
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Style Grammars for Interactive
Visualization of Architecture

Daniel G. Aliaga, Paul A. Rosen, and Daniel R. Bekins
Department of Computer Science at Purdue University

Abstract—Interactive visualization of architecture provides a way to quickly visualize existing or novel buildings and structures.
Such applications require both fast rendering and an effortless input regimen for creating and changing architecture using high-level
editing operations that automatically fill in the necessary details. Procedural modeling and synthesis is a powerful paradigm that
yields high data-amplification and can be coupled with fast rendering techniques to quickly generate plausible details of a scene
without much or any user interaction. Previously, forward generating procedural methods have been proposed where a procedure is
explicitly created to generate a particular content. In this article, we present our work in inverse procedural modeling of buildings and
describe how to use an extracted repertoire of building grammars to facilitate the visualization and quick modification of architectural
structures and buildings. We demonstrate an interactive application where the user draws simple building blocks and using our
system can automatically complete the building “in the style of” other buildings using view-dependent texture mapping or non-
photorealistic rendering techniques. Our system supports an arbitrary number of building grammars created from user subdivided
building models and captured photographs. Using only edit, copy and paste metaphors, entire building styles can be altered and
transferred from one building to another in a few operations, enhancing the ability to modify an existing architectural structure or to
visualize a novel building in the style of others.

Index Terms— Display Algorithms, Image-based Rendering, Modeling Packages, and Visualization systems and software.

—————————— ——————————

1 INTRODUCTION

The interactive visualization of architecture and buildings
provides a way to see current structures as well as future
tentative structures and changes to existing buildings. The
input regimen, display algorithms, and technology should
ideally be intuitive, fast and realistic, and transparent to the
user. Computing power and graphics technology has ad-
vanced significantly in recent years supporting the fast ren-
dering of complex architectural scenes.
However, a common design challenge for such interactive
visualization applications is to require little effort by the
user to create or to alter architecture and buildings. Ideally,
the system must be able to create interesting and consistent
alterations to the structures from only a few specifications
on part of the user. Thus, an interactive visualization pro-
gram must include a component that at least semi-
automatically infers details of the structures being observed
and changed. The inferred details are then used to fill-in the
structures and produce interactive renderings of potentially
new architectural structures.
Procedural modeling and synthesis is a powerful paradigm
that can be coupled with an interactive rendering program
for architecture to generate plausible details of a model
without much or any user interaction. Procedural methods
have the advantage of exhibiting a high-degree of detail
amplification; e.g. using only a small number of parame-
ters, significant plausible details can be synthetically gener-
ated. However, since a small change in the parameters can
cause huge changes in the resulting model, it is extremely
difficult to determine a good set of procedures and parame-
ters. Nonetheless, promising results have been demon-
strated in several restricted arenas such as fractal-based

compression and L-systems for procedurally generating
plants [1]. Furthermore, pre-specified grammars have been
used to generate plausible cities [2] and some architectural
structures [3, 4].
In this article, we describe an interactive system that en-
ables both creating new buildings in the style of others and
modifying existing buildings in a quick and intuitive man-
ner. In a first step, our system provides tools to the user for
mapping photographs of an existing building to a simple
geometric model and for subdividing a building into its
basic external features (e.g., floors, windows, doors, trim,
brick, wood, etc). In a second step, the system automatically
creates a representative grammar that captures the repeti-
tive patterns and particularities present in the building and
its features. This grammar essentially captures the style of
the building and enables us to transfer the style to new un-
subdivided models of potentially very different shapes. In a
third and interactive step, users draw a desired new build-
ing configuration using simple building blocks and the sys-
tem uses the grammar to automatically subdivide the new
building configuration. This results in a new and complete
building or a modified version of a captured building, both
in the style of the original.
The new building can be rendered using a view-dependent
texture mapping of image fragments from the captured
photographs, or using a stylized procedural rendering (e.g.,
pen-and-ink) of the terminals of the grammar. Moreover,
the redundancy among the images of the building can also
be used to automatically fill occluded and poorly sampled
areas of the image set, as well as to equalize the color and
lighting between images and surfaces of the model.

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

Finally, we include tools to specify trees, ground, and sky
yielding a complete architectural scene in minutes yet sup-
porting completely changing the style of the buildings at
any moment. The user can instantaneously copy and paste
new building-styles and apply most affine transformations,
including uniform and non-uniform scaling, to the building
configurations. The grammar is interactively reapplied and
continuously adjusts to the size and shape of the building
configuration. We present the results of using our system to
sketch, modify, and render new buildings created in the
style of existing real-world buildings.
The contributions of our work include

• an algorithm to construct a grammar from a subdi-
vided building model and to use the grammar to
fill-out new building configurations with the cap-
tured architectural details,

• a system to interactively create new buildings in
the style of existing real-world buildings using
view-dependent texture mapping,

• a method to create and interactively edit non-
photorealistic stylized renderings of novel and ex-
isting architectural structures, and

• rendering techniques for drawing new buildings
omitting occlusions in the original data and equal-
izing lighting and shading.

