.

6.4 Non-Manhattan-World Regions
Our results show that non-MW regions of the build-
ings are typically not reconstructed. This is an ex-
pected consequence of the fact that points sampled
on non-MW regions (e.g., hip and slanted roofs) are
not classified and thereafter ignored in the point
clustering, triangulation and adaptive boxes fitting
steps. Ignoring these points is a design choice that
limits the reconstruction to MW geometry and that
avoids that sample points originating in non-MW
regions interfere with the correct reconstruction of
MW regions. This choice enables our method to recon-
struct the regions in a building that are MW-compliant
without imposing the harder requirement that the
entire geometry be MW-compliant. In some cases,
non-MW regions are approximated by the volume
rays reconstructed from connecting meshes that are
MW-compliant. Gable roofs, in which only two of the

four sides slope downwards to the walls (e.g., the
roof in Figure 1), are an example of these cases. In
other cases, the absence of MW-compliant meshes at
a given height results in no rays approximating the
non-MW regions. Hip roofs, where all four sides slope
downwards to the walls (e.g., the roof in Figure 11),
constitute an example of these cases.

6.5 Visual Comparison

Figure 13 contains a table that succinctly compares our
approach to several related previous works. The table
lists several representative methods for building mod-
eling (top box) and facade modeling (bottom box),
together with images of their input data and resulting
reconstructions. While some of the other works pro-
duce less restrictive building geometry including fa-
cades of buildings with arbitrary polygonal (non-MW)
footprints and piecewise planar roofs, the main differ-
ence of our approach is the ability to create complete
buildings using only ground-level scans (i.e., no roof
sample points provided). Nonetheless, the geometry
produced by our approach is MW compliant (i.e., MW
footprint and flat roofs). Automatically reconstructing
the complete geometry of a building with arbitrary
facade and roof orientations is clearly a more difficult
problem that is yet to be solved robustly.

The methods in [22], [16] and [33] attempt to fit
polygons to the sample points and then compute the
vertical extrusion of each polygon up to an estimated
height. A 2.5D reconstruction is obtained as a result.
While these approaches can automatically reconstruct
entire cities, they completely rely on the assumption
that the points were sampled on the roofs of the
buildings, in order to produce complete models. This
effectively implies the use of airborne acquisition for
reconstructing any building. While the method by
Toshev et al. [34] does not explicitly require aerial
range data, its focus is on extracting individual planar
surfaces from the points and structuring them into
parse trees that represent a semantic decomposition
of the building. Furthermore, their paper does not
present any results showing complete building recon-
structions or reconstructions where only facade points
were used. In contrast, our method can automatically
generate reconstructions of complete buildings even
when only data from ground-level scans is available
(e.g., points sampled on facades as in Figure 1a),
and can provide a coarse approximation of the roof
geometry based on facade data (e.g., Figure 1e).

The methods for facade reconstruction ([13], [2])
focus on creating very detailed models of facades from
ground-level range scans. While these methods ex-
ploit symmetry, repetition, regularity, and interactive
user guidance to compensate for unsampled regions
of the facade, the resulting reconstruction is often
incomplete and only represents the facade of the
building that was sampled. In contrast, our method
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a 

b 

c 

d 

e 

Fig. 10. Reconstructed castle-like building with non-convex volumes. a) Input 3D points. b) Clusters of classified
points. c) Naı̈ve volume rays reconstruction. d) Our complete volume ray reconstruction using intersection count
criteria. e) Side view of reconstructed building showing the adapted volume rays.
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Typed points 

tWalls 

Typed points 

(all others) 

Clustered points 

Triangulated clustered points 

Adaptive bounding boxes 

Volume rays 

Reconstruction 

Textured-mapped 

reconstruction 

Fig. 11. System Pipeline showing: points classification (left), clustering and triangulation (middle), and volume
ray reconstruction (right). The left side facade of the building is partly occluded by a tree a no cluster of triangles
and adaptive boxes are created in this region. The volume rays generated by the triangulations on the front and
back facades allow for a complete reconstruction in spite of the missing the data.

