
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 

 

A Self-Calibrating Method for Photogeometric Acquisition of 3D Objects 
Daniel G. Aliaga   Yi Xu 

Abstract— We present a self-calibrating photogeometric method using only off-the-shelf hardware that enables quickly and 
robustly obtaining multi-million point-sampled and colored models of real-world objects. Some previous efforts use a priori 
calibrated systems to separately acquire geometric and photometric information. Our key enabling observation is that a digital 
projector can be simultaneously used as either an active light source or as a virtual camera (as opposed to a digital camera 
which cannot be used for both). We present our self-calibrating and multi-viewpoint 3D acquisition method, based on structured-
light, which simultaneously obtains mutually registered surface position and surface normal information and produces a single 
high-quality model. Acquisition processing freely alternates between using a geometric setup and using a photometric setup with 
the same hardware configuration. Further, our approach generates reconstructions at the resolution of the camera and not only 
the projector. We show the results of capturing several high-quality models of real-world objects.  

Index Terms— Three Digitization and Image Capture, Scene Analysis, Geometric Modeling.  

——————————      —————————— 
1 INTRODUCTION
WE present a new self-calibrating method for acquiring 
highly-detailed models for 3D objects. Our method uses 
off-the-shelf uncalibrated digital projectors and cameras 
and enables a computational trade-off from coarse and 
fast acquisitions to highly-detailed and optimized models. 
Our most-detailed models are multi-million point-
sampled and colored representations of real-world objects 
with a sampling resolution of 0.1mm (using only con-
sumer hardware). Our method simultaneously uses a 
photometric-based and a geometric-based approach in 
order to produce a photogeometric modeling system. This 
combination enables self-calibration, capitalizes on the 
high-visual details of photometric methods, and supports 
the precision of a geometric technique. 
Our key enabling observation is that a digital projector 
can be simultaneously used as either an active light 
source or as a virtual camera. This fact permits acquiring 
per-pixel photometric and geometric observations of ob-
jects and from one or more viewpoints. Our photogeome-
tric method differs from previous approaches in several 
ways. While Helmholtz reciprocity [28] and Dual Photo-
graphy [21] methods have identified a projector as the 
dual to a camera, they do not explicitly obtain 3D models. 
Although the term photogeometric was first coined by 
[14], previous efforts have captured photometric and 
geometric observations using separate a priori calibrated 
systems (e.g., [16][19]). Our photometric and geometric 
systems are one and the same thus acquisition is free to 
change from one setup to the other. 
Traditional geometry-only acquisition techniques are ei-
ther passive and depend less robust feature correspon-
dence or active. While our method builds upon structured 
light, typically such techniques obtain samples that are 
limited by projector resolution and are pre-calibrated. A 
typical projector has a resolution of one mega-pixel (MP) 
but digital cameras are easily available with an order of 
magnitude higher-resolution (e.g., 10 MP). Photometric-
based approaches (e.g., shape-from-shading and photo-

metric stereo) can use images of multiple MPs to obtain 
per-pixel surface normals, hence their effectiveness in 
high-quality image-based relighting. However, the recov-
ered normals suffer from low-order distortions which 
make it difficult to recover the global shape (e.g., General 
Bas-Relief transformation [4]). 
In contrast, our photogeometric method obtains both the 
high-resolution detail of photometric techniques and the 
metric accuracy of geometric approaches. Our algorithm 
enables smoothly changing from a photometric-only solu-
tion, to a photogeometric-solution, and then to a geome-
tric-only solution. On the one hand, a photometric solu-
tion has the advantage of fast processing and high-
resolution but bad global shape recovery. On the other 
hand, a geometric solution provides metric accuracy but 
often needs more compute time and is at lower-resolution 
than a photometric solution. Our photogeometric solution 
is effectively able to trade nonlinear geometric computa-
tions for faster linear computations and is able to incorpo-
rate the additional resolution and details of a photometric 
method. Furthermore, the combination supports perform-
ing self-calibration of the intrinsic and extrinsic parame-
ters of the used hardware. Also, our methodology scales 
well with model size enabling quick processing of large 
multi-million point sampled models.  
Our approach uses one of several configurations of digital 
projectors and cameras to obtain a large collection of mul-
ti-viewpoint samples of the object each with geometric 
and photometric observations. Our method uses as little 
as one projector and one camera. We demonstrate (1) us-
ing the projectors as light sources and then as virtual 
cameras to produce a fast geometric reconstruction whe-
reby an uncalibrated photometric-based initialization ob-
tains estimates for a self-calibration of the geometric se-
tup, and (2) simultaneously using the projectors as both 
light sources and virtual cameras to calculate a photo-
geometric reconstruction using a linear optimization and 
producing very high-quality multi-viewpoint models. 
Our method produces highly-detailed models of 3D ob-
jects (ranging from 250k to 6M triangles) without any a 
priori calibration, yields both surface position and surface 
normal data, and uses only off-the-shelf hardware.  The 
main contributions of our paper are: 
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• a photogeometric method for fast, robust, and de-
tailed reconstruction of 3D objects, 

• a method to use projectors as light sources and then 
as virtual cameras to obtain a fast and self-calibrating 
geometric reconstruction, and 

• an algorithm for photogeometric optimization pro-
ducing multi-viewpoint models best complying to 
both photometric and geometric measurements, 
without having to align various reconstructions. 