2 PREVIOUS WORK
The modeling and rendering of 3D objects and architectural
structures has been addressed in several ways in computer
graphics. Photogrammetric reconstruction and image-based
modeling and rendering (IBMR) build models from real-
world photographs. Procedural modeling focuses on gen-
erating synthetic models of objects and environments from
a pre-specified set of rules and terminals defined by a
grammar. A few interactive sketching systems have been
proposed for the inverse procedural modeling of plants.
Our work builds upon these areas of research to develop a
novel method for architectural visualization.
Photogrammetric reconstruction and IBMR build a repre-
sentation of the observed objects and enable mapping the
acquired image data to the representation. In particular,
Facade [5] has served as the prototype for several commer-
cial packages that reconstruct an approximate geometric
model with user-assistance and then texture map view-
dependent images [6] onto the model (e.g., [7, 8, 9]). Image-
based modeling and rendering is a partner of capture tech-
niques like photogrammetric modeling, but unlike photo-
grammetric modeling, an IBMR system directly re-samples
photographs of a static scene to create novel views of the
acquired object [10, 11, 12, 13] or small environment [14,
15]. Some efforts have focused on reconstructing large ur-
ban spaces [16] or on reconstructing buildings in particular

Figure 1. System Overview. Our system enables users to modify and render architectural structures based on grammars extracted from
various real-world buildings. First, the user creates and subdivides an initial model of the building (a-b), then our algorithm automati-
cally finds repetitive patterns of the building features and constructs a representative grammar. Using an interactive program, the user
can then view the captured model (c), change the model on the fly producing new models (d) and view stylized renderings (e).

a) b) c)

d) e)

ALIAGA ET AL.: STYLE GRAMMARS FOR INTERACTIVE VISUALIZATION OF ARCHITECTURE 3

from images [17]; however, not on quickly creating novel
buildings, editing existing buildings, and transferring style.
Procedural modeling is useful for creating objects that ex-
hibit a high-degree of redundancy. For example, L-systems
have been successful in the modeling of plants [1] and have
been used for automatic city and building generation [2, 3].
Shape grammars, which define rules for the specification
and transformation of 2D and 3D shapes [18], have also
been used to model architecture. Wonka et al. [3] and Muel-
ler et al. [4] let a user specify parameters and employ a pre-
specified grammar to automatically generate buildings and
architecture from a database of given rules and attributes.
Legakis et al. [19] use cellular patterns to create façade-level
details for architectural models. While procedural modeling
provides a means for quickly creating architecture from a
small number of terminals and rules, the data and proce-
dures are not extracted from an actual real-world city or
building.
Some drawing systems have been proposed for the inverse
modeling of plants and trees. As opposed to forward-
generating procedural plant sketching systems, these sys-
tems infer structure from observed data and build a model.
For example, Shlyakhter et al. [20] build models of trees by
fitting a coarse branching proxy to a set of instrumented
photographs. On the other hand, in our work, we wish to
infer a grammar for a non-organic structure, such as a
building, based on acquired photographs.
Several general and focused sketching systems have been
presented in the literature for quickly drawing new objects.
For instance, Zeleznik et al. [21] and Shesh and Chen [22]
combine synthetic rendering with a pen-based interface to
create geometry, including simple architecture. Oh et al.
[23] and Google Sketchup [24] have developed tools for
sketching buildings. However, these structures are created
manually and not from existing architecture.
We seek an interactive visualization application that starts
with simple building blocks and automatically fills out the
details of a building with a chosen style. The styles and cor-
responding grammars are obtained from images of real-
world buildings. While some previous work has created
grammars for individual building facades [25], our focus is
on quickly generating modifications to entire buildings or
creating new buildings similar to others.
The work presented in this article is an extension of our

conference publication [26]. However, in this article, we
generalize the system to style grammars composed of a
hierarchy of production rules. This provides significant
additional flexibility, including the ability to copy-and-
paste arbitary subsets of the grammar and to rearrange the
rules within the hierarchy. We also present semi-automatic
methods to convert terminals to stylized renderings similar
to pen-and-ink, provide interactive tools for creating land-
scapes (in [26], landscapes were created non-interactively)
and give a complete description of a system for interac-
tively visualizing existing and new buildings. Our system
greatly simplifies the visualization of architecture, enables
fast content creation and editing, and supports instantane-
ously applying entirely new building styles.

3 BUILDING GRAMMARS
A typical building contains a regular structure that can be
exploited to automatically detect patterns in its configura-
tion and construct a representative grammar. A building
consists of several floors; each floor is divided into various
faces and each face consists of several windows surrounded
by trim and wall material. Within a single building there
can be groups of differently shaped floors, a variety of win-
dow styles and trims, and several types of wall material
such as brick, stone, etc. Our algorithm exploits this typical
global structure and captures the significant local details. In
this section, we first describe how to incorporate a new
building into the system. Then, we create the grammar and
derive new instantiations enabling the modification of ex-
isting buildings or the creation of new ones.

3.1 User Specification
To add a new real-world building to the system, the user
must map edges in captured images to a scene graph sub-
divided into basic building features. The scene graph crea-
tion and edge mapping is done once using a graphical user
interface (GUI). No attention need be paid to the dimen-
sions of the scene or camera pose, as these will be recovered
by the system via an optimization. This specification pro-
vides information that will be used to automatically detect
patterns in the structure of the captured building.
Our system provides tools to quickly build a model from a
collection of photographs (Figure 2a) and from parameter-

Figure 2. Building Specification. (a) Photographs of the building are taken. (b) A simple model of the scene is created. (c) Model edges
are matched to image edges. The model parameters and image parameters are computed automatically via an optimization process.

a)

b)

c)

