
Fast Weather Simulation for Inverse Procedural Design of 3D
Urban Models

IGNACIO GARCIA-DORADO
Purdue University and Google Research
and
DANIEL G. ALIAGA and SAIPRASANTH BHALACHANDRAN and PAUL SCHMID and DEV NIYOGI
Purdue University

We present the first realistic, physically-based, fully coupled, real-time
weather design tool for use in urban procedural modeling. We merge de-
signing of a 3D urban model with a controlled long-lasting spatiotemporal
interactive simulation of weather. Starting from the fundamental dynami-
cal equations similar to those used in state-of-the-art weather models, we
present a novel simplified urban weather model for interactivegraphics.
Control of physically-based weather phenomena is accomplished via an in-
verse modeling methodology. In our results, we present several scenarios of
forward design, inverse design with high-level and detailed-level weather
control and optimization, as well as comparisons of our method against
well-known weather simulation results and systems.

Categories and Subject Descriptors: I.3 [Computer Graphics]: ; I.3.5
[Computer Graphics]: Computational Geometry and Object Modeling;
I.3.6 [Computer Graphics]: Methodology and Techniques

General Terms: procedural modeling, weather, urban modeling,inverse pro-
cedural

Additional Key Words and Phrases: design, dynamical systems,inverse
modeling, weather forecasting, urban climate design

ACM Reference Format:

Garcia-Dorado, I., Aliaga, D., Bhalachandran, S., Schmid, P., Niyogi, D.,
XXXX. Fast Weather Simulation for Inverse Procedural Designof 3D Ur-
ban Models. ACM Trans. Graph. XX, X, Article XXX (Xxxxx XXXX), yy
pages.
DOI = 10.1145/1XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

Authors’ addresses: I. Garcia-Dorado (corresponding author), email: igna-
cio.garcia.dorado@gmail.com; Daniel Aliaga, email: aliaga@purdue.edu;
S. Bhalachandran, email: sbhalach@purdue.edu; P. Schmid, email:
pschmid@purdue.edu; D. Niyogi, email: dniyogi@purdue.edu.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© XXXX ACM 0730-0301/XXXX/17-ARTxx $10.00
DOI 10.1145/ddddd.eeeee
http://doi.acm.org/10.1145/ddddd.eeeee

1. INTRODUCTION

In recent years, creating realistic, virtual urban environments has
become an extremely important task for entertainment, education,
urban planning, and training applications. This interest has fo-
mented novel approaches to increase realism and new tools to
quickly and easily design such environments. In addition to the
detailed modeling of complex urban geometry, previous computer
graphics work has also focused on the natural and human aspect of
the city. Some works have provided methods to incorporate human
behavior such as crowd simulation [Manocha and Lin 2012] and
traffic simulation [Sewall et al. 2011]. Other works have focused on
increasing the realism through more accurate modeling and simu-
lation of physical phenomena (e.g., CGI movies and games use ray
tracing and global illumination [Gotanda et al. 2015] and complex
realistic modeling of liquids [Ando et al. 2015; Macklin and Müller
2013]).

However, relatively little attention has been paid to the design
and realism of urban weather phenomena in computer graphics.
Previous works have focused on the rendering aspect of weather
(e.g., fog, rain, snow, clouds), but not on its generation and evo-
lution over time. Simulating weather is difficult because of its
highly non-linear behavior, sensitivity to scale-dependent phenom-
ena, and sensitivity to initial conditions (e.g., [Pielke Sr 2013]).
Typical solutions in computer graphics script the visual appearance
of weather phenomena similar to key-framing in animations (e.g.,
tools are used to control the shape and evolution of clouds [Dobashi
et al. 2008; Yuan et al. 2014; Harris and Lastra 2001] without con-
sidering the complete atmospheric conditions). This can lead to
unrealistic scenarios such as clouds and rain appearing at the flip
of a switch even if prior sky conditions are not indicative of rain;
clouds forming, even though there is no source of vertical motion;
and a mishandling of the relationship between the land surface and
the clouds (i.e., urban/rural heterogeneities). Therefore, these previ-
ous solutions are useful for short highly-scripted sequences where
the objective is complete control of the weather sacrificing realism
and providing little automation. Further, many weather variables
beyond clouds would be of interest.

Our goal is to create 3D urban models with realistic user-
designed weather behavior over a long time horizon (i.e., days,
weeks, even months) (Figure 1). For this, we need to create a
weather model with the minimal computational cost that would al-
low us to i) have realistic and interactive-speed weather computa-
tion, ii) design the high-level or detailed behavior of the weather,
iii) optimize weather and urban-modeling variables (e.g., for urban
planning and climate adaptation studies), and iv) simulate weather
indefinitely (e.g., for video games with long period in-game time
passages).

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date: Xxxxx XXXX.

2 • Garcia-Dorado et al.

Fig. 1. Urban Weather. We present a method which tightly couples procedural modelingwith a super real-time physically-based, interactive weather sim-
ulation. With our land use sketching interface, a user procedurally generates a terrain and 3D city (f). Then, for example, our design tools enable intuitively
choosing clear sky sunrise mornings followed by afternoon convection leading to clouds and showers (a-e) without providing details about realistic spatiotem-
poral behavior.

Fig. 2. System Pipeline. We show a diagram of the overall pipeline of our
approach.

Our approach consists of three main parts: an urban procedural
modeling engine (i.e., land use design and 3D urban modeling), a
novel weather simulation, and an urban weather design tool (Fig-
ure 2). Altogether, our methodology is the first to enable detailed,
quickly computed, and physically-based weather phenomena for
procedural modeling without having to carefully script meteoro-
logical effects. Our urban procedural modeling is used to define a
spatial distribution of natural and man-made land use/land cover
(simply referred to asland usein this paper), to specify geographic
location, and to indicate time and date of the year. Each land use
category has a unique set of physical properties that can be com-
puted from the generated procedural model (e.g., albedo) or ob-
tained from empirical measurements. Our novel weather simulator
provides long-lasting spatiotemporal simulations of weather based
on a highly efficient fundamental equation set. Our urban weather
design tool supports multiple intuitive options to simulate, alter, or
design the weather pattern over time. Our tool follows an inverse
design methodology to compute the set of 3D urban model param-
eters and initial weather parameters needed to bring the weather
closer to a user-specified behavior (e.g., cloud coverage, rain, tem-
perature). Since the solution space is large and the system non-

linear, our design tool is based on a Markov Chain Monte Carlo
(MCMC) optimization, similar to those used in inverse procedural
modeling (e.g., [Talton et al. 2011; Vanegas et al. 2012; Garcia-
Dorado et al. 2014]).

We have used our approach to simulate and render regions cov-
ering up to2500km2. Note an area of this size is sufficient to
cover any major urban area (e.g., in the USA they do not exceed
1600km2 [US-Census 2016]) and it is of a scale that is expected to
affect urban weather [Schmid and Niyogi 2013]. Simulation takes
from a few seconds to a few minutes of user effort to design a
day long weather pattern with our application. The full 3D weather
simulator computes 100 times faster than real-time (e.g., weather
for an 8 hour period is computed in about 5 minutes on a desktop
PC using our CUDA-based implementation). If we use our 2DXZ
weather simulator (the same simulator as in 3D but just simulating
one cross section), an approximation often done in weather fore-
casting and as we will show in the results with an average error
smaller than 4% compared to the 3D simulator, it computes 4800
times faster than real time (e.g., the same 8-hour period is computed
in 6 seconds). We present the results of weather simulations in var-
ious synthetic cities, and in comparisons to state-of-the-art weather
simulators. The speed we achieved is one of its kind and has been
envisaged but never achieved hitherto ([Pielke et al. 2007]).

The main contributions of our work include:

• a procedural modeling engine to sketch a terrain and city with
land use categories containing physical properties for weather
simulation and with plausible 3D structures,

• a novel weather/meteorological model that captures if-then im-
pacts of urbanization and local weather, including temperature,
clouds, and rain at urban neighborhood scale using a simplified,
interactive, computationally fast framework, and

• a weather design tool including forward and inverse modeling
methods to control the simulation.

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models • 3

2. RELATED WORK

2.1 Urban Procedural Modeling

Urban procedural modeling has become extremely versatile and
widespread. Vanegas et al. [2010] and Musialski et al. [2013] pro-
vide surveys of urban procedural modeling and reconstruction. The
seminal work of Parish and M̈uller [2001] and subsequent improve-
ments (e.g., [Wonka et al. 2003; CityEngine 2016]) show impres-
sive levels of realism. However, one well-known drawback of pro-
cedural modeling is that its inherent detail amplification makes it
hard to control the output. Recently, several works have tried to
overcome this limitation with inverse procedural modeling (e.g.,
Talton et al. [2011], Vanegas et al. [2012]). These works overcome
this limitation by adding an extra layer to automatically infer the
input parameters or rules to generate the desired procedural model.

2.2 Rendering Weather Phenomena

The rendering of different manifestations of weather-related phe-
nomena has a long history in graphics. For example, simple fog has
become a part of the OpenGL specification, Blinn [1982] presented
a light reflection method to simulate clouds, and virtual snow has
been shown (e.g., Nishita et al. [1997]). More recently, rendering
work has focused on further improving photorealism, such as Garg
and Nayar [2006] who concentrate on rain streaks. Cloud rendering
has received much attention as well. Harris and Lastra [2001] use a
preprocessing step for simulating scattering and employ impostors
at runtime. Bouthors et al. [2008] present an algorithm for realis-
tic real-time simulation of multiple anisotropic scattering in clouds.
They propose a new formulation for the macroscopic behavior of
light requiring just to transverse the boundaries of the cloud. Yuan
et al. [2014] present a method for estimating the shape of a sym-
metrical cloud from a single image by inverting a single scattering
model. Other works have centered on the simulation of weathered
appearance in urban environments. For instance, Chen et al. [2005]
present a visual simulation technique that uses aging-inducing par-
ticles to simulate a wide variety of weathering phenomena. Bosch
et al. [2011] extract the effect of fluid flow from captured images to
generate synthetic weathering effects. However, all these methods
focus only on producing a compelling 3D rendering of a weather-
related phenomena and not on simulating and predicting coupled,
dynamical weather over a significant time period.

2.3 Cloud Simulation

The most closely-related simulations to our work in computer
graphics are various forms of cloud simulation over time. Kajiya
and Von Herzen [1984] present an early method to solve the scat-
tering equations and present equations which model the dynamic
behavior of clouds. Dobashi et al. [2000] present computationally
inexpensive cellular automata to model cloud evolution using sev-
eral simple transition rules and offline rendered clouds. Miyazaki et
al. [2001] use a coupled map lattice to approximate the formation
of various cloud shapes. Overby et al. [2002] modify a fluid solver
to simulate clouds based on buoyancy, relative humidity, and con-
densation. Harris et al. [2003] describe a cloud simulation engine.
However, their system does not have a prognostic simulation of
cloud variables, radiative transfer model, rain variables, nor proce-
durally generated models of land use. Dobashi et al. [2008] enable
a user to draw the contour of a cumuliform cloud from a specific
camera position and their system automatically adjusts parameters
so that the simulated result fits in the drawn contour. They assume
constant heat from the ground and do not take into account wind,

radiation, and surface energy balance. These systems have not de-
veloped an environment that creates and balances the energy from
the surface.

In contrast to and building upon the above methods, our ap-
proach is based on a full weather simulation model that includes
surface energy balance, boundary layer processes, and secondorder
evolution of meteorological forcing equations ([Holton and Hakim
2012]). Also, most prior approaches are diagnostic, i.e., weather is
a static input that does not change, and the objective is to get the
visualization of cloud and other phenomena which are mutually
affecting each other. This interdependency becomes essential for
scenarios where a priori specification of clouds or environment is
not an option. Examples include serious game environments, battle-
field theater scenes, or education and synthesis modules where the
visualization is used as part of a decision system. In each of these
examples, the decision either by the model or the user is intimately
tied to the graphics that emerge as a result of the environmental
and initial conditions. Providing a suitable solution for the graphics
community is one of the goals of this paper, as well as provide very
fast simulation performance.