Advantages and Limitations: Our method has several 
advantages over standard structured light systems. First, 
our method is self-calibrated and thus easier to deploy 
and use. Second, our method supports reconstructions at 
the resolution of the camera which often is greater than 
that of the projector (Figure 1). Third, photogeometric 
optimization improves the quality of the acquired models 
and provides surface normal data in addition to surface 
position data. One limitation of our method is that unca-
librated Lambertian photometric stereo is used to initial-
ize the self-calibration. However, we do not rely on the 
surface to be Lambertian. As shown later, the computed 
lighting directions only need to be approximate estimates 
that will be snapped to the correct location during geome-
tric processing.  

2 RELATED WORK 
Geometric-based Methods: Geometric-based acquisition 
produces detailed models but the process is often time 
consuming and does not necessarily produce smooth and 
accurate normals. On the one hand, passive geometric 
methods are unobtrusive, but rely on natural features 
(e.g., [18]). On the other hand, active geometric methods 
explicitly generate correspondences, but laser-based sys-
tems acquire geometry (i.e., no color), can be expensive, 
and require lengthy cleanup and post-processing to ob-
tain smooth, accurate surface normals and geometry. Fur-
ther, most laser-based systems assume Lambertian ob-
jects, though [17] is an exception. Typical structured-light 
methods use a priori calibration and reconstruct mostly-
Lambertian objects (e.g., [5][20][27]). Structured-light me-
thods for dynamic scenes often obtain lower-resolution 
geometry and/or need custom hardware and calibration 
(e.g., [12][24]). Though some self-calibrating structured-
light systems exist [7], most require pre-calibration. Self-
calibration methods typically rely on features and on ei-
ther assumed scene or geometry constraints to estimate 
parameters [9] and generally convergence is difficult [22]. 

Photometric-based Methods: As opposed to photometric 
stereo and shape-from-shading, our approach actively 
generates robust features and is able to overcome the typ-
ical low-frequency deformations. In particular, we sur-
mount the ambiguity of the generalized bas-relief trans-
formation [4] and, thus, obtain the 3D model up to a 
global scale factor. To improve upon the linear ambiguity, 
some previous methods rely on feature tracking and on a 
structure-from-motion refinement (e.g., [13][26]). While 
this may reduce global deformations, it relies on feature 
correspondence and cannot produce densely-sampled 
geometric data points. Another self-calibrating photome-
tric option builds closed models of an object placed on a 
turntable and sequentially illuminated by three distant 
lights [10]. Many images of the object at constant rota-
tional steps are captured. Silhouettes are extracted and 
used to form a 3D visual hull, which is perturbed to find 
matching photometric normals and mesh normals. This 
approach depends on silhouette detection, initial esti-
mates for object orientation, and distant light sources (i.e., 
lights 3-4 meters away for a 15 cm object).  
Photogeometric Methods: While some previous ap-
proaches have acquired photometric and geometric data, 
each from a different viewpoint and using two pre-
calibrated acquisition setups (e.g., [16][19]), we improve 
such systems in several ways. Our method is both self-
calibrating and multi-viewpoint. This makes the setup 
significantly more flexible, practical, and able to obtain 
more complete 3D models. We use the exact same equip-
ment for both geometric and photometric acquisition. The 
single capture system also has the benefit of removing the 
rotational alignment (as in [16]) or positional-and-
rotational alignment (as in [19]) needed between photo-
metric and geometric samples and does not need co-
location of the hardware via beam splitters. 
Camera-Light Duality: Duality between cameras and 
light sources has been exploited for novel image genera-
tion and for surface reconstruction. For instance, a stereo 
method can use a projector as a virtual camera in the 
matching error metric formulation (e.g., [5]). Dual Photo-
graphy [21] demonstrates how the view from a light 
source (e.g., projector) can be obtained by transposing the 
light transport matrix from projector to camera; however, 
no object geometry is obtained. Helmholtz stereopsis [28] 
physically swaps a light source and camera so as to ena-
ble their co-location and to reconstruct an object without 
having to make assumptions about its bidirectional reflec-

Figure 1. Photogeometric Acquisition. a) Our method captures photometric (top) and geometric (bottom) observations of an object. b) A 
novel viewpoint rendering of a 3D model is produced using our photogeometric method. c) A close‐up of the model rendered with tex‐
ture mapping. d) An even closer view of the model now rendered using wireframe and synthetic shading showing details beyond those 
possible  using  only  geometric  observations.  Our  approach  uses  the  same  hardware  as  standard  structured‐light  but  is  fully  self‐
calibrating and able to capture models at the resolution of the camera (in this example camera resolution is 10x greater than projector 
resolution). The average triangle edge length is 0.09035 or about 0.1 mm. 

b) 

0.1 mm 

a) c) d) 



ALIAGA AND XU:  A SELF-CALIBRATING METHOD FOR PHOTOGEOMETRIC ACQUISITION OF 3D OBJECTS 3 

 

tance distribution function (BRDF). While the initial 
Helmholtz stereopsis method requires pre-calibration, it 
has been extended to an uncalibrated approach requiring 
known epipolar geometry [29] and to an uncalibrated 
approach using reciprocal image features [30]. Both still 
require co-location of the camera and light source and the 
latter method also depends on the presence of either tex-
ture features or specularity features. 
The work presented in this article is an extension of our 
conference publication [1]. However, we generalize the 
approach to a photogeometric method supporting several 
camera-projector configurations, introduce new equations 
to force a sample spacing similar to the original, and 
present additional results and analysis about the time-
quality tradeoff performed with our photogeometric ap-
proach and comparisons to standard structured light. 