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

ized geometric building blocks organized into a hierarchical
scene graph (Figure 2b). Each node of the graph contains a
block, and each edge of the graph represents a transform
specifying the position and orientation of a block relative to
its parent or child. Each block is composed of a small set of
vertices and a simple geometrical structure (e.g., box, cylin-
der, pyramid, etc.). The completed model will have the di-
mensions and pose of each block. Our system also supports
constraining block size, position, or alignment in relation to
other blocks. This reduces the total number of parameters
and leads to a more robust optimization.
Once the model is created, it is matched to the image set.
For each image, the user employs our GUI to mark the visi-
ble part of prominent image edges and map them to the
corresponding model edges (Figure 2c). We do edge corre-
spondence, as opposed to point correspondence, because
they are more likely to be at least partially visible in a given
image. In fact, the occluded regions of the buildings are
marked as such and will be ignored. Also, it is by no means
necessary to mark every visible edge. Starting with an un-
detailed model and only a few images and edges, the sys-
tem incrementally improves camera pose estimation and
structure recovery. To compute the scene parameters, we
define an error function based on the discrepancy between
the user-marked (observed) edges and the model edges as
viewed by each camera. By minimizing this error function,
we recover the parameter values that align the model edges
most closely to the observed edges.
The user then subdivides the model into features and fea-
ture groups. Figure 1b shows a subdivision and labeling
scheme for an example building where each feature group
is rendered in a unique color. Block subdivision is per-
formed to divide the building into floors. Surface subdivi-
sion is used to divide the building facade into labeled fea-
ture groups representing, for instance, brick, trim, win-
dows, and entries. In addition, it is necessary to indicate
whether each feature group is of a fixed size. For example,
windows, door, and trim are of fixed sized, while brick re-
gions are not fixed in size. This tells the system that the
brick can be repetitively tiled or cropped on a novel face,
while the windows and doors should remain the same size.

3.2 Grammar Parsing and Derivation
Using the subdivided model, the system automatically
finds the repetition of building features and creates a collec-
tion of production rules and terminals that represent the
captured building. For parsing, all buildings are assumed

to be organized in the following manner. First, the blocks of
a building specification are sorted from bottom to top.
Unless otherwise specified, the first two subdivided blocks
and the last subdivided block are considered the base,
ground-floor and roof, respectively. The intermediate floors
are labeled as repeatable floors. Second, each floor consists
of an ordered sequence of faces and each face is formed by
an array of columns. Third, a column may correspond to a
single terminal or to a group of vertically stacked terminals.
This organization defines a hierarchy of production rules
where the grammar terminals consist of images of basic
building features (e.g., windows, trim, brick, stone, etc.).
Thus, the grammar has the following general form:

Grammar parsing automatically obtains the particular in-
stantiations of these general rules and terminals for a cap-
tured building. These rules describe the basic ways in
which an element (e.g., model, floor, face or column) can
grow, shrink, and be adapted to any given collection of
building blocks. The process of deriving a completely new
building entails determining which production rules to
apply and how many times to repeat them. Thus, given the
original un-subdivided building blocks or a new set of
building blocks, the blocks can be automatically subdivided
into floors, faces, columns, and terminals yielding a new
and similar-in-style building. In the following sections, we
describe how to create the instantations of these rules.

Face Productions
A face F of a captured building is represented by a produc-
tion rule containing symbols for each individual column
and geometric information for determining precisely how
many repetitions of each column to use when creating a
novel face of arbitrary size. Consider the face in Figure 3a
which is subdivided into nine columns. Two columns in a
face are considered similar if the labels of their respective
terminals match one-to-one. Thus, the pictured face has
only three unique types of columns and can be written as F
= ABCBCBCBA (Figure 3b). Repetitions of similar groups of
columns are combined and represented by borrowing the
Kleene star notation from regular expressions. Hence, we
write as a possible production rule “F → A(BC)*BA”, which

Model M → (base)(ground){ S0 S1 … SN-1 }(roof)

Floor S → { F1 F2 … FM }

Face F → { C1 C2 … CP }

Column C → { T1 T2 … TR }.

B B C C B

Figure 3. Face Productions. Patterns detected in a face are used to infer a grammar and build new faces. (a) An original face from a
captured building. (b) A subdivision of the face yielding grammar F = ABCBCBCBA = A(BC)*BA. (c) A new stretched face filled-out
automatically using the inferred production rule.

a) b) c)

A B C A

ALIAGA ET AL.: STYLE GRAMMARS FOR INTERACTIVE VISUALIZATION OF ARCHITECTURE 5

implies the pattern BC can be repeated an arbitrary number
of times.
While many different forms of repetitive patterns can occur,
our system searches for repeating pairs of elements. In
practice, we have found this to yield fairly compact and
flexible production rules. Having large repeating groups of
elements makes it difficult to accommodate to small build-
ing configurations changes. Further, in order to keep ap-
proximately the same distribution of features, we ignore
repetitions of the form AA. For example, if A represents
brick and B corresponds to a window, then an approxi-
mately similar distribution of windows on a face occurs by
repeating AB. On the other hand, repeating AA creates
more brick and decreases the density of windows on a face
of a building. Based on these observations, our algorithm
obtains a compact production rule for face F by first scan-
ning the string and marking each reoccurring pair of the
form AB (but not AA). Then, adjacent repeated instances of
a marked pair are replaced with a single instance and the
Kleene star is added to all marked pairs.
Consider the following typical derivations produced by our
system:

The first example represents a very common and straight-
forward situation where repeating pairs have been com-
bined yielding a compact rule. If we derived the rule
(ABA)*B(ABA)* for this example, it would goes against the
alternating AB pattern and would also make the rule less
flexible by requiring elements of greater width to be
squeezed into a face of arbitrary size. In the second exam-
ple, the repeated pattern AA is not merged based on our
observation. Otherwise this would have resulted in the rule
(AA)*B(AA)*B(AA)*, which is likely to be much less visually
interesting when stretched.
While it is certainly possible to detect higher-level patterns
in a face and perform different groupings, obtaining rules
that maintain coherent structure over multiple floors is dif-
ficult and thus should be imposed by the user through mul-
tiple levels of face subdivision. Consider the facades of two
floors where pattern 3 is directly below pattern 1 (C might
represent a door, while B represents a window). Using a
higher-level rule for only pattern 1 (or pattern 3) might ruin

the vertical coherence between the two floors by adding
extra instances of columns to the associated floor of a novel
building. Our set of rules does not attempt to infer high-
level and multi-floor structure but, in practice, yields good
coherence and compactness in a variety of situations.
To apply the production rule of face F to a novel and arbi-
trarily larger face F’, we must determine the number of
repetitions of each repeatable column and a scale factor for
columns of variable width. We calculate a common multi-
plier k for all repeating columns such that the remaining
width is filled as much as possible without overflowing.
Using a single common multiplier preserves the symmetry
and balance of the face structure. The remaining width of F'
is filled by adding at most one more repetition of each re-
peating column. The configuration that yields a scale factor
for the variable width columns closest to one is chosen.
Mapping a face F to a novel and smaller face F’ yields two
possible scenarios. If the new face F’ is larger than or equal
to face F without any repeating patterns, then the same
method from the previous paragraph can be used. Other-
wise, we calculate a scale factor for the columns of variable
width that makes the size of F equal to F’. If no such scale
factor exists, we choose to omit the smallest features of F
until it is smaller than F’ and then calculate the scale factor
for the columns of variable width.
Figure 3c shows the results of the application of a face pro-
duction rule to a novel face. The novel face remains true to
the original style. Section 4 describes in more detail how the
rendering of novel faces is accomplished.

Floor Productions
A floor production rule is a description of the outward
facing surface of a single floor wrapping around a model.
Each rule consists of several face productions S = {F1, F2, ...,
FM}, where Fi is connected horizontally to F(i+1) mod M. Each
face has exactly one left adjacency and one right adjacency.
The corner orientation between adjacent faces is also
recorded. It indicates whether the faces meet at an inner
corner, outer corner, or are continuous. For example, the
model in Figure 4a contains four floors, including a small
base floor and three intermediate floors. Each floor surface
wraps around several blocks and therefore contains several
different and adjacent face productions and corner
orientations.
Our method uses a set of criteria to apply a floor
production rule to a floor of a novel building. A novel
model contains the faces S' = {F'1, F'2, ..., F'M’}. The system

Figure 4. Floor Productions. A model is divided into several floor surfaces that wrap around the building and can be applied to a
floor of a novel model. (a) A captured building and its floors. (b) A captured model floor. (c) A novel model floor. (d) Face production
rules from the captured floor applied to the novel floor.

a) b) c) d)

A
B C

D
A A

B

A

C
C

D

1. ABABABA → (AB)(AB)(AB)A → (AB)*A

2. AABAABAA → A(AB)A(AB)AA → A(AB)*A(AB)*AA

3. ACABABA → AC(AB)(AB)A → AC(AB)*A

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

selects a production rule Fi for each novel face F'j and then
applies the selected rule to the face as described in the
previous section. Our system uses a weighted combination
of the following three criteria to determine the fitness of a
candidate face production rule to a given novel face:

• Corner Orientation. A face is frequently character-
ized by the types of corners that surround it; for
example, an outer corner is likely to have trim or
decoration, while an inner corner is less likely to.
Since each face has two adjacencies and there are
three types of corners, this results in nine catego-
ries of faces. The best candidate production will
match the novel face in this respect.

• Size. The candidate production that is closer in size
to the novel face is more likely to be appropriate.

• Resolution. If two or more candidate productions
are appropriate in terms of corner orientation and
size, the production from the face with the highest
quality image samples is selected.

Figures 4(b-d) show the results of applying a captured floor
production rule to a novel floor. The capitalized letter labels
indicate the choice of capture face for each novel face. Our
approach does not consider the image-content of each ter-
minal and thus mirrored-copies of terminals are not used.
Nevertheless, it can be seen that using the corner orienta-
tion, size, and resolution of each face results in the termi-
nals, including trim, being consistently applied.

Model Productions
A model production rule consists of all the aforementioned
production rules and enables subdividing a given collection
of building blocks in a single operation. The floors of the
captured model are stored in a directed graph that usually
resembles an array. However, in special cases such as a
breezeway or towers, a single floor can be connected to
multiple floors. Applying a model production rule to a new
set of building blocks requires the system to determine
multipliers for each repeating floor element and then align
and subdivide each block accordingly. The blocks are first
sorted in order of height. The tallest block will be used as
the basis block for determining the number of repetitions
for each floor. This is computed by determining the multi-
pliers for each repeating floor that result in the closest
match to the basis block height. The basis block and all its

connected blocks are then resized and subdivided accord-
ing to the model production rule that matches their vertical
positions most closely. After subdivision, the floor surface
connectivity is updated, and the appropriate floor produc-
tion rules are applied to each floor of the novel model. All
blocks that are attached to the basis block are marked, and
the algorithm continues with the remaining blocks, if any.
Figures 5 and 1d shows the application of a captured model
onto a novel model. It can be seen that the floors have been
repeated multiple times in order to fill the entire height of
the new building. The application of the model production
rules occurs in a fraction of a second, for example, during a
single copy-and-paste operation performed by the user.