2.4 Weather Forecast Models

Clouds and precipitation events are one of the most difficult fea-
tures to accurately simulate in a prognostic weather model. This
is because their simulation and prediction require all other factors
to be adequately represented and simulated, and errors in any of
the simulated variables can translate into inaccurately developing
clouds or numeral instability. Nebeker [1995] and Stull [2000] pro-
vide a comprehensive review and history of Numerical Weather
Prediction (NWP). Weather forecasting can be done at a variety
of scales ranging from global-scale simulation (e.g., jet streams)
to micro-scale simulation (e.g., wind effects between buildings).
For our goal, we seek a physically-based, interactive-speed urban-
scale simulation that models weather over and around a city and
a range of land uses. The urban simulation capability we pursue
is not present in the majority of simplified weather simulation sys-
tems – only complex state-of-the-art weather research is addressing
our desired urban feedbacks and it typically requires a large amount
of computational and storage resources such as those available on
supercomputers and clusters.

Implementations of several well-known weather forecast mod-
els are available. The Weather Research and Forecasting (WRF)
Model [Skamarock et al. 2005; Chen et al. 2011] is one of the
state-of-the-art NWP systems designed to serve both atmospheric
research and local operational forecasting needs. The Regional At-
mospheric Modeling System (RAMS) [Cotton et al. 2003] is an-
other such NWP model and a mesoscale weather simulator (e.g.,
for horizontal scales of up to2000km and grid cell sizes of up to
20km) for weather and climate research. Though in our tests and
configurations, WRF is faster than RAMS, both systems are ex-
tremely computationally expensive. For example, a 72-hour WRF
simulation for a50x50km area and25km high (using 50x50x56
grid cells) takes around ten hours using one compute server of 48
cores.

We base our approach on the general methodology of WRF (and
provide additional comparisons in Section 7.3). Attempts have been
published to accelerate WRF but nothing near the level of perfor-
mance we pursue (e.g., on the order of minutes). Michalakes and
Vachharajani [2008] use GPUs to accelerate a portion of the WRF
model resulting in only an overall 1.23x faster system. Mielikainen
et al. [Mielikainen et al. 2013] use CUDA to accelerate a single
thread implementation of WRF’s cloud and precipitation module

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

4 • Garcia-Dorado et al.

by 70x; even after mapping their relative improvement to our hard-
ware and usage of WRF, we obtain a further 10x to 490x speedup
of a full weather implementation (i.e., not just the cloud and pre-
cipitation module).

Note that our goal is not to develop a faster WRF; instead, our
objective is to extract a subset of model equations and parameter-
ization schemes, and to perform simplifications, suitable for simu-
lating urban-scale weather phenomena over and near a city, as well
as create a subset of parameters that are essential for our analysis
to be processed and rendered. We discuss WRF mainly because of
its popularity and because we will be using it for comparisons.

3. OVERVIEW

Our method enables a user to interactively sketch an initial urban
and non-urban area, simulate or design the weather over a desired
time frame, and output the user-specified behavior of weather suit-
able for rendering. Figure 2 and this section provide an outline.

3.1 Procedural Modeling and Land Use

Using an interactive tool, the userpaints a distribution of land
use categories (e.g., location of urban area, location of agriculture,
forests, water bodies) over the terrain surface, the terrain can be op-
tionally altered, and geometry is procedurally generated. Once land
use is defined, a link with the weather model is achieved through the
provision of initial conditions and surface physics parameters (e.g.,
albedo). The spatial distribution of land use categories is used as in-
put to our procedural modeling engine (Figure 3). As in Parish and
Müeller [2001] and CityEngine, roads, city-blocks, and parcels are
generated procedurally. In our current implementation, urban input
parameters control the procedural generation: urban uses (origin of
the road generation, main road axis, area of influence), roads (ir-
regularity, number of lanes, and intersections), blocks and parcels
(area, percentage of parks), and buildings (building type, stories,
setbacks, distribution of white roofs, ratio of window-to-wall). Ad-
ditionally, urban vegetation and urban amenities are produced.

Our method supports the following twelve categories of urban
and non-urban scenarios (based on typical usage in weather mod-
eling):

• bare ground,
• desert/beach sand,
• high mountains,
• grass (e.g., grass fields, prairies),
• forest (e.g., tree and dense/tall vegetation)
• snow, (e.g., typically on higher-elevation mountains)
• water (e.g., river, lake),
• crops (e.g., corn, wheat),
• low-density residential (e.g., houses),
• high-density residential (e.g., apartment buildings),
• low-density industrial/commercial, and
• high-density industrial/commercial (e.g., factories).

The physical properties of each land use category are computed
using other variables and using the procedural geometry (see Sup-
plemental Material B). The land use variables consist of: surface
albedo, soil heat capacity per unit areaCGA, ground layer thick-
nessds, the Bowen ratioBo, mean seasonal surface temperature
Tm, average building height, and surface roughness. These vari-
ables will be discussed in more detail in Section 4. Note that the
twelve land use categories being considered can be easily updated
and increased to a larger (or lesser) number as needed.

Fig. 3. Urban Procedural Modeling. Our method uses a) procedural
modeling to generate a city and terrain, including b) low-density residential,
c) high-density residential, d) low-density industrial, and e) high-density in-
dustrial.

3.2 Weather Model

Our realistic urban weather model is fast enough to be useful for
graphics and for urban planning scenarios but also accurate enough
to simulate regional weather. As presented in related works, cur-
rent realistic weather models are very complex and are not designed
for real time, interactive, vis a vis change in landscape configura-
tions and related applications [Chen and Dudhia 2001; Jantz et al.
2010]. Our novel GPU based weather model performs preprocess-
ing, simulation, and post-processing with increased performance
mainly because:

• We initialize the simulation with input from a real-world or syn-
thetic atmospheric sounding, periodic boundary conditions, and
user-defined land use. As a result, format conversions and data
integration is significantly simplified.

• Our fundamental equations during the simulation are non-
hydrostatic and comprise of the advection term, diffusion term
and the buoyancy term and include simplifications specific to the
range of grid spacing pertinent to our interest (about 1x1km).
In particular, we focus on local weather supporting only a sin-
gle resolution grid (as opposed to the nested-grids provided in
other systems to account for multi-scale and external phenom-
ena). This avoids the huge overhead of re-sampling and trans-
forming variables between different grid resolutions and differ-
ent models. Moreover, it does not include subgrid resolution phe-
nomena nor account for forcings assuming large grid sizes (e.g.,
the Coriolis Effect, which does not have a very significant impact
at our scale of interest, is not included).

• The radiation and energy balance component during simulation
is typically relatively expensive to compute; thus we carefully
designed a simple force-restore based method with empirical
simplifications that works very effectively.

• We use a scale-specific differentiation scheme that is simple yet
robust and fast.

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models • 5

Fig. 4. Weather Variables. We show a depiction of the weather variables
computed by our simulator.

• Finally, based on a thorough and critical analysis we identified
the most time consuming aspects and optimized them for better
GPU performance.

From the visual perspective, the physical weather-related phe-
nomena we want to particularly consider are wind, humidity,
clouds, and rain. Including these phenomena in a realistic weather
simulator implies creating a system that includes: i) fundamen-
tal equations, ii) a radiation and energy balance model, and iii) a
cumulus cloud microphysics model. Our optimized fundamental
equations (Section 4.1) capture boundary layer physics and mass
energy exchanges and dynamics. Further, since various physical
phenomena start with the sun heating the surface, we include a ra-
diation model (Section 4.3) that simulates solar radiation, its con-
version into heat, and the initiation of weather changes via surface
heterogeneities. Moreover, we include a microphysics model (Sec-
tion 4.2) that governs the bigger conversions between water vapor,
liquid cloud water, and liquid rain. Finally, we integrate this with
the simplest differentiation scheme that is stable at the scale of our
grid size and time steps, and place it within a GPU friendly archi-
tecture.

3.2.1 Variables and Grids

Our approach uses the following variables stored within a 3D grid
structure over the simulated region (Figure 4):

• Wind velocity (U = {u, v,w}): These are the 3D wind compo-
nents (computed inm/s) in the west-east, north-south, and ver-
tical direction, respectively, and provide both the mean as well
as turbulent fluctuating components.

• Potential temperature (θ): The potential temperature of a grid
cell of air is the final temperature the cell would have attained if
it were moved adiabatically (i.e., without heat or mass transfer)
from pressurep and temperatureT (in Kelvin) to a standard pres-
surepz=0 = 100kPa (i.e., approximately sea level pressure). Its
definition can be written as

θ =
T

Π
(1)

• Exner function (Π): The Exner function is a non-dimensional
pressure quantity designed to simplify pressure-related compu-
tations in atmospheric modeling. It is written as

Π =

(

p

pz=0

)Rd/cpd

(2)

where Rd is the specific gas constant of dry air (Rd =
287.058J/(kg · K)) andcpd is the heat capacity of dry air at
constant pressure (cpd = 1004.5J/(kg ·K)).

• Moisture variables (qv, qc, qr): These are mixing ratios of water
vapor, cloud water, and rain water (non-dimensional quantities of
mass-of-air per mass-of-air).

Our method uses the standard Arakawa C-Grid [Arakawa and
Lamb 1977], commonly used in the weather community, to off-
set mass and energy variables in vertical and horizontal directions.
A C-Grid is preferred for weather models because it prevents phys-
ically unrealistic waves of non-wave variables (i.e., temperature)
from forming in the model, and performs better for second order
differentiation [Purser and Leslie 1988]. In such a grid, the scalar
variables are defined in the center of each grid cell, and the vec-
tor variables are prescribed in the faces. In the horizontal plane,
the ground is split into evenly spaced grid cells typically of 1 kilo-
meter tiles. In the vertical direction, the grid spacing is log-linear
with higher resolution closer to the surfaceboundary layer(i.e., the
first few kilometers of the atmosphere which are most influential to
weather processes of our interest) and then gradually increasing in
size (i.e., becoming coarser). This is also consistent with the verti-
cal gradients observed in the atmosphere with typically higher val-
ues closer to the surface, and higher layers showing relatively well
mixed atmosphere. Thus, the user defines the first grid cell height
dz and the rest is calculated following the power law

z[k] = min(dz · s
k
r , dmax) (3)

wheredz is typically 50m, stretching ratiosr is usually 1.025,
and the maximum heightdmax is 1000m. This approximation is
based on the Monin-Obukhov Similarity Theory profile estima-
tion [Monin and Obukhov 1954]. Thus, each vertical column of
cells has 12 grid cells under3km (i.e., in the region that is expected
to be influenced by the boundary layer) and the topmost grid cell
reaches25km.

The weather variables are initialized using asounding. A sound-
ing is an observed or analyzed atmospheric profile from the real-
world of temperature, moisture, and wind and used for prescrib-
ing the initial states of variables within weather forecasting. These
soundings can be obtained from an external source, from gridded
reanalyses [Mesinger et al. 2006], through a single sounding that
can be interpolated to each grid location based on surface charac-
teristics, or can be generated procedurally (see Section 5.1). The
lateral boundaries of the grid are assumed periodic (i.e., toroidal in
3D). The bottom boundary conditions are determined from the land
surface and energy balance model, and the top boundary conditions
are described in Section 4.5.

3.2.2 Dynamical Equations

As mentioned, our nonlinear dynamical equations consist of three
components:

• fundamental modeling:accounts for advection, diffusion, and
buoyancy of wind, humidity, temperature, and Exner function.

• cloud and precipitation modeling:accounts for evaporation, con-
densation, auto-conversion, accretion of water, and potential
temperature.

• radiation modeling and land use:accounts for short-wave and
long-wave radiative flux onto the ground and urban surfaces, and
the resulting temperature and humidity changes.