3   PHOTOGEOMETRIC ACQUISITION 
For photogeometric acquisition, we use one of three fun-
damental configurations with ܥ ൒ 1 cameras and ܴ ൒
1 projectors to obtain object point samples ܵ ൌ ሼ ௜ܵሽ where 
݅ א ሾ1. . ܰሿ and ܰ is desired to be large. The configurations 
are a generalization of structured-light systems and sup-
port multi-viewpoint reconstructions. They all provide 
self-calibration and increased resolution to almost any 
structured-light system. An object point sample is defined 
as ௜ܵ ൌ ሺ݌௜, ݊௜ሻ, where ݌௜ is the position and ݊௜ is the nor-
mal of the sample. Each sample is computed from a set 
௜ܩ ൌ ൛ݍ௜௝ | ݅ א ሾ1. . ܰሿ, ݆ א ሾ1. . ܴሿൟ of at least two geometric 
observations needed for geometric/classical stereo and a 
set ௜ܲ ൌ ൛ܿ௜௝ | ݅ א ሾ1. . ܰሿ, ݆ א ሾ1. . ܴሿൟ of at least three pho-
tometric observations needed for photometric stereo, 
where ݍ௜௝ ൌ ሺݑ௜௝,  ௜௝ሻ is the projection of sample ݅ onto theݒ
image plane of projector ݆, and ܿ௜௝ ൌ ሺܿ௜௝௥ , ܿ௜௝

௚, ܿ௜௝௕ ሻ is the 
RGB color of point ݅ under the illumination of projector ݆. 

3.1 Configurations 
Our configurations hinge on the notion that a digital pro-
jector can be either a virtual camera or a digitally con-
trolled light -- a digital camera, however, cannot be both. 
This leads to the following three possible configurations. 
Single-camera Configuration (SC): SC has one static 
camera and one projector moved to several locations. A 
static camera-projector configuration provides the two 
viewpoints needed for a geometric reconstruction, but 
does not provide the multiple light sources for a photo-
metric reconstruction. Moving a single projector to sever-
al distinct locations increases both the number of view-
points and the number of light sources. This configura-
tion is the simplest for obtaining the minimum needed 
geometric and photometric observations per ௜ܵ. One dis-

advantage of this configuration is that as the number of 
projector locations increases, the number of object points 
visible from the camera and all projectors decreases. 
Multi-camera Configuration (MC): MC has several static 
cameras and one projector moved to several locations. In 
this configuration, object points have correspondences in 
multiple cameras, and collectively sample a larger portion 
of the object as compared to single camera configuration. 
Multi-projector Configuration (MP): MP has several 
identical projectors and one or more static cameras. This 
approach assumes the same focal length for all projectors 
and avoids moving the projector. It is suitable for real-
time processing but requires more hardware. Figure 2(a) 
shows a multiple camera configuration. It can also be rea-
lized using one single projector. 

3.2 Image Capture 
For each projector, a sequence of ܣ ൅ -patterns are pro ܤ
jected where ܣ ൒ 1 patterns are used for photometric ob-
servations ௜ܲ and ܤ ൒ 1 patterns are used for geometric 
observations ܩ௜. Changing the number of patterns enables 
different time-quality trade-offs. In the limit, using ܤ ൌ 0 
yields a purely photometric-based capture while using 
ܣ ൌ 0 produces a purely geometric-based capture. 
The image data for the photometric observations ௜ܲ con-
sists of the color intensity of the samples ௜ܵ as lit by the 
projectors (Figure 3a). For the first phase of uncalibrated 
photometric stereo, we assume a Lambertian object illu-
minated by each projector acting as a diffuse light source. 
For the second phase, after geometric self-calibration, the 
light sources are known and it facilitates one of several 
improved photometric reconstructions.  
The image data for geometric observations ܩ௜ is captured 
using Gray code patterns [11], which are a set of coarse to 
fine multi-level binary patterns (Figures 3d-e). Our me-
thod projects Q pairs of (horizontal and vertical) stripe 
patterns from each of the projectors and captures images 
for all cameras. To prevent determining surface albedos, 
we project the patterns and their inverses; resulting in 4Q 
patterns in total per projector. These patterns permit ro-
bustly corresponding about ሺ2ொ െ 1ሻଶ surface points be-
tween a camera and a projector. For a projector with 
1400x1050 pixels, the maximum Q is 10; resulting in ~10଺ 
samples. To yield fewer points and faster processing, we 
can use small Q values (e.g., 5). Other structured light 
patterns can also be used for point correspondence (e.g. 
grid pattern, color coded pattern, etc.). We choose to use 
temporally-coded Gray code patterns due to its robust-
ness against different surface albedos and its ability to 
achieve high resolution. In addition, changing the levels 
of Gray code pattern can be used to control the density of 