4 INTERACTIVE RENDERING
Our system uses view-dependent rendering strategies to
portray the building structures in real-time. The application
of the production rules generates the geometry of the build-
ing and its facades. In this section, we focus on drawing the
terminals of the building grammar. Our approach enables
photo-realistic rendering using color-equalized view-
dependent projective texture mapping and non-
photorealistic rendering using stylized terminals. Both of
the rendering strategies are also provided with mechanisms
to replace occluded regions of the captured structure.

Projective Texture Mapping
Our system can render a terminal using color-equalized
view-dependent textures. A given terminal is seen in mul-
tiple images captured from different distances and angles.
Shading and lighting effects will slightly change the cap-
tured colors of a terminal from image to image. Hence, the
rendering method must approximately equalize the colors
and brightness of the terminals and select the most appro-
priate samples for the terminals as seen from the current
viewing distance and angle.
Color equalization is possible by comparing the color data
from terminals of the same feature group in different loca-
tions on the model. During subdivision, the user indicates
which terminal types are to be considered diffuse (e.g.,
brick, stone) and marks one or more of the captured images
as color keys. Then, the program determines the average
color of each diffuse group from the color key images. For
each image, the average color of each diffuse group and for

Figure 5. Model Productions. The model productions from a captured model are applied to a novel model. (a) The captured model. (b)
The novel model. (c) The novel model automatically subdivided in the style of the captured model.

a) b) c)

ALIAGA ET AL.: STYLE GRAMMARS FOR INTERACTIVE VISUALIZATION OF ARCHITECTURE 7

each surface normal is computed. By averaging the colors
for different surface normals, we equalize shading between
surfaces as well as colors between images. Equalization is
performed by color channel shifting. The shift amount for
each surface in each image is computed as the difference
between the surface average color and key average color.
To render each terminal, the system blends between the
most similar sampled views. In particular, the viewpoint of
each image is transformed into a coordinate space local to
the terminal and projected onto the unit sphere in this
space. During each frame of rendering, a lookup function
determines the three source views closest to the current
view in distance and in angle [3]. These views are weighted
according to distance and angle to give smooth transitions
during interactive rendering (Figures 1d and 7d).

Stylization
The partitioning of the building into discrete terminals also
enables several forms of stylized rendering (e.g., [27, 28,
29]). Our system produces interactively editable
illustrations of buildings drawn in pen-and-ink style [30].
Prior to rendering, our system uses a semi-automatic
stylization procedure to pre-render multiple versions of
each terminal. The cached images span both resolution-
space and tonal space affording near and far views of the
buildings and providing stylized shading by smoothly

varying the apparent brightness of each terminal.
During grammar creation, the system identifies from
among the multiple views of each terminal a best image
sample for each and creates a cache of stylized images of all
terminals. To the best image samples, we apply a filter
yielding a thresholded binary image with edges detected.
Foreground pixels are connected to form a geometrical
mesh rendered in black over a white background. To create
images at multiple resolutions but at the same tonal level,
the mesh is drawn using a line width chosen so that the
average per-unit area intensity matches that of the original
image. Terminal images are also generated at different
tonal levels by using random strokes to “wash out” parts of
the image and produce light/dark regions (Figure 6a-c).
Since some terminals are marked as being of variable size
during model subdivision, the corresponding stylized ter-
minals are made repeatable as well via mirroring and
blending. At runtime, we select for each terminal the best
tonal level using a diffuse shading model with distance-
based attenuation.
Figure 6d shows example stylizations for a novel stretched
floor. Since our terminal rendering is procedural, we can
generate crisp and varying tone images for all terminals,
include repeated terminals, and produce a smooth and
visually-pleasing stylization at any resolution.

Figure 6. Stylization. Our method supports procedural stylizations of the terminals of the inferred grammar. (a-c) Low-to-high tonal
views of stylized terminals. (d) Example rendering of a novel floor of a captured building. Light source is in front of façade and near the
observer; brighter stylizations are used to resemble highlights.

a) b) c)

d)

Figure 7. Occlusion Removal and Color Equalization. The system uses the redundant samples of the terminal types to automatically fill
occluded surfaces and equalize their color. (a) Two images from a captured model. (b) A view of the recovered model rendered without
occlusion removal. (c) The view rendered with occlusion removal (occluded elements in the left image in (a) are automatically replaced
with elements from the right image in (a)). (d) The same view but with colors normalized as well.

a) b) c) d)

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

Occlusion Removal
Our method uses the production rules and multiple
instances of each terminal type to replace parts of the
building occluded in the original images. Since in practice it
is hard to obtain views of a large structure, such as a
building, completely free of occlusions. this provides
significant additional flexibilty when capturing images. The
result is a full rendering of the captured building, using
either projective texture mapping or stylization, despite
such views not existing in the original data.
To accomodate occlusion-free rendering, we render an
occluded terminal using a selected subset of the image
samples. For a given terminal T, we define a function
fitness(T, (Vi, Tj)) to determine the similarity between the
terminal and its possible replacements from view Vi using
unoccluded terminal Tj of the same feature group. The
criteria of the function, in order of importance, are:

• Model Size. T and Tj should be as close in size as
possible (determined by their areas of intersection).

• Corner Orientation. T and Tj should have the same
corner orientation to reduce imaging artifacts.

• Image Size. A larger image footprint of Tj in Vi is
preferred to eliminate resampling artifacts.

• Normal. T and Tj ideally share the same normal in
order to match lighting conditions (mostly
applicable for projective texture mapping).