In our system, these three components are the minimum set of
equations needed to create a physically-based, dynamic simulation
that models temperature, wind, clouds, and rain.

One option, as presented in Dobashi et al. [2008], to yield
weather phenomena would be to force the changes synthetically

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

6 • Garcia-Dorado et al.

(e.g., instant changes of temperature in a grid-cell without a phys-
ical reason). However, this leads to unrealistic situations in a
coupled mode and also to an increased requirement of scripting
weather phenomena particularly when larger time horizons are de-
sired (e.g., days, weeks, months). Instead, our physically based
weather simulation improves both automaticity and realism in com-
puter graphics. As an example, a more urban land cover against
a vegetation cover would conservatively be warmer by 1-3 de-
grees depending on the radiation, energy and surface characteris-
tics. Moreover, since the temperature changes depend on the type
of land use, our systems allows quickly obtaining different realis-
tic weather behaviors by just altering land use. Without the cloud
and precipitation model, there would not be clouds nor rain. Fur-
ther, although the temperature, pressure, and wind might change,
the effect on weather would not be very noticeable. Our fundamen-
tal model equations are crucial to tie these components together.
Thus, each of the model components feeds into and build off the
other model components. Indeed, this is the nature of the weather
processes seen in reality as well.

3.3 Design Tool

Our design tool provides several options to create a desired weather
pattern. Initial conditions define the environment where the simu-
lation begins. Our framework enables two main levels of design:
forward design that allows unlimited weather simulation for urban
procedural models, and inverse design to control the weather. This
inverse design allows users to control weather from a high-level
perspective, achieve specific user weather behaviors, or control the
weather in a visual sense.

4. URBAN WEATHER SIMULATION

Given a set of initial values either calculated or provided, our
weather simulator updates grid cell variables during each time step
by integrating finite difference partial differential equations de-
scribed in this section.

4.1 Fundamental Component

Our set of fundamental or primitive equations is derived from
the laws of motion and thermodynamics and refined using scale-
analysis for our desired urban-scale weather simulation. We take
the well-known basic equations that model momentum, mass con-
tinuity, and energy conservation [Holton and Hakim 2012], and de-
fine a new subset model based on those equations that are as simple
as possible to reduce computational expenses yet still yield relevant
weather phenomena. This is done using domain knowledge: simpli-
fying terms when possible, refactoring terms using scale analysis
and constants that are reasonable and choosing the exact form to
work efficiently in a parallel implementation. An example of this
would be that the Coriolis effect (i.e., a force produced by the rota-
tion of the Earth) is removed from the equations since our scale is
only on the order of tens of kilometers – we would need a several
order of magnitude bigger scale to notice a numerical change in the
simulation values.

The equations model the motion of the wind (U), temperature
via potential temperature (θ), and atmospheric pressure and density
via the Exner function (Π). The equations simulate advection, dif-
fusion, mass and energy balance, and buoyancy [Holton and Hakim
2012]. Advection (e.g.,U ·∇) is the transport mechanism of a sub-
stance by a fluid due to the mean flow motion (as against turbulent
transport). For instance, liquid water that forms the cloud droplets
is advected by wind causing the clouds to move in the sky. Diffu-

sion (e.g.,κ∇2) represents molecular and turbulent exchange of a
substance from a region of high concentration to a region of low
concentration. For example, warm air spreads to the surrounding
colder areas. For a parcel of air in hydrostatic balance, there is a
balance between gravity and the pressure gradient force and hence
air does not move vertically. However, if there is a change in den-
sity (e.g., in ideal gases due to a change in temperature or pressure),
a buoyant force is exerted. If the parcel is less dense (than the sur-
roundings), the parcel exerts an upward force; if it is denser, then
the net force is downwards. This fundamental interlinking of terms
and processes is central to the model functioning (simplest to most
state of the art ones). As a verification test, we will show that a
cold bubble sinks and a warm parcel of air rises in our results (Sec-
tion 7.3).

To improve numerical stability in our implementation and to sim-
plify some formulas to save computational cost, each variable is de-
composed into its base value and a time-varying perturbation value
(e.g.,φ = φt=0 +φ′ whereφ is the instantaneous value of a vector
or scalar variable,φ0 is the base value, andφ′ is the perturbation
as a result of external forces). To illustrate the conversion of the
equations to actual code, we have added an example of a complete
equation with its discretization in Supplemental Material A. For
notation brevity, we useD

Dt
≡ ∂

∂t
+ (U · ∇), called the material

derivative. Moreover, we denote time steps as: currentn, former
n− 1, nextn+ 1, andt = 0 as the initial value.

Wind. The equations modeling the change of the horizontal wind
velocitiesu andv are

Du

Dt
= −cpdθv

∂Π′

∂x
+ κ∇2un−1, and (4)

Dv

Dt
= −cpdθv

∂Π′

∂y
+ κ∇2vn−1. (5)

The right-hand side of Equations (4) and (5) include two terms:

• The first term represents acceleration due to the pressure gradi-
ent force expressed by the Exner function andθv is the density
potential temperature which accounts for both liquid and vapor
water in air density (θv = θt=0(1.0 + 0.61qvt=0

)).
• The second term represents wind diffusion based on the winds

in the previous time step and by the diffusion coefficient in each
componentκ (typically,κ = (500, 500, 100)).

The equation for modeling the change of thew wind velocity
(i.e., vertical wind) is

Dw

Dt
= −cpdθv

∂Π′

∂z
+g

(

θ′

θt=0

+ 0.61 · q′v − q′c − q′r

)

+κ∇2wn−1,

(6)
where the right-hand side includes a first and third term similar to
theu andv wind velocities. The second term is the computation
of vertical buoyancy as a potential temperature of a parcel (pertur-
bation) compared to its surroundings (mean state) with moisture
added to represent acceleration from falling liquid water. The ver-
tical velocity term controls much of the convection processes and
the vertical exchanges in the boundary layer.

Pressure. The Exner function value is updated using the follow-
ing prognostic equation [Durran 1989]

DΠ′

Dt
=

c2s
cpdρθ2v

∇ · (ρθρU) + κ∇2Π′
n−1, (7)

wherecs = 100m/s is about one-third the speed of sound (a sim-
plification by Durran to obtain an anelastic approximation consid-
ering the temperature dependence of the speed of sound) andρ is

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models • 7

Fig. 5. Kessler Microphysics. Water transition states within the model
clouds following the Kesller scheme.

air density (inkg/m3). The first term computes advection and the
second term computes pressure diffusion.

Temperature. The potential temperature perturbation values are
updated using

Dθ′

Dt
= −ρw

∂θ′

∂z
+ κ∇2θ′n−1. (8)

The first term represents the change in temperature due to non-
adiabatic vertical advection and the second term represents its dif-
fusion.

4.2 Clouds and Precipitation Component

To simulate clouds and precipitation at urban scale, we build off
the conceptual approach suggested in Pielke et al. [2007], but we
focus on convection and warm rain processes. Further, we use the
classic equations derived from the Kessler scheme [Kessler 1969]
and the mesoscale framework of Soong and Ogura [1973] to adapt
this conceptual approach to our 3D grid version with our set of
fundamental equations and variables.

4.2.1 Microphysics Scheme

The Kessler scheme is a warm (liquid-only) cloud scheme that in-
cludes water vapor, cloud water, and rain. The equations use a va-
riety of constants determined experimentally. In this scheme, cloud
formation and dissipation are estimated through condensation and
evaporation, rain drop growth via the growth of cloud droplets (au-
toconversion), and the collection of droplets from falling rain (ac-
cretion). Figure 5 depicts the model framework.

Condensation. This is the process by which water vapor in the
air is changed into liquid water and is implicitly linked to cloud
formation and precipitation. The expression for condensation from
vapor (qv) to liquid (qc) is implemented based on the simplification
by Tetens [1930] as

Cv 7→c = min







qv,
qv − qvs

1.0 + qvs
a(273−36)Llv/cpd

(Πθ)2







(9)

wherea = 7.5ln(10) andLlv = 2.501 · 106Jkg−1 corresponds
to the latent heat of vaporization. The use of the minimum opera-
tor ensures mass balance between water vapor (qv) and liquid wa-
ter (qc). The equation also makes use of the theoretical maximum
amount of water vapor that air at a specific temperature and pres-
sure can hold. This is known as the saturation mixing ratio and is
implemented in our model as

qvs = b exp

(

a
Πθ − 273

Πθ − 36

)

(10)

whereb = 380.16/pe, andpe = pz=0Π
cpd/Rd .

Evaporation. This can be considered as an inverse process of
condensation: liquid water (qc andqr) turns into water vapor (qv).
The model considers the air saturation potential and when the air
becomes unsaturated, cloud droplets (qc) evaporate to maintain a
balance between liquid water in the atmosphere and water vapor.
Thus, the rate of evaporation is self-regulated so as to keep the air
at the saturation mixing ratio until the cloud droplets are completely
evaporated. Raindrops (qr) evaporate after cloud droplets are con-
densed by the moisture deficit. Evaporation is calculated as

Ec,r 7→v = min











qr
−Cv 7→c − qc

Vc
qvs−qv
ρqvs

(ρqr)
0.525

5.4·105+2.55·108/(p̄qvs)

. (11)

The top term ensures evaporation does not exceed the rain, the mid-
dle term verifies the newly available vapor is not exceeded, and the
third empirically determined term ensures the rate to maintain the
saturation mixing ratio. The third term also uses the ventilation co-
efficientVc to consider air pollution concentration near the ground
surface (particularly relevant in the context of an urban scenario).
It is calculated by the experimentally-determined equation

Vc = 1.6 + 124.9ρq0.2046c . (12)

Autoconversion. This process computes rain droplets to be
formed if cloud water exceeds a critical value. This is calculated
as

Ac7→r =

{

0.0 if qv ≤ qc0
max (0.0, 10−3(q′c − qc0)) if qv > qc0

(13)

whereqc0 = 10−3g/kg.

Accretion. This last process represents when rain collects the
small cloud droplets while falling. Avoiding snow and ice compu-
tations in this implementation, accretion can be approximated by

Bc7→r = max
(

0.0, 2.2 q′cq
′0.875
r

)

. (14)

4.2.2 Model Implementation

Finally, we put together the previously described microphysics
concepts to write a set of per-grid cell water equations, representing
clouds and precipitation, which conserve total net mass:

Dqv
Dt

= −ρw
∂qv
∂z

+ κ∇2qv − Cv 7→c +Ec,r 7→v, (15)

Dqc
Dt

= κ∇2qc + Cv 7→c −Ac7→r −Bc7→r, (16)

Dqr
Dt

= κ∇2qr +
1

ρ

∂ρVtqr
∂z

+Ac7→r +Bc7→r −Ec,r 7→v, (17)

whereVt = 36.34
√

ρz=0
ρ

(ρqr)
0.1364 is the rain water terminal

velocity andρz=0 is the density of the lowest grid cell per col-
umn. These equations also make use of the material derivative (as
in Section 4.1). Considering the energy change associated with wa-
ter phase change (i.e., evaporative cooling, condensation heating),
the thermodynamic equation is updated (in lieu of Equation (8)) as

Dθ′

Dt
= −ρw

∂θ′

∂z
+ κ∇2θ′n−1 +

Llv

cpdΠ
(Cv 7→c −Ec,r 7→v), (18)

where on the right-hand side the first term and second term are
the same as in Equation (8) and the third term is the non-adiabatic
heating (cooling) due to phase change.

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

8 • Garcia-Dorado et al.

4.3 Radiative Energy Flux and Energy Balance
Component

The third set of equations models how solar radiative flux is esti-
mated, partitioned, and interacts with the surface and atmosphere
causing a change in temperature that initiates all the changes in the
weather dynamics. Our radiation model considers the solar radi-
ation and its interaction with the surface and atmosphere by us-
ing a force-restore slab method, based on the one described by
Stull [1988]. We improve this method with three additions: i) ray
marching to compute cloud coverage, ii) extending the simulation
time by removing the DC variations and biases of the model – the
original model was designed for only 24 hour time simulations, iii)
modeling the temperature exchange of this model with the bottom-
most grid of the system by achieving coupling.