Figure 2. Example Configuration. (a) A multi‐projector and multiple‐camera configuration for acquisition. (b) A photograph of an object 
to be captured. (c) Photometric reconstruction using 3 images illuminated from 3 directions. (d‐e) Two corresponded virtual views be‐
tween two projectors and the camera picture in b. (f) Photogeometric setup surrounding point pi. 

V1=L1 
P0 

P1  P2 

P3 

C0  C1 

pi  pi 

b)  c)

pi 

e)

pi 

d)

pj 

pi 

pk 

ni 

qi1 

V0=L0 f)  qi0 
a) 



4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 

 

geometric measurements easily. When multiple cameras 
are available, space-time stereo is also an alternative to 
obtain higher resolution correspondence with a small 
number of images [5][27]. Please refer to [3] for a detailed 
discussion on different coding strategies. 

3.3 Object Point Sampling 
In order to convert the projectors into virtual cameras, we 
need to correspond pixels amongst as many projectors 
(and cameras) as possible. Examining the Gray code se-
quence seen by the cameras and emitted by the projectors 
produces the camera-to-projector correspondence. We 
then re-sample the camera-to-projector correspondences 
to produce dense projector-to-projector correspondences.  
After capture, each camera has observed all projector pat-
terns and has a set of point correspondences with the pro-
jectors. A camera and a projector each creates a 2D trian-
gulation of the points they have in common with each 
other. The camera then computes the barycentric coordi-
nates for a regular grid of 2D points on the camera’s im-
age plane and uses the barycentric coordinates to com-
pute corresponding 2D points on the projector’s image 
plane. A newly created point in the projector’s view is 
then corresponded with points on all the other cameras’ 
regular grid provided the projector triangle is visible in 
the other camera. The result is a large set of points which 
at most are visible in all projectors and all cameras and at 
the least equals the correspondence between one camera 
and one projector. For example, point ݌௜ in Figures 2b and 
2c is corresponded with the projector views in Figures 2d 
and 2e. Points too close to others in all images are elimi-
nated and the final outcome is a near-regular distribution 
of points corresponded between projectors (and cameras). 
The projector-projector correspondences become geome-
tric observations ܩ௜ and the projector-camera correspon-
dence are used to extract photometric observations ௜ܲ. 

4   PHOTOMETRIC MODELING 
Our method uses photometric modeling to first perform 
an uncalibrated photometric stereo reconstruction of the 
object and then again later during the process of multi-
view photogeometric optimization. In the first stage, we 
use a Lambertian photometric stereo formulation and its 
results of lighting directions and surface estimates are fed 
to the next stage of geometric modeling. 

4.1 Uncalibrated Photometric Stereo 
Uncalibrated photometric stereo recovers surface normals 
and lighting directions. The well-known model for Lam-

bertian objects and distant directional lights is 
்ܮܰ                                           ൌ  ሺ1ሻ                                        ܥ
where N is a k x 3 matrix of k outward-facing surface 
normals, L is a l x 3 matrix of l light directions pointing 
towards the light, and C is a k x l matrix of the observed 
pixel intensities. Based on [2] and [25], we look closely at 
the case of one pixel/normal and three lights, namely k=1 
and l=3. Matrix N becomes a row vector normal nT and 
the matrix C becomes a row vector cT. Equation (1) can be 
written as nTLT=cT. Next, we define a new matrix D=(LT)-1 
and rewrite equation (1) as nT=cTD. Since we desire unit 
surface normals, we seek nTn=1 which can also be written 
as (cTD)(DTc)=1, or as 
ܿܧ்ܿ                                           ൌ 1                                            ሺ2ሻ 
where E=DDT is symmetric and positive definite consist-
ing of six unknowns. When expanded, it takes the form 
   ݁ଵଵܿଵଶ ൅ ݁ଶଶܿଶଶ ൅ ݁ଷଷܿଷଶ ൅ 2݁ଵଶܿଵܿଶ ൅ 2݁ଵଷܿଵܿଷ ൅ 2݁ଶଷܿଶܿଷ ൌ 1.    ሺ3ሻ 
The equation writes the six unknowns of E as a linear 
combination of the known components ci of the vector c. 
Given at least six pixels and three intensities per pixel, the 
eij variables are over-constrained and solved using linear 
least squares. Given E, observe that 
ଵିܧ       ൌ ሺ்ܦܦሻିଵ ൌ ሺሺ்ܮሻିଵሻሺሺሺ்ܮሻିଵሻ்ሻିଵ ൌ  ሺ4ሻ           .்ܮܮ