Clustered typed points Smoothed Volume Rays 

Reconstructed 3D model 

Fig. 12. Example of reconstructed building.

processes all facades simultaneously and combines
their information in order to make inferences about
the geometry of the unsampled parts of the building,
including occluded and hidden regions of the facades,

and the building roof (e.g., Figure 10e).
Nevertheless, our method does not focus on cre-

ating detailed facade models from ground-level data,
but rather on creating complete building models from
incomplete ground-level samples, with no user inter-
vention. It also does not make any assumption about
the density of the point sample and it can produce
reconstructions of coarsely sampled buildings (e.g.,
Figure 11e). However, if a dense sampling of a facade
is available, the facade reconstruction methods can
be used in conjunction with our approach during a
postprocessing step.

7 CONCLUSIONS AND FUTURE WORK

We have described a novel approach for the recon-
struction of urban structures from 3D laser range
scans exploiting an assumption of MW building ge-
ometry. First, the input points are robustly classified
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Fig. 13. Comparison to other methods for facade and
building modeling from unorganized 3D points. The
results in rows 2 to 7 of this figure were originally
published in [34], [16], [22], [33], [13] and [2], and are
used in this paper with permission from their authors.

according to the MW assumption into one of four
fundamental local shape types. In the second step,
the classified points are organized into a connected
set of clusters from which a volume description is ex-
tracted. The MW assumption allows us to describe the
volumes within the bounding box, and to reconstruct
occluded (or not captured) parts of the input data.
Our method is automatic and operates at interactive
computing speeds on a standard desktop PC for real-
world 3D point datasets of millions of points.

Our method has several limitations. The first one
comes from the MW assumption. Our algorithm re-
constructs efficiently the MW parts of building exte-
riors, but many buildings are not pure MW buildings
and have parts that are not axis-aligned. Second, our
algorithm depends on the classification of the local
points. Even though we have attempted for a robust
solution, a large amount of noise or data incom-
pleteness can yield to undesirable results (see Figure
9). Third, our method is not suitable for data sets
with highly varying local geometry such as complex
baroque facades.

There are many possible avenues for the future
work. An automated roof reconstruction could be

achieved by expanding the shape types to allow for
some non-MW geometries. By considering the local
surface curvature, the classified points could be the-
oretically generalized into a class that would allow
for C0 or C1 connections. By extending the range of
the connecting angles and of the local context for each
point, a general class of connections is possible allow-
ing for cylindrical or pyramidal building structures as
well, for example.
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ETH Zürich in 2010.

Daniel G. Aliaga is a Computer Science
faculty member at Purdue University since
2003. He obtained his Ph.D. and M.S. degree
from UNC Chapel Hill and his B.S. degree
from Brown University. Dr. Aliaga’s research
is primarily in the area of 3D computer graph-
ics but overlaps with computer vision. His
research area is of central importance to
many critically important industries, including
computer-aided design and manufacturing,
telepresence, scientific simulations, and ed-

ucation. To date Prof. Aliaga has over 60 peer reviewed publications
and has chaired and served on numerous ACM and IEEE conference
and workshop committees.

Bedrich Benes is an associate professor
in the Computer Graphics Technology de-
partment at Purdue University. He obtained
his Ph.D. and M.S. degree from the Czech
Technical University. His research is primarily
in the area of procedural modeling, real-time
rendering, and 3D computer graphics in gen-
eral. To date he has published over 50 peer
reviewed publications.

http://www.ikg.uni-hannover.de/index.php?id=413
http://www.ikg.uni-hannover.de/index.php?id=413

	Introduction
	Previous and Related Work
	Surface Description
	Manhattan World Local Shapes
	Shape Classification
	Neighborhood Ball
	Fitting Function
	Shape Types and Directions
	Shape Rotations

	Reinforcement

	Volume Description
	Classified Point Clustering
	Cluster Creation and Triangulation
	Adaptive Bounding Boxes

	Volume Rays
	Smoothing and Simplification
	Estimating Ray Confidence
	Adding Support Rays
	Snapping and Simplification


	Implementation Details
	Results and Discussion
	Classification and Clustering
	Robustness to Point Sample Noise and Density
	Reconstructed Buildings
	Non-Manhattan-World Regions
	Visual Comparison

	Conclusions and Future Work
	References
	Biographies
	Carlos A. Vanegas
	Daniel G. Aliaga
	Bedrich Benes