Starting with the best available Tj, the terminals’ image
samples are added to a set of potential replacements for T.
Even if no single member of the feature group is sampled
from all desired angles, it is often possible to obtain a
complete rendering when the entire group is considered.
The quality of the final rendering will depend on the
similarity between the terminals of the group.
Figure 7 shows occlusion removal and color equalization
using projective texture mapping. Figure 7a contains two
original photographs. Figure 7b contains a naïve recon-
struction where trees and bushes obstructing the building
are unwillingly textured onto the model surface. In Figure

7c, the occluding objects have been removed from the sur-
face by using image data from other faces. Figure 7d shows
the same rendering with colors equalized and it is more
difficult to tell which faces have been replaced.

5 IMPLEMENTATION DETAILS
Our Build-by-Number system is implemented in C++ on a
3.0 GHz PC equipped with 1GB memory. The user interface
is implemented in Windows Forms using Managed C++
(Figure 8). All graphics functionality is implemented in
OpenGL. We can render scenes with multiple buildings at
real-time rendering rates. Model recovery is performed by
minimizing an error function between the edges of the
model and user-marked edges as in [5]. We perform the
minimization using an implementation of a nonlinear least
squares method obtained from the Numerical Recipes in C
library [31]. View-dependent texture mapping is imple-
mented using OpenGL's projective texture mapping func-
tionality. Alpha blending is used to weight each texture's
contribution appropriately. We use shadow mapping to

Figure 9. Stylized Rendering. Our technique supports procedural stylizations, such as pen-and-ink illustrations. (a) A rendering using
the same stylization level for all terminals. (b) The same view but lighter-colored stylizations are used to represent brighter highlighted
areas using a diffuse shading model. The light source is near the front-left of the building. (c) Another example rendering with some land-
scaping.

a) b) c)

Figure 8. User Interface. The system allows the user to recon-
struct original buildings from images as well as create novel-
buildings. The figure shows the modeling window, imaging win-
dows, and tool windows containing a scene graph visualization
as well as model parameters.

ALIAGA ET AL.: STYLE GRAMMARS FOR INTERACTIVE VISUALIZATION OF ARCHITECTURE 9

prevent the image from being projected onto back-facing
and occluded polygons.

6 RESULTS AND EXAMPLES
With our system we have created several existing and novel
buildings based on real-world image data. We acquired
datasets varying from 4 to 16 images for seven different
buildings: University, Engineering, Music, Administration,
Office, Apartment, and Corner. Adding a building to the
visualization system is a one time processing effort taking
one to two hours to create the model, mark edge corre-
spondences, subdivide the model, mark occluded faces,
and stylize the terminals. Once a captured building is avail-
able, a novel model can be created and modified on-the-fly
using projective texture mapping or stylized rendering.
Using our interactive system, the user can arrange sets of
connected building blocks from a pre-defined list of solid
primitives and start sketching buildings. An entire building
grammar can be applied instantly to a new set of building
blocks from a captured building with a single copy-and-
paste operation. Alternatively, the user may want to view a
captured building, change the size and shape of the original
building, or add landscaping. Handles are provided on the
building blocks to facilitate their resizing. In the system of
this article, the building layouts can be augmented interac-
tively with synthetic ground, texture-mapped sky, trees,
and bushes using our landscape painter. The ground plane
is divided into small tiles that can be “painted” with grass
or cement. Similar to an airbrush, a user can draw a cloud
of leaf billboard textures to produce a bush or tree cluster.

Figure 9 shows several pen-and-ink style views rendered
interactively by our system. The buildings use the grammar
inferred from the University dataset (see Figure 2a for ex-
ample photographs). Figure 9a and 9b contain close-ups of
a novel building created with this grammar. In Figure 9a,
the same stylization level is used for all terminals. In Figure
9b, shading is produced using both diffuse shading and our
stylized shading model. Lighter-colored stylizations are
used to represent brighter areas. The point light source in
this example is located slightly below and to the right of the
camera. Figure 9c shows a stylized view of the captured
University building with bushes added at the base. These
renderings give a sketched feel to the scene yet maintain
the style of the original structure, require minimal effort by
the user, and can be interactively changed and navigated.
Figure 10 demonstrates the use of projective texture map-
ping to render views of the Administration building. Figure
10a shows one of the original photographs of the building.
Figure 10b illustrates the recovered original model free of
occluded surfaces and with color intensity equalized. Fig-
ure 10c contains a novel building created in the style of the
original in about 15 minutes, including the landscaping.
Since the new model is more regular than the original,
some face production rules were applied individually to
maintain vertical coherence. Instead of copy-and-paste of
an entire building grammar, our system also affords copy-
ing grammars to individual floors and faces.
Figures 11-13 illustrate additional buildings and renderings
produced by our system. Figure 11a shows a rendering of
the original Office building and Figures 11b-d demonstrate
a wide range of modifications to the original building. Fig-

Figure 10. Projective Texture Mapping. Our system can also render using color-equalized view-dependent textures. (a) An original image
of Administration building. (b) Rendering of original building with occlusions removed and colors equalized. (c) Novel building of the same
style together with landscaping.

a) b) c)

Figure 11. Office Building. Our sys-
tem supports visualizing a wide range
of changes to existing buildings. For
example, (a) an original recovered
model of the Office building, and (b-
d) extensions of the building into a L-
shaped and two T-shaped configura-
tions.

a) b)

c) d)