From equation (4) we recover the magnitude of and an-
gles between light directions, up to an unknown global 
rotation. Then, using LT we compute the matrix N.  
A surface height field can be calculated from N up to an 
unknown global rotation ܴ and to a generalized bas-relief 
(GBR) transform [4] ܩ. The GBR transform (λ, μ, ν) of a 
surface is the 3x3 matrix ܩ ൌ ሾ1 0 0; 0 1 0;  ሿ. Sinceߣ ߥ ߤ
typically the same projector is used at multiple locations, 
we assume equal light source intensity and simplify the 
GBR transform to ሺߣ, 0,0ሻ [4]. Using one arbitrary object, 
we manually estimate a ߣ, which transforms the photo-
metric surface to an shape similar to the real object. Regis-
tration does not need to be very precise and λ=0.3 works 
well with all our objects. We also determine a 3D rotation 
to bring the lighting setup into registration with the xy 
image plane using a simple user interface.  

4.2 Surface Estimation 
To compute a photometrically-estimated surface z(x,y), 
we integrate the surface normals. The geometric normals 
of z(x,y) are given by (zx, zy, -1) where zx and zy denote 
partial derivatives. On a grid, the partial derivatives are 

௫ݖ ൌ ݔሺݖ ൅ 1, ሻݕ െ ,ݔሺݖ ሻݕ ൌ െ݊௫/݊௭ 
௬ݖ                     ൌ ,ݔሺݖ ݕ ൅ 1ሻ െ ,ݔሺݖ ሻݕ ൌ െ݊௬/݊௭                (5) 

 g) 

Figure 3. Processing. a) Illuminated by projector. b) Photometric reconstruction. c) Side‐view photograph (compare to b). d‐e) Structured 
light input images. (f‐g) Wireframe and filled view of coarse self‐calibrated model. (f) Final model after up‐sampling and photogeometric 
optimization (rendered using synthetic lighting). 
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where (nx, ny, nz) is the photometrically-estimated normal 
at pixel (x, y). Then, we integrate and construct a surface 
height field using the method of [6]. Although depth dis-
continuities cause problems when integrating normals, 
our method does not assume the integrability of the sur-
face. Our geometric self-calibration algorithm is able to 
handle certain amount of self-occlusions using a rough 
photometric estimate as shown later. 

5   GEOMETRIC MODELING 
Our geometric modeling uses the photometrically-
estimated surface, approximate lighting directions, and 
tailored reprojection equations to obtain a self-calibrated 
reconstruction of a subset ܵᇱ ൌ ሼ ௜ܵ

ᇱሽ of the object point 
samples ௜ܵ. The size of ܵᇱ affects the time and quality of 
the resulting reconstruction. Our approach estimates both 
the focal length and pose of the projectors, acting as vir-
tual cameras. We do not correct for radial distortion and 
thus assume long focal lengths and/or high-quality 
lenses. For all configurations, the projectors will be neces-
sarily fully calibrated but the physical cameras are only 
optionally calibrated. Geometric modeling seeks to mi-
nimize reprojection error expressed by the well-known 
nonlinear system of equations 

     ∑ ∑ ቆ ଵ
௛೔ೕ೥

ቈ
݄௜௝௫
݄௜௝௬

቉ െ ቂ
௜௝ݑ
௜௝ቃቇݒ

ଶ

௜௝  where ݄௜௝ ൌ ௝ሺܨ ௝ܴ݌௜ ൅ ௝ܶሻ    (6) 

and ௝ܴ, ௝ܶ, and ܨ௝ are the unknown 3x3 rotation matrix, 3D 
translation vector, and 3x3 perspective projection matrix. 

5.1 Geometric Initialization 
During initialization, a sparse and uniformly-distributed 
subset of object point samples of ܵᇱ are used to estimate 
the distance from each projector to the object’s center as 
well as the global projector focal length ݂. Initial values 
for ݌௜ come from the photometrically-estimated surface 
fragment. The calculated lighting (or virtual viewing) 
directions ௝݈ and an assumed up-vector of w=[0 1 0]T de-
fine an initial oriented orthogonal coordinate system for 
each projector, ܯ௝ ൌ ሾ ௝݈ ൈ ݓ ሺ ௝݈ ൈ ሻݓ ൈ ௝݈ െ ௝݈ሿ. The free 
parameters are the focal length f and distances zj from the 
origin to each projector j along lj. To bring the re-
projection of the object points into rough alignment with 
the observed projections ሺݑ௜௝, -௜௝ሻ, we optimize the followݒ
ing simplified nonlinear system of equations of only R+1 
unknowns (f and zj for j∈[1, R]) and where ̂݌௜௝ ൌ  :௜݌௝ܯ

               ∑ ∑ ൬ ௣ො೔ೕೣ௙

௣ො೔ೕ೥ା௭ೕ
െ ௜௝൰ݑ

ଶ
൅ ൬

௣ො೔ೕ೤௙

௣ො೔ೕ೥ା௭ೕ
െ ௜௝൰ݒ

ଶ

௜௝ .           (7) 