In particular, the objective of our radiation model is to compute
a spatially and temporally changing value for the temperature of
each of the bottommost grid cells – we refer to such temperatures
asTz. The model defines constants, variables, and equations that
are effectively below the bottommost grid and depend directly on
the distribution of land use. Each constant of each bottommost grid
cell is computed at the beginning of the simulation as a linear com-
bination of land use types (these constants can be found at Supple-
mental Material B).

OnceTz is updated, the weather dynamics start with the ex-
change of temperature that produces buoyancy, and the energy,
mass, dynamics-based prognostic equations. Note that in the land
use interface (i.e., transition region between two land use types of
adjacent grid cells) is where buoyancy occurs and where the ex-
change of temperature and water starts. These processes, in turn,
define where clouds will more likely form. The exchanges are
modeled following Monin-Obukhov Similarity Theory [Monin and
Obukhov 1954].

4.3.1 Radiation budget
The radiation flux corresponding to one ground-level grid cell is

split into four parts of a two-stream model,

Q∗ = K ↑ +K ↓ +I ↑ +I ↓, (19)

where the shortwave solar radiation is reflected (K ↑) and trans-
mitted (K ↓) and the longwave radiation is emitted (I ↑) up and
diffusively radiated down (I ↓).

Shortwave radiation. The visible light transmitted by the sun
can be quantized by

K ↓= ScTK sin(Ψ) (20)

where the solar constantSc = −1.127Km/s is the intensity of
incoming solar radiation at the top of the atmosphere, andTK is the
radiation attenuated by the depth of atmosphere it has to travel (e.g.,
at sunset the radiation has a longer path to reach the surface) and
by the amount of clouds, aerosols, and other absorption/reflection
components within the atmospheric layer.

To computeTK , the model discretizes cloud coverage into three
different heights: low-level cumulus, mid-level alto, and high-level
stratus (i.e., typically low 0-2km, medium 2-6km, and high>
6km clouds); with the fraction at each height beingσCL

, σCM
,

andσCH
, respectively.

Stull [1988] uses an approximation to define cloud coverage. In
our system, to compute the amount of clouds for each bottom-level
grid cell, we use a 3D ray marching method which sets the ray ori-
gin as the center of each grid cell, the ray direction as the vector
to the sun, and a ray step size adequate to sample each cell verti-
cally. This sampling is a coarse approximation especially for angles

close to the horizon; however, in those cases the contribution of the
sun to heat the surface are negligible and the error is very small.
Then, we accumulate the result of applying a cloud transfer func-
tion (see Section 6) to each of the ray marching samples within
each of the three height ranges, yieldingσCL

, σCM
, andσCH

. The
contribution (or weight) by the amount of clouds at each of the
three heights, and other weights, can be dynamically altered or em-
pirically set such as the simplifications introduced in Stull [1988].
Hence,

TK = (0.6+0.5 sin(Ψ))(1−0.4σCL
)(1−0.7σCM

)(1−0.4σCH
).

(21)
Note that the values 0.4, 0.7 etc. used for cloud coverage are merely
examples and can be changed by the user to influence the cloud
formation at the lower, mid and high altitudes.

The solar elevation angleΨ is determined by the longi-
tude/latitude of the urban space, time of day, day, and year:

sin(Ψ) = sin(glat) sin(ds)− cos(glat) cos(δs)

cos[(πtUTC)/12− glong] (22)

whereglat andglong are geographic latitude and longitude of the
middle of the simulated region,tUTC is the time in UTC, andδs is
the solar declination angle:

δs = 0.409 cos

(

2π(d− 173)

365.25

)

(23)

whered is the day of the simulated year (and 173 represents the
summer solstice day and 365.25 the number of days in a year).

The reflected shortwave radiationK ↑ is the fraction ofK ↓ that
is reflected by the surface as defined by its albedo (a):

K ↑= −aK ↓ . (24)

Longwave radiation. Earth re-emits the solar energy as radia-
tion in the form of longwave infrared rays. The net longwave radi-
ation,I∗ = I ↑ +I ↓, is modeled by the empirically determined
equation [Stull 1988]:

I∗ = 0.08(1− 0.1σCH
− 0.3σCM

− 0.1σCL
). (25)

4.3.2 Force-Restore Slab Model

Figure 6 pictorially represents the multiple temperature layers and
the model variables of the force-restore method [Blackadar 1978;
Chen and Dudhia 2001]. As stated, the surface energy balance is
performed by splitting the radiation (Q∗) into sensible heat flux
(QH), latent heat flux (QL), and ground heat flux (QG). The divi-
sion of surface energy defines four layers in the radiation model:

• Two atmospheric layers consist of (a) the bottom of the model
grid with temperatureTz and (b) a layer near the surface with
temperatureTa.

• Two ground layers consist of (c) a shallow layer ofds centime-
ter thick and temperatureTg where most of the soil temperature
changes occur because of the sun’s radiation and thermal diffu-
sivity and (d) a deeper layer primarily influenced by seasonally
varying mean temperatureTm.

To compute the temperatureTz at heightz, we start using a diur-
nal empiricenvironmental lapse ratevalueγ and the temperature
of air closest to the surface,Ta. The empirical formulation ofγ is
represented by

γ = 1.07 ·10−8t5l +8.18 ·10−7t4l −6.05 ·10−5t3l +7.72 ·10−4t2l

+ 1.4 · 10−3tl − 0.0184. (26)

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models • 9

Fig. 6. Force-Restore Slab Model. Radiation reaches the surface and this
heatsTg ; a fraction gets diffused to deeper layers of the groundTm, and
a part heats the first few cm of airTa, thenTa heats the bottom layer of
model gridTz .

wheretl is the local time. Thus,Tz is computed as

Tz(z) = Ta + γz. (27)

In order to computeTa, we first compute the ground heat flux

−QG = CGA
∂Tg

∂t
+ 2π

CGA

P
(Tg − Tm) (28)

whereCGA is the soil heat capacity per unit area. Supplemental
Material B contains a table with values fora, CGA, ds, andBo.
These values can be found in standard textbooks [Stull 1988; Noil-
han and Planton 1989; Oke 2002].

To compute the change ofTg, we make use of the aforemen-
tioned radiation budgetQ∗ and the heat fluxes out of its layer inter-
faces as

∂Tg

∂t
=

−Q∗

CGA

+
2π

P
(Tm − Tg)− aFR(Tg − Ta)− Tgc. (29)

On the right-hand side, the first term is the force term quan-
tifying the amount of radiation that reaches the surfaces and is
transformed into heat depending on the soil heat capacityCGA;
the second term is the restoration term measuring the conduc-
tion of temperatureTg to the deeper layer of temperatureTm;
the third term represents thermal convection of the ground layer
of temperatureTg to the first layer of air with temperatureTa,
whereaFR is the conductivity between the ground and the air
(aFR = 3 · 10−4 whenTg > Ta andaFR = 1.1 · 10−4 when
Tg ≤ Ta). Note that this formulation is not balanced within a 24
hour period, i.e., there is a net temperature increase over a one day
time period. As is typical in weather models, we add a correction
factor,TgC , to remove this DC component and it is computed as
TgC = [Tg(t = 86400)− Tg(t = 0)]∆t/(86400), i.e, the frac-
tion of net increase in each time step during the first 24 hour period.
In a similar manner, we correctTa with TaC

.
Having computed the radiationQ∗ and the ground heat fluxQG,

the sensible heat flux is computed by radiative balance. We extend
the Blackadar [1978] model to computeQH using the Bowen ratio
Bo (i.e., ratio of sensible heat flux to latent heat flux):

QH = (−Q∗ +QG)
1

1 +Bo

. (30)

Finally, we estimate the change inTa using a temporal function of
sensible heat flux. Assuming heating from the surface is the sole

source of increasing or decreasing air temperature and a constant
boundary layer height (zi ≈ 1km), we compute it as:

∂Ta

∂t
= z−1

i QH − TaC . (31)

Note that the first iteration of the Equation 29 requires the value
of Ta. We use the bottommost grid cell of the atmospheric sounding
to initialize its value.

4.4 Numerical Stability

To improve the numerical stability and computational robustness
during the simulation, we make several optimizations for time and
space integration.

For space integration, we use second-order central differentiation
with the aforementioned Arakawa C-Grid. For time integration, we
use leapfrog integration and a Robert-Asselin time filter [Durran
2013].

Leapfrog numerical techniques define the next time step of each
variable as

φn+1 = φn−1 + 2∆t
∂φn

∂t
, (32)

where∆t is the time step. Leapfrog, instead of using the current
time step value to compute the next, uses the former time step value
and duplicates the∆t to reach (i.e., leap) to the next time step.
This temporal offset of the integrated quantities enables achieving
second order accuracy thus increasing the stability and enabling
larger time steps which leads to a faster runtime.

In our implementation, we include the well-known Robert-
Asselin time filter to further increase the stability. We compute each
variable as

φn+1 = φ̄n−1 + 2∆t
∂φn

∂t
, (33)

φ̄n = φn + λ(φn+1 − 2φn + φfn−1
). (34)

whereλ is a filter factor with valuesλ ∈ (0.06, 0.35) (which repre-
sents the filter range from global to advection-diffusion problems).
In our system, we useλ = 0.1. Note that for the first iteration,φf

is not available; thus, we use the standard forward in time equation
φn+1 = φn +∆t ∂φ

∂t
.

To analyze the numerical stability, we use the Courant-
Friedrichs-Lewy (CFL) criteria. From Durran [2013], leapfrog and
Robert-Asselin have a CFL criteria ofs = 1. This means that in
order to converge∆t (umax/∆x+ vmax/∆y + wmax/∆z) ≤ 1.
Given thatumax, vmax < 50m/s in our simulation (i.e., higher
winds are only found in tornadoes) andwmax < 30m/s, the max-
imum time step for∆x = ∆y = 1000m and∆z ≥ 200m is
∆t ≤ 4 seconds. Thus, our model satisfies this necessary condition
using a∆t ≤ 4 seconds. Note that CFL is a necessary but not a
sufficient condition of stability, there are other types of numerical
instability that can arise. However, CFL usually gets violated first
so it is a good marker of when integration will become stable. In
practice, the combination of leapfrog, Robert-Asselin, C-Grid, and
integrating the momentum terms in flux form allows our system to
be stable using a∆t = 1 second (the value used for all experi-
ments).

4.5 Boundary Conditions

For top and bottom boundaries, we set zero wind and moisture vari-
ables. Potential temperature, Exner function, and pressure are de-

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

10 • Garcia-Dorado et al.

fined as the boundary value stretched out through the vertical do-
main:










φ(z < 0) = φ(z ≥ gridz) = 0 for φ = {u, v,w, q∗}

φ(z < 0) = φ(z = 0) for φ = {θ,Π, ρ}

φ(z ≥ gridz) = φ(z = (gridz − 1)) for φ = {θ,Π, ρ}.

(35)
Note that the lower boundary is set by the radiation and energy

balance model.

4.6 Stochastic Subgrid Model

Cloud formation, especially cumulus convection, is a multiscale
feature with features ranging from turbulence and small-scale
vortices and whirls to large-scale subsidence due to differential
mesoscale convergence/divergence fields. Therefore, even at the
relatively fine-resolution of this model (e.g.,1km grid spacing)
considered in our study (compared to the10km used in opera-
tional numerical weather models), we need to consider the features
impacting cloud evolution from the sub-grid scales. The smallest
feature that a given grid scale∆x can resolve would be one that
is ∼ 4∆x. Atmospheric turbulence occurs at scales much smaller
than the finest grid spacing tested by the model (≪ 1m) and con-
tributes to some of the variability of cloud development and the
resulting heterogeneity witnessed in the real atmosphere. To rep-
resent the visual effects of subgrid-scale variability, we implement
two different approaches.