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

ure 12a contains an example image of the Music building.
Figures 12b and 12c show a projective texture-mapped ren-
dering and a stylized rendering, respectively, from ap-
proximately the same viewpoint. Figures 13a-c show pic-
tures of the original (a) and extended versions (b-c) of the
Apartment building demonstrating how the building might
look if additional floors and apartments where added. Fig-
ures 13d-e contain a captured photograph and recon-
structed model of the Corner building. The large number of
occluder objects very close to the ground floor of the build-
ing required an aggressive replacement using only the few
unoccluded tiles available. Moreover, this building only has
two facades; yet using our system we can copy-and-paste
the grammar onto the obscured faces of the building con-
figuration yielding a complete building. Figures 13f-g show
the adjacently captured photograph and a virtually-
reconstructed corner of the building.
Finally, Figure 14 shows using our approach to generate an
in-photograph visualization of building modifications. Fig-
ure 14a contains an original photograph. In Figure 14b, we
use our system to build a new model. Since during the ini-
tial model creation process, our system determined the
pose of the camera via the optimization, we can re-project
the new model onto one of the original images (Figure 14c)
and obtain a glimpse of the modified building in place.
While this use of our system does not work for all photo-
graphs and does not account for large occlusion changes, it
provides a powerful, yet simple to use tool.

7 CONCLUSIONS AND FUTURE WORK
We have presented a method to construct a grammar from
photographed and subdivided buildings, enabling the
rapid sketching of novel architectural structures in the style

of the original. Using several captured models, we show
that novel buildings can be designed very quickly and ren-
dered with realism or style comparable to the original
structures. We also demonstrated that the extracted proce-
dural rules can be easily adapted to interactive projective
texture mapping and to non-photorealistic rendering. Fur-
ther, our occlusion removal and color equalization algo-
rithms make it possible to capture even highly occluded
buildings in varying lighting conditions. The system does
not require significant user knowledge and thus is friendly
to both non-expert and advanced users.
Our system has several current limitations. We assume the
building and its terminals (e.g., windows, doors, etc.) to be
static from image to image and for terminals in the same
group to be identical. While changes due to diffuse illumi-
nation are compensated for, the latter assumption causes
some minor artifacts during interactive navigation when
windows in a façade are replaced with other similar-style
windows yet with different interior content (e.g., shades,
curtains, etc.). Furthermore, although we found many
buildings conform to our assumed partitioning and avail-
able building blocks, it is a not always the case (e.g., the
roof-line arch of Figure 13d). One option is to add more
fundamental building blocks and/or to break up a building
into editable parts conforming to our assumed partitioning.
Looking forward, there are several avenues of future work.
First, we are exploring combining our system with an
automated city modeling system. Second, we are investigat-
ing methods to discover higher-level and more abstract
patterns and styles within a building. Third, we are seeking
extensions to our approach for generating entire urban
spaces in the style of some existing city. We believe inverse
procedural modeling to be a very powerful paradigm and

Figure 12. Music Building. (a) An original photograph of Music building. (b) Rendering of original model using projective texture map-
ping. (c) Stylized rendering from similar viewpoint with a light source in front of the near building corner.

a) c) b)

Figure 13. Apartment and Corner Buildings. (a-c) Using our system, we
can visualize increasing floors/apartments to an existing building. (d-g) We
can also generate a complete building from only a corner building by copy-
ing and pasting the grammars.

d)
e)

g) f)

b) a) c)

ALIAGA ET AL.: STYLE GRAMMARS FOR INTERACTIVE VISUALIZATION OF ARCHITECTURE 11

look forward to significant improvements in model genera-
tion and visualization in computer graphics.

ACKNOWLEDGMENTS
We are thankful to our colleagues in the Purdue Graphics
and Visualization Lab for helping with this project. In addi-
tion, this work is sponsored in part by NSF CCF 0434398
and by a Microsoft Research gift -- we are very grateful to
both as well.

REFERENCES
[1] P. Prusinkiewicz and A. Lindenmayer, “The Algorithmic Beauty

of Plants”, Springer‐Verlag, 1991.

[2] Y. Parish, P. Muller. “Procedural Modeling of Cities”, ACM SIG‐
GRAPH, pp. 301‐308, 2001.

[3] P. Wonka, M. Wimmer, F. Sillion, W. Ribarsky. “Instant Architec‐
ture”, ACM SIGGRAPH, pp. 669‐677, 2003.

[4] P. Mueller, P. Wonka, S. Haegler, A. Ulmer, L. van Gool, “Proce‐
dural Modeling of Buildings”, ACM SIGGRAPH, pp. 614‐623,
2006.

[5] P. Debevec, C. J. Taylor, J. Malik, “Modeling and Rendering Ar‐
chitecture from Photographs”, ACM SIGGRAPH, pp. 11‐20, 1996.

[6] P. Debevec, G. Borshukov, Y. Yu. “Efficient View‐Dependent
Image‐Based Rendering with Projective Texture‐Mapping”, In
Proceedings of 9th Eurographics Rendering Workshop, 1998.

[7] MetaCreations, Inc. Canoma. www.canoma.com, 2002.

[8] Eos Systems, Inc. PhotoModeler. www.photomodeler.com, 2005.

[9] RealViz, S.A. ImageModeler. www.realviz.com, 2005.

[10] N. Max and K. Ohsaki, “Rendering Trees from Precomputed Z‐
Buffer Views”, Rendering Techniques ʹ95: Proceedings of the 6th Eu‐
rographics Workshop on Rendering, pp. 45‐54, 1995.

[11] L. McMillan and G. Bishop, “Plenoptic Modeling: An Image‐
Based Rendering System”, ACM SIGGRAPH, pp. 39‐46, 1995.

[12] M. Levoy and P. Hanrahan, “Light Field Rendering”, ACM SIG‐
GRAPH, pp. 31‐42, 1996.

[13] Gortler S., Grzeszczuk R., Szeliski R., and Cohen M., “The Lumi‐
graph”, ACM SIGGRAPH 96, pp. 43‐54, 1996.