5.2 Geometric Reconstruction 
Next, our method optimizes for a linear correction to each 
projector location and performs a global bundle adjust-
ment. In particular, in equation (6) Fj is replaced by a 
perspective projection matrix parameterized by f, Tj is 
replaced by [0 0 zj]T and Rj is replaced by QjMj. Each ma-
trix Qj is computed using the following linear system of 
equations in the 8 unknowns of the matrix (i.e., q33=1) 

           ∑ ൤
௜௝ݍ െ ௜௝ݍ௜௝ሺݑ ൅ ݂/௝ሻݖ
௜௝ݍ െ ௜௝ݍ௜௝ሺݒ ൅ ݂/௝ሻݖ

൨௜  where ݍො௜௝ ൌ ܳ௝ܯ௝݌௜     (8) 

Using an iterative process we then include all the remain-
ing object point samples of ܵᇱ and optimize the projector 
poses, object points, and remove outliers. First, we fix 

projector pose parameters and use a sparse bundle-
adjustment optimization of all object points in equation 
(7). Second, we use sparse nonlinear bundle adjustment to 
refine both projector pose and all object points. Image-
space and world-space point culling criteria are also ap-
plied. The culling criteria are related to the inter-sample 
distance in the image plane and in world space. Thus, the 
same criterion is applied to similar configurations (e.g. 
similar object size, camera/projector to object distances, 
and resolutions). The optimization and culling repeats 
until convergence; ܯ௝ is updated to the final pose matrix.  

6   PHOTOGEOMETRIC PROCESSING 
Finally, we combine photometric and multi-view geome-
tric data in a single linear optimization. Our approach 
enables a time-quality tradeoff whereby a variable 
amount of geometric modeling is performed and an ap-
proximation of the missing details is obtained from the 
faster photometric processing. Effectively, the traditional 
nonlinear modeling of multi-million point samples is 
converted into a fast and specialized nonlinear optimiza-
tion of a small set of points followed by a linear up-
sampling and linear multi-view optimization of all points. 

6.1 Upsampling 
First, we increase the sampling density of the object point 
samples to that of the camera. While the relative pose of 
the photometrically-reconstructed model with respect to 
the geometrically-reconstructed model is unknown, the 
known image-space correspondence defines a piecewise 
linear mapping; both observation types are from the same 
viewpoint (e.g., a projector). Thus points from the photo-
metric-surface can be warped to the geometric-surface.  
To perform the up-sampling, our method computes a 2D 
triangulation of all geometrically-calibrated points and 
then the barycentric coordinates (αi, βi, γi) of all photome-
trically-computed points within this triangulation. To 
warp a photometrically-computed point to the geometric 
surface, the barycentric coordinates and the correspond-
ing vectors formed by pairing the vertices of the photo-
metric-surface triangle with the corresponding vertices of 
the geometric-surface triangle are used to compute a dis-
placement. A new geometric-surface point pGi corres-
ponding to photometric-surface point pPi, is computed by 
೔ீ݌  ൌ ௉೔݌ ൅ ௜൫ܽீ೔ߙ െ ܽ௉೔൯ ൅ ௜൫ܾீ೔ߚ െ ܾ௉೔൯ ൅ ௜ሺܿீ೔ߛ െ ܿ௉೔ሻ   (9) 
where (aPi, bPi, cPi) is the triangle of photometrically-
reconstructed points surrounding pPi, and (aGi, bGi, cGi) are 
the corresponding geometrically-calibrated points. The 
pixel observation of the up-sampled point is determined 
by interpolating the triangle’s pixel observations. 

6.2 Multi-View Optimization 
Our optimization alters object points so as to best match 
both photometric and geometric measurements. We 
search for a displacement that follows the properties of 
(i) minimizing reprojection error onto the projectors,  
(ii) keeping a similar relative position of points, and 
(iii) reducing the difference between photometrically- 

and geometrically-computed normals. 
An important aspect of our multi-view optimization me-
thod is to prevent undesired “flipping” and “self-
intersection” of the mesh of object points. One option is to 
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keep each object point restricted to lie on the correspond-
ing projector ray emanating from the center-of-projection 
and passing through its observation on the image plane 
(e.g., as in [16]). However, such an approach is not suita-
ble for multi-viewpoint processing. Only letting the point 
move along one or more projector rays does not support 
freely compensating for inaccuracies in the estimated 
pose (and focal length). In our method, each object point 
moves freely in 3D space and is able to accommodate 
larger corrections to the surface.  The equations that at-
tempt to ensure property (i) keep the points near the cor-
rect geometric location. The equations for property (ii) 
assist in yielding a distribution of points over the object’s 
surface that is similar to the original one. Finally, proper-
ty (iii) guides the upsampled points to an arrangement 
resembling the additionally captured photometric detail 
and provides a smoothly reconstructed surface. 

6.2.1 Improved Photometric Method 
The surface normals computed via the initial photometric 
processing are now updated to better represent the confi-
guration. We upgrade to point lights which more accu-
rately imitate the true setup because projectors are kept 
relatively close to the objects. Surface normal ݊௜ is com-
puted as 

݊௜ ൌ
௅೔
షభቂ௖೔ೕభ… ௖೔ೕೃቃ

೅

ฯ௅೔
షభቂ௖೔ೕభ… ௖೔ೕೃቃ

೅
ฯ
 where ܮ௜ ൌ ቎

ሾܯ௝భ
ିଵሾ0 0 0 ሿ் െ ௜ሿ݌

…
ሾܯ௝ೃ

ିଵሾ0 0 0 ሿ் െ ௜ሿ݌
቏.  (10) 

Other non-Lambertian photometric methods can also be 
used with our approach to produce a better photometric 
solution for non-Lambertian surfaces (e.g., [8][15]). 