First, we follow an approach similar to Randall and Huff-
man [1980] by splitting the model equations into a deterministic
component (φ), and a stochastic component (φs). The determinis-
tic component is the physically derived differential equations of our
system. The stochastic component represents the physically signifi-
cant but unresolvable features of the subgrid scale. For this purpose,
we add small random variations to the potential temperature of the
surface grid cells and to theqc of the forming clouds (i.e., grid cells
with 0.001 < qc < 0.002). We defineφs = N (0, 0.1φ), i.e.,
up to 10% variability. This perturbation is gradually added to each
time step over a 5 minute period. The stochasticity in the potential
temperature at the surface grid cells was added in the radiation and
energy balance model to simulate the heterogeneities in the land
surface and at the cloud centers was added to the moisture vari-
ables to simulate the impact of aerosols. When integrated over time
and space, these stochastic variables are expected to average out to
zero and thus have an effect just within the cloud.

In addition to the aforementioned technique, to reintroduce the
lost rotational motion, we use the vorticity confinement approach
defined by Steinhoff and Underhill [1994] and later implemented
for graphics applications by Fedkiw et al. [2001]. The methodology
introduces an additional force term perpendicular to the gradient
vorticity field, thereby increasing the local vorticity.

5. URBAN WEATHER DESIGN TOOL

Our tool provides either forward or inverse design options for city
models and local weather. As mentioned, in the forward design, the
user interactively draws the land use of urban and non-urban re-
gions and defines the initial weather conditions. The local weather
is then simulated in a prognostic manner. In inverse design, our sys-
tem discovers how to change the land use distribution or the initial
weather conditions to cause the weather/climate pattern to behave
as desired. Uses of these design options are shown in the results
section (Section 7).

5.1 Input Parameters

Our system has three sets of initial input parameter values:
Ω = {ωl, ωp, ωw}.

• The ωl parameters refer to the percentage distribution of land
use for each grid cell. For example, in the center of the city there
is a nearly 100% likelihood of urban land use. This distribution
can be defined with our interactive drawing tool, be loaded from
a GIS data (e.g., WRF global fields) or model databases, or be
procedurally generated.

• The ωp parameters refer to the urban procedural parameters
(Section 3.1) that define the urban geometry (e.g., building
height mean, road width, percentage of white roofs).

• Theωw parameters refer to the initial conditions of the weather
simulation. These conditions define the initial values for each
grid cell for each simulation weather variable. These condi-
tions can be defined explicitly, procedurally, or via observations.
Our system generates soundings procedurally or uses a small
database of measured soundings (e.g., the public online database
provided by the University of Wyoming, Department of Atmo-
spheric Science and NOAA’s National Centers for Environmenta
Information (NCEI), provide worldwide data for the last sev-
eral decades, example is in Supplemental Material C). To gen-
erate the initial conditions procedurally, we define spline control
points at vertical heights of{0, 2, 6, 8}km and fit a spline to in-
terpolate values for each variable at each height. In our system,
the spline values can be defined from physically-based range
values (e.g.,u ∈ (0, 70)m/s) or from a predefined list (e.g.,
cold/warm/hot, dry/humid).

Note all these parameters can be spatiotemporally varying. For
instance, the sounding can vary by either prescribing it from a
weather model output and interpolation to each grid cell, or by us-
ing terrain and surface layer similarity/mixed layer similarity ap-
proximations [Arya 1999] to re-estimate the sounding. In our sim-
ulations, we set the values initially and run the simulation.

5.2 Forward Design

In forward design, the user wants to quickly design a city model and
simulate realistic weather for different time periods. This approach
is useful to virtual environments, modern games, education, and
decision tools where the goal is realism by taking advantage of the
detailed amplification of procedural modeling. The user defines di-
rectly the desired input parameters. Usually, this means drawing the
land use distribution (ωl) and choosing some initial weather condi-
tions (ωw). Given these initial conditions, our weather simulator is
then executed for the desired time period. Note that the simulation
varies from one to the next day because i) the initial conditions are
altered through the former day, ii) the radiation model that directly
affect the wind and buoyancy changes with the day of the year due
to the sun trajectory, and iii) the potential of rain also changes de-
pending on the moisture, cloudiness and seasonality.

5.3 Inverse Design

Building upon the inverse procedural modeling concept (e.g.,
Bokeloh et al. [2010], Talton et al. [2011], Vanegas et al. [2012]),
we also provide a novel inverse modeling tool for designing urban
weather (e.g., control cloud coverage, humidity, rain distribution, or
city temperature). Given a procedurally-generated model, we dis-
cover how to alter the model or the initial conditions so as to pro-
duce a user-specified weather. Since weather simulation is a very

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models • 11

nonlinear and complex process, it is very hard to predict and/or con-
trol the end state. Therefore, we propose an MCMC-based method,
in particular, based on the Metropolis-Hasting algorithm [Metropo-
lis et al. 1953; Hastings 1970], to explore the search space and find
a solution that exhibits the desired weather behavior.

In our method, the optimization mode for inverse design may be
one of the following:

• Error (objective) function optimization.This mode minimizes a
functionE(∗) that describes the desired behavior. The function
can be as simple as a single value of a weather variable at the
end of the simulation (e.g., temperature in a specific grid cell) to
a set of more complex values (e.g., precipitation over different
periods of times, percentage of sunlight in a grid cell during a
day).

• Cost minimization.This mode allows to achieve a desired behav-
ior while minimizing the number of changes. The user defines
an objective valueη for a functionE(∗) and defines a cost func-
tion C(∗) to minimize. For example, in urban planning a user
might want to control a weather variable while doing the mini-
mum changes to the urban model.

• Constrained optimization.This defines constraints to the solu-
tion parameters, and it is an option for the other two modes. For
example, the user wants to constrain the solution to be no more
than say 10% different than the original.

5.3.1 Seeding Initialization

Our method starts from one or more initial parameter values or
seedsΩ0. The user can choose whether to use a single seed consist-
ing of the parameter values of the original model or multiple seeds
that consist of physically-based valid parameter sets. In practice, a
useful configuration to control the weather without changing the 3D
model is to fix{ωl, ωp} and alter the initial weather conditionsωw.
In this case, we create multiple seeds with differentωw parameter
values. Using domain knowledge in weather simulation, we know
that significantly varying temperature/clouds/rain can be produced
by altering the gradients in landscape and the initial wind (i.e.,U)
and humidity (i.e.,qv) values at multiple heights. To speed up the
convergence and focus on physically possible behaviors, we pre-
compute a wide range of physically valid values forωw (128 in our
configuration) in different land use distributions (10 distributions
in our configuration). These values are then used to automatically
select a discrete set of initial seeds close to the objective and, thus,
likely to achieve fast convergence. Moreover, we use these precom-
puted values to evaluate the solution feasibility (Section 5.4). Note
that without this seeding, the optimization would require more ran-
dom initial seeds or need more steps to find the desired solution.
We also have the means to store and reuse the preconditions al-
ready plotted or computed to be used for future cases.

5.3.2 Search Process

Subsequently, our method attemptsns state changesΩt → Ωt+1

starting at the seeds and attempts to better satisfy the user-specified
behavior. The search is performed using one or more search threads
each having a different energy level within an MCMC optimization
framework. Given the current stateΩt, a candidate next state is
computed by changing one or more values of the three parameters
sets.

For parameter values inωl andωp, the user selects a set of grid
cells where the changes can happen (or the whole scenario), the
allowable changes of land use (e.g., change from forest to low-
density residential and green), and subset of procedural parame-
ters that can change (e.g., only the window-to-wall ratio and roof

albedo can change). To calculate the next stateΩt+1, our system
randomly selects a subset of the permissible grid cells and performs
a random perturbation to the land use or a procedural parameter
in each grid cell. For each parameter valueω and its physically-
possible range(ωmin, ωmax), we perturb the current value with a
value sampled from a Gaussian distributionN (0, α|ωmax−ωmin|)
whereα is the perturbation change (typically set to a random value
α ∈ (0−10%)). For constrained optimization mode, we clamp the
final value to enforce the constraints. If the change increases (or
decreases) a land use type in a grid cell, the other land use types
in the same grid cell are randomly decreased (or increased) by the
same amount so that the sum of all land use distributions stays at
100%.

For parameter values inωw, the user selects the weather vari-
ables that can be altered and the plausible physical range (or the
default physically-based range values are used). Then, using the
same sampling scheme, the variables are perturbed.

5.3.3 Acceptance Ratio

Once a candidate stateΩt+1 has been sampled, we re-simulate
the weather and use a modified Metropolis ratio to compute the
probability to accept this new candidate state. Note that if the can-
didate stateΩt+1 is not accepted, the transitionΩt → Ωt+1 does
not occur and the next state isΩt again.

A standard Metropolis-Hasting acceptance ratio when the pro-
posed sampling distribution is symmetric is defined as

amin(Ωt → Ωt+1) = min
{

e−β[E(Ωt+1)−E(Ωt)], 1.0
}

. (36)

However, our acceptance ratio is computed as

amin(Ωt → Ωt+1) =






















min

{

e
−β

(

E(Ωt+1)

E(Ωt)
−1.0

)

, 1.0

}

if E(Ωt+1) ≥ η

min

{

e
−β

(

C(Ωt+1)

C(Ωt)
−1.0

)

, 1.0

}

if E(Ωt+1) < η

(37)

whereβ is the energy level that affects the acceptance ratio,E(∗)
is an error (objective) function, andC(∗) is a cost function. Ifβ
is small (∼ 1.0), then it is more likely that higher error candidate
states are accepted. In contrast, whenβ is larger, it is more likely
to accept only improved candidate states.

Our formulation differs from the standard one in two significant
aspects:

• Our acceptance ratio is based on relative improvement. For the
standard acceptance ratio of Equation 36 to work, the error func-
tionE(∗) should produce similar values during the entire search
process, or normalization factors should be computed and used.
However, computing normalization factors is challenging when
the error function varies by several orders of magnitude during
the optimization iterations or when the range of values is diffi-
cult to define a priori. Instead, our approach eliminates the need
to find adequate normalization factors by creating an acceptance
ratio that only depends on the relative improvement. To accom-
plish this, our formulation replaces the difference computation of
the error functions by a division of them. In Figure 7, we show
the behavior of the acceptance ratio. The actual value ofE(∗) is
irrelevant, and only the relative error is important and indepen-
dent of the energy level.

• Our modified formulation also serves to implement the error op-
timization and cost minimization modes (Section 5.3). In error

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

12 • Garcia-Dorado et al.

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

E(Ω
t+1

)/E(Ω
t
)−1.0

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Acceptance Ratio vs. Relative Error

β=10

β=20

β=30

β=50

β=90

β=140

β=240

β=400

β=650

Fig. 7. Acceptance Ratio vs. Relative Error. The figure shows the accep-
tance ratio for different energy levels. While the energy level (β) decreases,
the acceptance ratio decreases as well, making more unlikely that worse
states get accepted.

optimization mode, the function is simply optimized as in stan-
dard MCMC. This is accomplished by settingη = −∞ (i.e.,
the threshold is effectively deactivated). In our cost minimization
mode, two behaviors will alternate. While theE(∗) is not satis-
fied (i.e.,E(∗) ≥ η), the optimization will minimizeE(∗). In
contrast, when the objective value is achieved (i.e.,E(∗) < η),
the optimization minimizes a second functionC(∗) (i.e., the cost
function). Using this modification, we can optimize a variable
but with the minimum number of changes (or cost). Figure 12
shown ahead is an example – once the temperature objective
is reached, the optimization then tries to reduce cost alternat-
ing between both behaviors, and the search stays close to the
E(∗) ≈ η. See Section 7.2 for more details.