[14] D. Aliaga, T. Funkhouser, D. Yanovsky, I. Carlbom, “Sea of Im‐
ages: a Dense Sampling Approach for Rendering Large Indoor
Environments”, IEEE Computer Graphics & Applications, 23:6, pp.
22‐30, 2003.

[15] D. Aliaga, I. Carlbom, “Plenoptic Stitching: A Scalable Method for
Reconstructing Interactive Walkthroughs”, ACM SIGGRAPH, pp.
443‐450, 2001.

[16] S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg, M. Jethwa, N.
Master, “Calibrated, Registered Images of an Extended Urban
Areaʺ, IEEE Computer Vision and Pattern Recognition, 2001.

[17] A. R. Dick, P.H.S. Torr, and R. Cipolla, “Modeling and Interpreta‐
tion of Architecture from Several Images”, International Journal of
Computer Vision, Vol. 30, No. 2, pp. 111‐134, 2004.

[18] G. Stiny, “Pictorial and Formal Aspects of Shape and Shape
Grammars”, Birkhauser Verlag, Basel, 1975.

[19] J. Legakis, J. Dorsey, S. Gortler, “Feature‐based Cellular Texturing
for Architectural Models”, ACM SIGGRAPH, 2001.

[20] I. Shlyakhter, M. Rozenoer, J. Dorsey, S. Teller, “Reconstructing
3D Tree Models from Instrumented Photographs”, IEEE Computer
Graphics & Applications, 21:3, pp. 53‐61, 2001.

[21] R. Zeleznik, K. Herndon, J. Hughes, “SKETCH: an interface for
sketching 3D scenes”, ACM SIGGRAPH, pp. 163‐170, 1996.

[22] A. Shesh, B. Chen, “SMARTPAPER: An Interactive and Intuitive
Sketching System”, Computer Graphics Forum, Vol. 23, issue 3 (Eu‐
rographics), 2004.

[23] J.Y. Oh, W. Stuerzlinger, J. Danahy, “Comparing SESAME and
Sketching for Conceptual 3D Design”, Eurographics Workshop on
Sketch‐Based Interfaces and Modeling, pp. 81‐88, 2005.

[24] Google Sketchup, www.sketchup.com, 2006.

[25] F. Alegre and F. Dellaert, “A Probabilistic Approach to the Se‐
mantic Interpretation of Building Facades”, Georgia Institute of
Technology Technical Report, GIT‐GVU‐04‐31, 2004.

[26] D. Bekins, D. Aliaga, “Build‐by‐Number: Rearranging the Real
World to Visualize Novel Architectural Spaces”, Proceedings of
IEEE Visualization, pp. 143‐150, 2005.

[27] M. Chi, T. Lee, “Stylized and Abstract Painterly Rendering Sys‐
tem Using a Multiscale Segmented Sphere Hierarchy”, IEEE
Transactions on Visualization and Computer Graphics, Vol. 12, No. 1,
pp. 61‐72, 2006.

[28] A. Lu, C. Morris, J. Taylor, D. Ebert, C. Hansen, P. Rheingans, M.
Hartner, “Illustrative Interactive Stipple Rendering”, IEEE Trans‐
actions on Visualization and Computer Graphics, Vol. 9, No. 2, pp.
127‐138, 2003.

[29] P. Rheingans, D. Ebert, “Volume Illustration: Nonphotorealistic
Rendering of Volume Models, IEEE Transactions on Visualization
and Computer Graphics, Vol. 7, No. 3, pp. 253‐264, 2001.

[30] G. Winkenbach, D. Salesin, “Computer‐generated Pen‐and‐Ink
Illustrations”, ACM SIGGRAPH, pp. 91‐100, 1994.

Figure 14. Engineering Building. Our system can be used to modify photographs in a perspectively correct manner. This simple, but
powerful, ability allows us to quickly visualize new structures in existing scenes. (a) An original photograph. (b) Our method performs
the same operations, namely, recover and modify the model. (c) The new model has been projected back into the original image.

a) c) b)

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

[31] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, “Numerical
Recipes in C”, Cambridge University Press, 2nd edition, 1999.

Daniel G. Aliaga received a B.S. degree in com-
puter science from Brown University in 1991, and a
Ph.D. degree in computer science from the Univer-
sity of North Carolina at Chapel Hill, USA in 1999.
Since 2003, he is an assistant professor with the
Department of Computer Science at Purdue Uni-
versity. He is an active researcher in computer
graphics, in particular capturing and rendering large
complex environments. Over the years, Dr. Aliaga

has developed and published several new algorithms for interactively
rendering massive models, recreating complex 3D environments, visi-
bility culling, reconstructing images, estimating camera pose, calibrat-
ing cameras, and compressing images. In addition, he has designed
complete experimental research systems, in collaboration with Bell
Labs, UNC at Chapel Hill, Princeton, and Johns Hopkins University.

Paul A. Rosen received a B.S. degree in computer
science from Purdue University West Lafayette,
Indiana in 2004. He is currently a Graduate
Research Assistant with the Computer Science
Department at Purdue University. His research
interests lie in the areas of computer graphics, 3D
displays, image-based rendering, and 3D scene
acquisition and reconstruction.

Daniel R. Bekins received a M.S. degree and B.S.
degree in Computer Science from Purdue
University West Lafayette, Indiana in 2005 and
2004, respectively. He was a graduater researcher
within the Computer Science Department at Purdue
University. His research interests lie in the areas of
computer graphics, gaming, and mixed reality. Cur-
rently, he is employed by Electronic Arts.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