6.2.2 Formulation 
The linear equation that satisfies the aforementioned 
triple of properties and that we wish to minimize is 
       ݁௧ ൌ ሺ1 െ ሻሺ1ߙ െ ௚ߢሻߚ ௚݁ ൅ ௥݁௥ߢߚ ൅ ௣݁௣ߢߙ ՜  0         (11) 

 ௚݁ ൌ ∑ ∑ ൦
௜௝ೣ̂݌ െ ቀ

௨೔ೕ௣ො೔ೕ೥
௙

ቁ

௜௝೤̂݌ െ ቀ
௩೔ೕ௣ො೔ೕ೥

௙
ቁ
൪௜௝                             (12) 

݁௥ ൌ ∑ ௜݌௜௞ሺሺߜ െ ௞ሻ௜݌ െ ݀௜௞                            (13) 
݁௣ ൌ ∑ ௜௞ሺ݊௜ߜ · ሺ݌௜ െ ௞ሻሻ௜݌                               (14) 

where ݀௜௞ is the initial distance between point ݌௜ and ݌௞, 
δik is 1 when pk is considered a neighbor of pi and 0 other-
wise, and the unknowns are the 3D coordinates of each pi. 
Equations (12-14) correspond to properties (i-iii) respec-
tively. To determine the neighbors of a point ݌௜ and to 
define ߜ௜௞, we create a local Delaunay Triangulation using 
a set of neighboring object points projected onto the tan-
gent plane. Equation (11) can be written as Ax=b and 
solved using over-constrained sparse linear least squares. 
Given ܭ equal to the average number of neighbors per 
object point, ܰሺ2ܴ ൅ ሻܭ ൒ 3ܰ ensures number of equa-
tions is larger than or equal to the number of unknowns. 
To control the tradeoff between geometric error, photo-
metric error, and relative distance error, we scale the in-
dividual error terms to the range [0, 1] (using ߢ௚, ߢ௣, and 
 .௥) and optimize a weighted linear combination of themߢ
The errors are combined using ߙ and ߚ; e.g., a low value 
for ߙ implies low photometric importance and high geo-
metric importance; a low value for ߚ implies lack of im-

portance of keeping the same relative distance between 
points. A solution must balance the three properties.  

7   RESULTS 
We have implemented a prototype of our method in 
C/C++, use either 1400x1050 Optoma EP910 or 800x600 
Mitsubishi Handheld PK10 projectors, and a 3888x2592 
Canon Digital Rebel XTi camera or a 1024x768 Point Grey 
Research Flea. Table 1 presents a summary of our test 
datasets. Total processing time for any model is less than 
15 minutes: self-calibration takes a few minutes, up-
sampling needs a few seconds, and photogeometric opti-
mization requires from 1 to 10 minutes (e.g., for “Pot”). 
All final calibration errors are less than one pixel (except 
the shiny Ornament) indicating good self-calibration.  
Figure 4 demonstrates how our method captures the Bear 
object (a) by combining a photometrically-computed sur-
face (b) with that of a geometrically-computed surface (c) 
to yield a single higher quality surface (d) which captures 
the same details as in (a). Figure 4(e) shows the effective-
ness of our method compared to a direct bundle adjust-
ment (BA) solution. BA uses the photometrically-
reconstructed surface as initial guess and performs non-
linear optimization using Equation (6) directly. In Figure 
4(e), we vary the number of geometrically-calibrated 

d)

c) b)

e)

BA 

Ours 

Figure  4.  Photogeometric  Reconstruction.  a)  Photograph  and 
close‐up of original object. b) Photometrically‐computed surface 
(with obvious global deformations). c) Geometrically‐computed 
surface (globally accurate but missing fine details). d) Our pho‐
togeometrically‐computed  surface.  e) Comparison:  our method 
vs. bundle adjustment. 

a)