5.4 Incoming Weather Design

In addition to our novel weather simulation, we also provide anIn-
coming Weather Designmode. In this mode, we remove the toroidal
boundary conditions and, instead, feed in external (i.e., incoming)
user-defined states. This mode is useful in two cases: a) to over-
come the limitations of a local simulation, and b) allow the user to
define specific cloud shapes over different periods of time.

A limitation of a local-only simulation is that not all user-defined
weather behaviors are possible – some local simulation behaviors
require a particular global scenario (e.g., an overcast day in desert
area is not possible unless there is an incoming/global overcast be-
havior carrying water from elsewhere).

Hence, our design tool enables the user to pick (or define) the
weather state outside of the local simulation region (from precom-
puted or user-defined states) and thus effectively control the global
weather scenario. The user selects several external states and de-
fines a timeline for each of them. These states are then fed in as
boundary conditions changing over time. Since in reality, weather
at a location is due to features advected from another locale, we
include this functionality by forcing the wind to advect inwards
across the boundary, where we can ‘receive’ the selected states as
an incoming source, thus collectively yielding the desired weather
behavior. Moreover, the user can decide whether the local weather
should interact with the incoming one. This is done by altering the
initial soundings. For example, using a sounding with a high water
vapor mixing ratio and/or different wind speeds will cause interac-
tion between local and incoming advected and moisture values.

Note that this method can also be used even if the weather behav-
ior is achievable. Using the incoming weather, the user can define
a concrete set of clouds and have a more tight control of its spatio-
temporal behavior.

6. IMPLEMENTATION DETAILS

Our system is implemented in C/C++ and CUDA and renders using
OpenGL. For the CPU simulation, we use C++ Boost threads (for
multi-threading) and Boost mutex (for synchronization).

While not the focus of our work, we provide real-time rendering
using three render passes. In a first pass, the sky is rendered using
a GPU version of Nishita et. al. [1996] where the sky’s appearance
is a combination of Mie and Rayleigh scattering. In the same pass,
we optionally add a lens flare effect and parametrized 4D procedu-
ral noise for far background clouds. In a second pass, the terrain
and urban procedural model is rendered. To improve performance,
we reduce the number of draw calls by grouping together all ge-
ometry with the same texture. Shadows are added based on current
cloud coverage (Section 4.3.1) and a shadow mapping technique
enhanced with a Poisson Disk (Dunbar et al. [2006]). In the final
pass, clouds and rain are rendered using 3D ray marching and vol-
umetric rendering based on Wrenninge and Bin Zafar [2011]. We
enhance this approach with the idea of Volume Perturbation as pre-
sented by Elbert [2003] and Kniss et. al. [2003]. Our method de-
fines an empirically determined cloud transfer function and rain
transfer function based onqc andqr values respectively. Weather
variables are visualized in real-time using 2D or 3D textures, an
isoline shader, and/or ray marching.

For the GPU implementation, each component is implemented as
a single CUDA kernel so that the block size can be optimized inde-
pendently. To improve SIMD performance, we store grid variables
as a structure of arrays (rather than an array of structures) to coa-
lesce reads and writes. To reduce the impact of branching, variable
access is implemented via an efficient array operator overloading
scheme.

7. RESULTS

We have implemented and tested our model, the framework, and
the rendering approach to design and simulate weather on various
cities. All computation is performed on an Intel i7 4770 CPU and
an NVIDIA GeForce GTX 780 graphics card.

7.1 Forward Design

Figure 8 shows two exemplar cases of the method described in Sec-
tion 5.2. The user draws the distribution of land use (Figure 8a) and
designs the procedural model of the city (Figure 8b). Then, the user
can select initial procedural weather conditions (top row) or select
a location and date and load real-world soundings (bottom row), in
this case from Miami, FL. Finally, our system simulates any num-
ber of days of realistic weather (Figure 8c).

7.2 Inverse Design

We demonstrate our weather design tool and related assessments in
Figures 9, 11, and 12. We show how our framework can be used to
design, control, and optimize different scenarios.

Cloud Design.
Figure 9 shows three examples of the use of our high-level design

tool. The user wants to control the cloud coverage (e.g., percentage
of sky covered by clouds) of a procedural city throughout a day.
To calculate the cloud coverage, we compute the average amount

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models • 13

User draws Land Use Day 1 Day 2 Day NUrban PM

Fig. 8. Forward Design. Two examples of forward design. a) The user draws the land use distribution and uses our urban procedural model engine to design
two cities; b) the simulation runs for these procedural modelsand we display different days.

Fig. 9. Inverse Cloud Design. Three examples of cloud design. a) The user interactively draws a land use distribution; b) the user selects three different
high-level behaviors of the weather; c) the system finds suchweather and the weather sequence is visualized for different days.

of clouds computed by our Radiation and Energy balance model
(Section 4.3.1).

The process is as follows. The user interactively paints an ur-
ban and non-urban area (Figure 9a). Then, the user designs the
weather behavior (Figure 9b) by defining as an objective the mean
percentage of cloud coverage (σ̄) and, optionally, the permissi-
ble range around the mean (σ̌) duringm different time rangesR.
This defines an objective cloud coverage set{σ̄r∈R, σ̌r∈R} where
R = {r1, r2, · · · , rm}. Then, we run the optimization to find the
closest solution (Figure 9c).

For this example, we fixωl andωp since we do not want to al-
ter the 3D model. To alterωw, we set-up the optimization i) to use
our multi-seed approach, ii) to constrain the variable values within
plausible physical values, iii) to only alter the control points ofU
andqv, iv) and to useη = −∞ (i.e., error optimization mode). Fi-
nally, we define the error function to minimize the computed cloud

coverage with respect to the user-specified one as

E(Ω) =

m
∑

i=1

max (0.0, |σΩr∈R − σ̄r∈R| − σ̌r∈R) (38)

To speed up the process and for certain applications, the user can
decide to use our 2DXZ simulation model. Our 2DXZ model
uses the same formulation and code than for 3D but drops one-
dimension (in this case the depth,Y) to create a fast approximation
for cloud coverage. Figure 10 shows the error for three different
scenarios of the computed cloud coverage using our complete 3D
version and our 2DXZ approximation. As can be observed the er-
ror for time periods of 12 hours have an average value smaller than
4% and a maximum error of 10%. We use this 2D approximation
in this result, but in general it could be used in many other time-
critical applications.

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

14 • Garcia-Dorado et al.

0 2 4 6 8 10 12
 0%

 1%

 2%

 3%

 4%

 5%

 6%

 7%

 8%

 9%

10%

Time (h)

S
q

r
E

rr
o

r
(v

a
ri
a

n
c
e

 a
s
 b

a
r)

Cloud Coverage: Error 2D vs 3D

Two Land Uses

Four Land Uses

Six Land Uses

Fig. 10. Difference between 2D and 3D simulations. We show the
squared error of the cloud coverage between our 2D and 3D simulators,
for three different scenarios and with 50 different initialconditions.

The presented solutions were found using 12 initial seeds, 4
steps, and required less than 5 minutes of computation. Optionally,
the user can decide to explore the rest of evaluated solutions (plot-
ted as temporal cloud coverage changes) and select a more suitable
simulation.

Rain Design.
Figure 11 presents an example of our inverse modeling tool to

control (e.g., decrease or increase) the rain of the city by changing
non-urban land use. Altering the rain rates of an area can be inter-
esting for many reasons. An example would be to alleviate seasonal
droughts or flood potential ([Lucke and Nichols 2015]). Decreas-
ing rain may be desired for humid and rainy areas (e.g., Seattle,
WA) or even to mitigate the spread of insects such as mosquitoes.
A wide range of environmental services have been envisaged for
urban greening, and an optimization tool such as discussed here is
critically required.

In this example, we focus on changing non-urban land use since
it is relatively cheaper as well as more feasible than re-designing
an existing urban area. Nonetheless, in developing countries, as
well as design changes planned over long time horizons, planning
the future development of the urban landscape itself is crucial. Re-
gardless, such land-use change exploration is being actively studied
([Zhang et al. 2009; Gero et al. 2006]). To limit further the solution,
we define the maximum percentage of land use change of each grid-
cell to be 50%.

For this example, we setωp to the default procedural parame-
ters andωw with values corresponding to a warm summer day. To
control the rain, we alterωl of the non-urban areas (green in Fig-
ure 11c) allowing changes to ‘bare soil’, ‘forest’, ‘beach sand’, and
‘crops’. We use our system with one unique seed (i.e, the origi-
nal scenario) and run it with 20 chains of different energy levels
β ∈ [10, 650] and 50 steps. In Figure 11a-b we present the evolu-
tion of rain for each chain in gray and highlight as a thick line the
minimum/maximum value found so far for that number of steps.
The black circled state is the one selected as optimal.

To compute the total rain fallen inh hours, we use the con-
cept of rain intensity. Eachs seconds of simulation we sample
the rain intensity (inmm/h) in each bottom level grid-cell. We

Fig. 11. Inverse Rain Design. We show the results to optimize the rain
levels in a city, a) to decrease it; and b) to increase it as a function of urban
landcover only. We overlap the result of each chain in gray and highlight
the minimum/maximum value found so far; c) shows the initial land use
distribution of the center cross section of the urban region; d-e) displays the
best solution for each optimization corresponding to the black circles on a
and b).

use the classic [Marshall and Palmer 1948] formula to compute the
rain intensity asRI = 360ρz=0Vrqr where terminal velocity is
Vr = 3634(ρqv)

0.1354. The total rain is computed as the average
of RI per hour times the elapsed time (in our case 12 hours); i.e.,

E(Ωt) =
h

∑

t=0

3600

s

gridx
∑

i=0

RI(t, i). (39)

Using this formula as the objective function, rain is minimized
(Figure 11a). In order to use the same function but as maximiza-
tion (Figure 11b), we invert the terms in the acceptance ratio to be
E(Ωt)/E(Ωt+1) instead ofE(Ωt+1)/E(Ωt). As seen in the par-
ticular case of Figure 11, we achieve a rain decrease of 45% and
an increase of 35%. Note that such ‘drastic’ changes are indeed
possible since we included ‘beach sand’ as a land use category.
This land use category has a very high albedo. In contrast, if we
eliminate this option, the maximum decrease is only 19% and the
maximum increase is 16%. These outcomes have both educational
if-then visualization value, and also of relevance to the considera-
tion of interactive realism within meteorological analysis.

Temperature Design.
Figure 12 presents an example of our cost minimization mode.

We use our system to reduce1◦ C of temperature in the city center
(i.e.,η = [E(Ω0)− 1] Celsius) so as to alleviate the higher tem-
peratures produced by the urban heat island effect. Reducing the
urban heat island by only a few degrees is recognized as a diffi-
cult though valuable goal [Solecki et al. 2005]. For example, super
dense cities such as Beijing can benefit from reduced heat islands
that would in turn decrease pollution [Mullaney et al. 2015].

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models • 15

Fig. 12. Inverse Temperature Design. a-b) We show the behavior of the optimization for the solutione) of this figure: a) if our error optimization mode is
used (i.e., optimize the temperature); b) if we use our cost minimization mode (i.e., temperature and cost optimization); c) theoriginal model; d) altered model
that achieves one degree reduction by introducing more parks; e) alternative model that achieves the same goal but uses white roofs to increase albedo; and f)
a solution with both parks and white roofs (note the reduction in both).

Fig. 13. External Weather. a) The user selects the desired cloud states. b) Our system isable to simulate the user-selected behavior.

As allowable changes to the initial model, we fixωl andωw and
explore three alternative options forωp: change some urban land
use to parks, paint some roofs to be of high albedo (e.g., White
Roof Project [WRP-URL ; Santamouris 2014] is currently promot-
ing this option), or perform both of the aforementioned changes.

First, we compare the standard acceptance ratio where one vari-
able is optimized (Figure 12a) with our modified formula where we
optimize a variable while we keep the cost to the minimum (Fig-
ure 12b). We run 5 chains for 50 steps with the original model as
initial conditions and differentβ ∈ (10, 650) (each chain is dis-
played after the other to analyze the behavior). In Figure 12a, the
temperature is progressively reduced by the optimization method
until it crosses the desired goal just once per energy level (the first
cross ofη = −1 is highlighted). After it crosses, the temperature
is reduced further, but the cost is likely to increase as well. Thus,
the best solution is found at one of these crosses. In Figure 12b,
we present our cost minimization method. The temperature is re-
duced by the optimization, as before, but when the desired level is
achieved(η = [E(Ω0)− 1] Celsius), the optimization minimizes
the cost. Both optimization modes alternate trying to find the goal
temperature with the minimum cost. Note that this behavior could
be understood as a multi-objective minimization where the solution
lies in the Pareto frontier [Caramia and Dell’Olmo 2008]. We reach
a frontier (it might have more than one since the space is highly
nonlinear) whereE(∗) ≈ η and then the optimization explores to
find a better solution staying close to it.

Further, Figure 12c shows the original model and Figure 12d
shows the model with 31% more parks and1◦ C reduction in tem-
perature. Figure 12e shows an alternative option with 61% more
white roofs and1.1◦ C lower temperature. Figure 12f uses both
more parks and white roofs to achieve1.2◦ C reduction. Overall,
the design tool enables quick exploration of options to achieve the
desired weather/climatic change.

Incoming Weather.
Figure 13 shows an example of our external weather design. The

user, instead of defining the general behavior of weather during a
day (Figure 9), decides to use our external weather design to select
a few interesting cloud configurations (Figure 13a) from the pre-
computed states (in our case, any of the128 · 10 · 72 precomputed
states), the order, and the time period of simulation. By changing
the boundary conditions, our system is able to simulate the user-
defined behavior (Figure 13b).

7.3 Comparisons

To validate our simulator, we compare it to state-of-the-art weather
modeling results and systems. We validate each of the three main
components of our framework separately. To validate the first com-
ponent, fundamental equations, we perform a comparison to well-
known benchmark cases of a bubble of cold air and a bubble of
warm air under prescribed conditions [Straka et al. 1993]. Fig-
ures 14 and 15 have 2D visualizations of such bubbles. In Fig-

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

16 • Garcia-Dorado et al.

Fig. 14. Cold Bubble. Our evolution of potential temperatures similar to
that of Wicker and Skamarock [2002]. Vertical axis is height and horizon-
tal axis is spatial x-axis location (both inkm). Simulation isolines at a) 0
seconds, b) 450 seconds, and c) 900 seconds.

Fig. 15. Warm Bubble. Our simulation produces potential temperatures
very similar to Ahmad and Lindeman [2007]. Note the axes and temporal
sequence are the same as in Figure 8 of that paper.

ure 14a, an elliptical cold bubble (−12.5C) is placed in the center
of the domain at a height of3km using a grid cell size of0.125km
and a time step of0.25s. As should be the case, after450s of simu-
lation the bubble sinks and Kelvin-Helmholtz eddies are produced
(Figure 14b). We impose wind of20m/s which as per Wicker and
Skamarock [2002] makes the test more stringent. At900s, as ex-
pected, the eddies have completed a half revolution around the do-
main and approach each other (Figure 14c). This behavior is very
similar to Figure 2 of Wicker and Skamarock [2002], a classical
reference. Figure 15 has a spherical warm bubble of28C and at
2km above the ground, and same grid cell size and time step as in
Figure 14. After900s, the bubble rises as should be the case as per
Ahmad and Lindeman [2007].

To verify the second component, we compare our clouds and pre-
cipitation model to the WRF-ARW (Weather Research and Fore-
cast Model – Advanced Research Version 3.6.1) and an expected
cloud/rain formation process. Figures 16a-b show the computed
value of water vaporqv at different heights in a rural area and in an
urban area using WRF and using our model – both models behave
similarly. However, in a mesoscale model, WRF does not model
clouds explicitly nor render them. Thus, we look to the literature
on cloud dynamics. Cumulus clouds are formed by convergent-
divergent zones producing powerful updrafts that form large ver-
tical clouds and typically significant rainfall. We use our simulator
to generate such a cumulus cloud adding a3C warm bubble in the
city center and successfully show its three main stages (Figure 16c-
e): towering cumulus stage, mature stage, and dissipating stage. As

Fig. 16. Cloud and Precipitation Comparison. a-b) We show the wa-
ter vapor mixing ratios for an urban and rural area using WRF’s and our
implementation. c-e) A temporal evolution of a cumulus cloud with our im-
plementation.

expected, this large cloud forms a thunderstorm (e.g., see the rain-
fall depicted in Figure 16e) during the third stage that resembles a
classic storm around a city [Bluestein and Parks 1983; Niyogi et al.
2011].

For the third component, we compare WRF’s radiation and en-
ergy balance model with our model. The simulated domain consists
of a simple circular city in the middle of an otherwise green terrain.
As can be observed in Figure 17a, the relative temperature differ-
ence between urban and non-urban areas, defining the urban heat
island, computed by the two models is almost identical. The shown
curves are the difference between an East-West slice through the
middle of the domain and an East-West slice through the south-
ern part of the domain (not intersecting the city) as computed by
each model. We also show the temperature evolution over time for
a point in a rural area and in an urban area (Figure 17b-c), using
both models. Our model again behaves very similarly to WRF.

It is important to highlight that weather forecasting is inherently
nonlinear and by definition chaotic [Lorenz 1969]. Small changes
to initial conditions (either prescribed or computed/interpolated by
different model routines) can result in significant differences in the
output. Even for two sophisticated models or for two runs with dif-
ferent physics options the model output can have significant differ-
ences. This is the basic motivation behind the so-called ensemble
weather forecasting ([Barker et al. 2012]) used by the meteorolog-
ical community to produce values such as a probability of precipi-
tation. We highlight this to provide perspective on the similar (but
not identical) output from the two models as a basis of verification
and agreement.

Impact of Land Use.
Figure 18 shows the impact of land use on weather. Figure 18a

shows the cloud coverage evolution over a 12 hour period for
the same initial weather conditions while varying land use (Fig-
ure 18b). Note that when land use is almost homogenous, convec-
tion is not triggered and, despite the humidity, clouds do not form
(see line 1 in Figure 18). Adding additional vegetation allows con-
vection to produce clouds (line 2). Adding a city that presents a
strong interface between land uses (line 3), foments cloud creation.
Adding more complex structures (line 4) increases the chances to

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models • 17

Fig. 17. Radiation Model Comparison. We compare WRF’s radiation
model to our radiation model: a-b) we show the temperature evolution over
time for a point in a non-urban and in an urban portion; c) urbanheat island
effect as the temperature difference between an urban and non-urban 1D
slice using each model. Our model behaves quite similar to WRF’s.

Fig. 18. Impact of Land Use. We show the impact of the land use on the
weather behavior using the same initial weather conditions and modifying
the land use. a) Cloud coverage over time for the five land uses shown in b).

create more compact and complex clouds. Note that the extent of
the land use beyond a minimal threshold is not the main factor
(line 5) instead, it is the different land use interfaces and associ-
ated mesoscale boundaries that initiates all weather phenomena.

Performance.
For a simulated volume of 50x50km and25km high (divided

into 50x50x56 grid cells), our 2DXZ system (Section 7.2) com-
putes 81 minutes of weather in one second and our 3D system

Table I. Performance. CPU uses 4 cores while GPU
uses 2304 cores. See main text for additional details.

Time per Time Faster than
Step (ms) Real-Time

CPU GPU (GPU)
Fund. 25.02 0.08 12195x

2DXY +Clouds 62.98 0.16 6135x
+Rad. 64.72 0.21 4878x
Fund. 250.23 5.04 199x

3D +Clouds 639.11 9.71 103x
+Rad. 671.72 9.90 101x

computes 1.7 minutes of weather in one second. In all cases, we
use a simulation time step of∆t = 1s. Table I summarizes our
performance on the aforementioned CPU and GPU. Our GPU im-
plementation reaches over 101x with respect to real-time, and it
is 68x faster than the CPU counterpart. As a reference, WRF is
7.1x faster than real time running on a compute server with 4 AMD
Opteron 6176 12-core processors (450 GFLOP) – this maps to
approximately 1.2x faster than real-time using our Intel Core i-7
(170 GFLOP). Note that this comparison is not straightforward
since WRF is optimized to run on servers and is a globally compat-
ible model with various formulations and options. For instance, a
typical scenario for a WRF run would be using three nests of 27:9:3
resolution using a high-performance cluster (256-512 cores).

8. CONCLUSIONS AND FUTURE WORK

We have presented a framework for realistic, physically-based
weather simulation in urban procedural modeling. Our weather
simulation is based on a non-hydrostatic weather model consisting
of a set of nonlinear dynamical equations that govern atmospheric
motions. It runs at super real-time rates (up to 4800 faster than real-
time). We also present forward and inverse modeling weather de-
sign tools to control the simulation. Finally, we compare our system
against the well-known state-of-the-art weather forecast results and
systems. Altogether, our framework provides detailed and realistic
weather phenomena without having to carefully script all meteoro-
logical phenomena.

For our current framework, we have identified several limitations
and future work. First, since our focus is urban-scale our model
cannot simulate weather phenomena that are formed on bigger or
smaller scale; we will explore multi-resolution grids to address this
and enhance the global design. Second, our microphysics model
currently simulates warm-season cumulus clouds and rain. We will
explore more complex models to add snow and hail. Third, we will
include additional land use categories including modeling the effect
of terrain height on the land use properties and weather grid vari-
ables. Fourth, we will explore the use of shared memory, dynamic
parallelism, and streaming to enhance GPU performance. Fifth, we
will explore physically based weathering of urban models, such as
building and energy-uses, using our weather simulator.

ACKNOWLEDGMENTS

This research was partially funded by NSF CBET 1250232, NSF
IIS 1302172, NSF AGS 1522494, NSF CAREER 0847472, NASA
Earth System Science Fellowships, and a Google Research Award.
We would also like to thank the Editor and the anonymous review-
ers for their constructive suggestions.

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

18 • Garcia-Dorado et al.

REFERENCES

AHMAD , N. AND L INDEMAN , J. 2007. Euler solutions using flux-based
wave decomposition.International Journal for Numerical Methods in
Fluids 54,1, 47–72.

ANDO, R., THUEREY, N., AND WOJTAN, C. 2015. A stream func-
tion solver for liquid simulations. ACM Transactions on Graphics
(TOG) 34,4, 53.

ARAKAWA , A. AND LAMB , V. R. 1977. Computational design of the basic
dynamical processes of the ucla general circulation model.Methods in
computational physics 17, 173–265.

ARYA , S. P. 1999.Air pollution meteorology and dispersion. Oxford Uni-
versity Press New York.

BARKER, D., HUANG, X.-Y., L IU , Z., AULIGNÉ, T., ZHANG, X.,
RUGG, S., AJJAJI, R., BOURGEOIS, A., BRAY, J., CHEN, Y., ET AL .
2012. The weather research and forecasting model’s community varia-
tional/ensemble data assimilation system: Wrfda.Bulletin of the Ameri-
can Meteorological Society 93,6, 831–843.

BLACKADAR , A. 1978. Modeling pollutant transfer during daytime con-
vection. InSymposium on Turbulence, Diffusion, and Air Pollution, 4 th,
Reno, Nev. 443–447.

BLINN , J. F. 1982. Light reflection functions for simulation of clouds and
dusty surfaces. InACM SIGGRAPH Computer Graphics. Vol. 16. ACM,
21–29.

BLUESTEIN, H. B. AND PARKS, C. R. 1983. A synoptic and photographic
climatology of low-precipitation severe thunderstorms in the southern
plains.Monthly weather review 111,10, 2034–2046.