Name  Configuration  # Ps  # C  # Pts  Error 

Beethoven  MP  7  3  311564  0.978 

Bear  MC  4  2  214949  0.88 

Statue  MC  4  2  131756  0.9 

Buddha  SC  3  1  204678  0.75 

Green Pot  SC  3  1  303467  0.55 

Textured Pot  SC  3  1  3037143  0.27 

Ornament  SC  3  1  124749  1.2 

3 Objects  SC  3  1  354021  0.95 

Table  1. Datasets. We  show  the  configuration  type  (see Section 
3.1), number of projector views, number of camera views, number 
of reconstructed points, and final self‐calibration error (pixels). 
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points used in a photogeometric reconstruction by chang-
ing the level of Gray code patterns. The total number of 
reconstructed points remains the same (equal to the num-
ber of camera pixels). With the initial photometric surface 
having a reconstruction error of 15%, our approach recon-
structs a surface with almost up to an order of magnitude 
less error (8.5:1 on average) as compared to BA. Error is 
shown as the difference, in percent of the model diagonal, 
of the indicated method to our best solution (i.e. all pixels 
used in self-calibration/photogeometric optimization). 
Figure 5 shows the benefit of the photogeometric optimi-
zation using the Textured Pot object. The reconstruction of 
the object is shown in Figure 1. For graph (a), we vary the 
photogeometric parameter ߙ in order to yield a best com-
bination of geometric and photometric observations (ߚ is 
fixed at 0.1). For graph (b), we compare a standard struc-
tured light scheme to our approach of an optimized com-
bination of sparse geometric and dense photometric ob-
servations. To fairly perform this comparison, we reduce 
the sampling resolution to approximately yield one object 
point sample per projector pixel (for our hardware, this 
implies up to one million points). In the graph, we vary 
the number of projector pixels that are reconstructed 
geometrically, upsample the remaining projector pixels 
using photometric data, and perform the photogeometric 
optimization; a value of ݇ in the horizontal axis of the 
graph impies 2௞2ݔ௞ geometric points. In (c), we show a 
color-coded difference image between the standard struc-
tured-light reconstruction and our reconstruction at ݇ ൌ
7, or 64 photometric points for every geometric point. Our 
photogeometric processing always improves the up-
sampled surface to within 0.006mm, on average, of the 
full-resolution structured-light surface. For our hardware 
and this setup, a projector pixel has a size of 0.5mm. Thus, 
our solution of coarse geometry and photometrically-
upsampled and optimized details is at least as accurate as 
a full-resolution structured-light solution. We extrapolate 
similar quality results occur when full-resolution struc-
tured-light is used with full-resolution photometric ob-
servations and photogeometric optimization. Figure 5(d) 
shows the reconstructed object with significant displace-
ment of the vertices but still a small reconstruction error 
ߚ) ൌ 0.01ሻ. ߚ ൌ 0.1 produces an equally accurate solution 
but vertices positioned similar to original locations. 
Figures 6 demonstrates the performance of our algorithm 
on non-Lambertian objects: a plastic Green Pot and a shiny 
porcelain Ornament. Although Lambertian photometric 
stereo can only produce an approximate solution (espe-

cially for Ornament) in initialization, our geometric self-
calibration still snaps the light directions to the correct 
direction. In these cases, our system is similar to standard 
structured-light without the benefit of photometric data. 
Thus, strong highlights cause artifacts and the recon-
structed model is noisy due to the lack of the optimiza-
tion step as shown in Figure 6(c). Figure 7 contains addi-
tional results and close-ups of models. Figure 7(k-l) shows 
a 3 objects scene captured using our system. Depth discon-
tinuity causes problems for integrating surface using pho-
tometric data, but not in our geometric self-calibration. 

8   CONCLUSIONS AND FUTURE WORK 
We have presented our self-calibrating and multi-
viewpoint 3D photogeometric acquisition method. Our 
technique uses the same hardware setup to obtain pho-
tometric and geometric observations and to perform a 
single acquisition and modeling effort. Our approach suc-
cessfully extracts from the photometric data an increased 
amount of surface detail and extracts the metric accuracy 
from the geometric data in order to compensate for the 
global deformations typical of pure photometric methods. 
Our work can be applied to one of several configurations, 
including standard structured light, but provides addi-
tional quality and avoids the need for a priori calibration.  
Regarding limitations, our current formulation for pho-
tometric reconstruction is restricted to capturing at most a 
hemisphere of the object. Also, the number of object 
points that are reconstructed is less than those of a typical 
stereo system. This is because the points must be visible 
from the viewpoint of the camera and at least three pro-
jector viewpoints. Thus, a multi-viewpoint configuration 
is needed more often than expected. 
For future work, we would like to incorporate more so-
phisticated photometric methods (e.g. subpixel precision 
methods [23] and non-Lambertian photometric stereo 
[8][15]), explore adaptive geometric and photometric 
schemes, and extend our method to dynamic objects. 
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Figure 6. Non‐Lambertian Objects. a) Reconstruction of a specu‐
lar plastic object (with a close‐up wireframe view in the inset). b) 
Side view of the texture mapped reconstruction of a shiny porce‐
lain Ornament. c) A synthetically illuminated Ornament. 

a) b) c) 

Figure 7. Examples. Beethoven: a‐b) synthetically  illuminated wireframe close‐ups, c)  texture‐mapped rendering of  full model, and d) 
synthetically illuminated model with lighting direction very different than the physical one. e) Visualization of the subset of points for 
each of  three viewpoints. Statue:  f) photograph of objects, g) rendering after self‐calibration and upsampling, h) rendering after photo‐
geometric optimization, i) close‐up before photogeometric optimization, and j) close‐up after photogeometric optimization.  3 Objects: k) 
synthetically illuminated models with a photograph of the scenes from the capturing viewpoint in the inset. l) Texture mapped models 
from a very different novel viewpoint. 

a) b) c) d) 

f) 

e) 
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