BOKELOH, M., WAND , M., AND SEIDEL, H.-P. 2010. A connection be-
tween partial symmetry and inverse procedural modeling. InACM Trans-
actions on Graphics (TOG). Vol. 29. ACM, 104.

BOSCH, C., LAFFONT, P.-Y., RUSHMEIER, H., DORSEY, J.,AND DRET-
TAKIS , G. 2011. Image-guided weathering: A new approach applied to
flow phenomena.ACM Transactions on Graphics 30,3.

BOUTHORS, A., NEYRET, F., MAX , N., BRUNETON, E., AND CRASSIN,
C. 2008. Interactive multiple anisotropic scattering in clouds. InPro-
ceedings of the 2008 symposium on Interactive 3D graphics and games.
ACM, 173–182.

CARAMIA , M. AND DELL’OLMO , P. 2008.Multi-objective management
in freight logistics: Increasing capacity, service level and safety with op-
timization algorithms. Springer Science & Business Media.

CHEN, F. AND DUDHIA , J. 2001. Coupling an advanced land surface-
hydrology model with the penn state-ncar mm5 modeling system. part i:
Model implementation and sensitivity.Monthly Weather Review 129,4,
569–585.

CHEN, F., KUSAKA , H., BORNSTEIN, R., CHING, J., GRIMMOND , C.,
GROSSMAN-CLARKE , S., LORIDAN, T., MANNING , K. W., MAR-
TILLI , A., M IAO , S.,ET AL . 2011. The integrated wrf/urban modelling
system: development, evaluation, and applications to urban environmen-
tal problems.International Journal of Climatology 31,2, 273–288.

CHEN, Y., X IA , L., WONG, T.-T., TONG, X., BAO, H., GUO, B., AND

SHUM , H.-Y. 2005. Visual simulation of weathering byγ-ton tracing. In
ACM Transactions on Graphics (TOG). Vol. 24. ACM, 1127–1133.

CITY ENGINE. 2016. www.esri.com. Accessed: 2016-10.

COTTON, W. R., PIELKE SR, R., WALKO , R., LISTON, G., TREMBACK,
C., JIANG , H., MCANELLY, R., HARRINGTON, J., NICHOLLS, M.,
CARRIO, G., ET AL . 2003. Rams 2001: Current status and future di-
rections.Meteorology and Atmospheric Physics 82,1-4, 5–29.

DOBASHI, Y., KANEDA , K., YAMASHITA , H., OKITA , T., AND NISHITA ,
T. 2000. A simple, efficient method for realistic animation of clouds.
In Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co., 19–28.

DOBASHI, Y., KUSUMOTO, K., NISHITA , T., AND YAMAMOTO , T. 2008.
Feedback control of cumuliform cloud formation based on computational
fluid dynamics.ACM Transactions on Graphics (TOG) 27,3, 94.

DUNBAR, D. AND HUMPHREYS, G. 2006. A spatial data structure for
fast poisson-disk sample generation. InACM Transactions on Graphics
(TOG). Vol. 25. ACM, 503–508.

DURRAN, D. R. 1989. Improving the anelastic approximation.Journal of
the atmospheric sciences 46,11, 1453–1461.

DURRAN, D. R. 2013.Numerical methods for wave equations in geophys-
ical fluid dynamics. Vol. 32. Springer Science & Business Media.

EBERT, D. S. 2003.Texturing & modeling: a procedural approach. Morgan
Kaufmann.

FEDKIW, R., STAM , J., AND JENSEN, H. W. 2001. Visual simulation
of smoke. InProceedings of the 28th annual conference on Computer
graphics and interactive techniques. ACM, 15–22.

GARCIA-DORADO, I., G ALIAGA , D., AND V UKKUSURI, S. 2014. De-
signing large-scale interactive traffic animations for urban modeling. In
Computer Graphics Forum. Vol. 33. Wiley Online Library, 411–420.

GARG, K. AND NAYAR , S. K. 2006. Photorealistic rendering of rain
streaks.ACM Transactions on Graphics (TOG) 25,3, 996–1002.

GERO, A., PITMAN , A., NARISMA , G., JACOBSON, C., AND PIELKE , R.
2006. The impact of land cover change on storms in the sydney basin,
australia.Global and Planetary Change 54,1, 57–78.

GOTANDA , Y., KAWASE, M., AND KAKIMOTO , M. 2015. Real-time ren-
dering of physically based optical effects in theory and practice. InACM
SIGGRAPH 2015 Courses. ACM, 23.

HARRIS, M. J., BAXTER, W. V., SCHEUERMANN, T., AND LASTRA, A.
2003. Simulation of cloud dynamics on graphics hardware. InProceed-
ings of Graphics Hardware. Eurographics Association, 92–101.

HARRIS, M. J. AND LASTRA, A. 2001. Real-time cloud rendering. In
Computer Graphics Forum. Vol. 20. Wiley Online Library, 76–85.

HASTINGS, W. K. 1970. Monte carlo sampling methods using markov
chains and their applications.Biometrika 57,1, 97–109.

HOLTON, J. R. AND HAKIM , G. J. 2012. An introduction to dynamic
meteorology. Vol. 88. Academic press.

JANTZ , C. A., GOETZ, S. J., DONATO, D., AND CLAGGETT, P. 2010. De-
signing and implementing a regional urban modeling system using the
sleuth cellular urban model.Computers, Environment and Urban Sys-
tems 34,1, 1–16.

KAJIYA , J. T.AND VON HERZEN, B. P. 1984. Ray tracing volume densi-
ties. InACM SIGGRAPH Computer Graphics. Vol. 18. ACM, 165–174.

KESSLER, E. 1969.On the distribution and continuity of water substance
in atmospheric circulation. American Meteorological Society.

KNISS, J., PREMOZE, S., HANSEN, C., SHIRLEY, P.,AND MCPHERSON,
A. 2003. A model for volume lighting and modeling.Visualization and
Computer Graphics, IEEE Transactions on 9,2, 150–162.

LORENZ, E. N. 1969. Atmospheric predictability as revealed by naturally
occurring analogues.Journal of the Atmospheric sciences 26,4, 636–
646.

LUCKE, T. AND NICHOLS, P. W. 2015. The pollution removal and
stormwater reduction performance of street-side bioretention basins af-
ter ten years in operation.Science of The Total Environment 536, 784 –
792.

MACKLIN , M. AND M ÜLLER, M. 2013. Position based fluids.ACM Trans-
actions on Graphics (TOG) 32,4, 104.

MANOCHA, D. AND L IN , M. C. 2012. Interactive large-scale crowd sim-
ulation. InDigital Urban Modeling and Simulation. Springer, 221–235.

MARSHALL , J. S. AND PALMER , W. M. K. 1948. The distribution of
raindrops with size.Journal of meteorology 5,4, 165–166.

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models • 19

MESINGER, F., DIMEGO, G., KALNAY , E., MITCHELL , K., SHAFRAN,
P. C., EBISUZAKI , W., JOVIC, D., WOOLLEN, J., ROGERS, E.,
BERBERY, E. H.,ET AL . 2006. North american regional reanalysis.Bul-
letin of the American Meteorological Society 87,3, 343–360.

METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N., TELLER,
A. H., AND TELLER, E. 1953. Equation of state calculations by fast
computing machines.The journal of chemical physics 21,6, 1087–1092.

M ICHALAKES , J. AND VACHHARAJANI , M. 2008. Gpu acceleration of
numerical weather prediction.Parallel Processing Letters 18,04, 531–
548.

M IELIKAINEN , J., HUANG, B., WANG, J., HUANG, H.-L. A., AND

GOLDBERG, M. D. 2013. Compute unified device architecture (cuda)-
based parallelization of wrf kessler cloud microphysics scheme.Comput-
ers & Geosciences 52, 292–299.

M IYAZAKI , R., YOSHIDA, S., DOBASHI, Y., AND NISHITA , T. 2001. A
method for modeling clouds based on atmospheric fluid dynamics. In
Computer Graphics and Applications. IEEE, 363–372.

MONIN, A. AND OBUKHOV, A. 1954. Basic laws of turbulent mixing in
the surface layer of the atmosphere.Contrib. Geophys. Inst. Acad. Sci.
USSR 151, 163–187.

MULLANEY, J., LUCKE, T., AND TRUEMAN, S. J. 2015. A review of ben-
efits and challenges in growing street trees in paved urban environments.
Landscape and Urban Planning 134, 157–166.

MUSIALSKI , P., WONKA , P., ALIAGA , D. G., WIMMER , M., GOOL, L.,
AND PURGATHOFER, W. 2013. A survey of urban reconstruction. In
Computer graphics forum. Vol. 32. Wiley Online Library, 146–177.

NEBEKER, F. 1995.Calculating the weather: Meteorology in the 20th cen-
tury. Vol. 60. Academic Press.

NISHITA , T., DOBASHI, Y., AND NAKAMAE , E. 1996. Display of clouds
taking into account multiple anisotropic scattering and skylight. In Pro-
ceedings of the 23rd annual conference on Computer graphicsand inter-
active techniques. ACM, 379–386.

NISHITA , T., IWASAKI , H., DOBASHI, Y., AND NAKAMAE , E. 1997. A
modeling and rendering method for snow by using metaballs. InCom-
puter Graphics Forum. Vol. 16. Wiley Online Library, C357–C364.

NIYOGI , D., PYLE , P., LEI, M., ARYA , S. P., KISHTAWAL , C. M., SHEP-
HERD, M., CHEN, F., AND WOLFE, B. 2011. Urban modification of
thunderstorms: an observational storm climatology and model case study
for the indianapolis urban region*.Journal of Applied Meteorology and
Climatology 50,5, 1129–1144.

NOILHAN , J. AND PLANTON , S. 1989. A simple parameterization of
land surface processes for meteorological models.Monthly Weather Re-
view 117,3, 536–549.

OKE, T. R. 2002.Boundary layer climates. Routledge.
OVERBY, D., MELEK, Z., AND KEYSER, J. 2002. Interactive physically-

based cloud simulation. InComputer Graphics and Applications. IEEE,
469–470.

PARISH, Y. I. AND M ÜLLER, P. 2001. Procedural modeling of cities. In
Computer graphics and interactive techniques. ACM, 301–308.

PIELKE , R., STOKOWSKI, D., WANG, J.-W., VUKICEVIC , T., LEONCINI,
G., MATSUI, T., CASTRO, C. L., NIYOGI , D., KISHTAWAL , C. M.,
BIAZAR , A., ET AL . 2007. Satellite-based model parameterization of
diabatic heating.Eos, Transactions American Geophysical Union 88,8,
96–97.

PIELKE SR, R. A. 2013. Mesoscale meteorological modeling. Vol. 98.
Academic press.

PURSER, R. AND LESLIE, L. 1988. A semi-implicit, semi-lagrangian
finite-difference scheme using hligh-order spatial differencing on a non-
staggered grid.Monthly Weather Review 116,10, 2069–2080.

RANDALL , D. A. AND HUFFMAN, G. J. 1980. A stochastic model of
cumulus clumping.Atmospheric Sciences 37,9, 2068–2078.

ROLAND , S. 2000. Meteorology for scientists and engineers.Brooks/Cole.
SANTAMOURIS, M. 2014. Cooling the cities–a review of reflective and

green roof mitigation technologies to fight heat island and improve com-
fort in urban environments.Solar Energy 103, 682–703.

SCHMID , P. E.AND NIYOGI , D. 2013. Impact of city size on precipitation-
modifying potential.Geophysical Research Letters 40,19, 5263–5267.

SEWALL , J., WILKIE , D., AND L IN , M. C. 2011. Interactive hybrid sim-
ulation of large-scale traffic. InACM Transactions on Graphics (TOG).
Vol. 30. ACM, 135.

SKAMAROCK , W. C., KLEMP, J. B., DUDHIA , J., GILL , D. O., BARKER,
D. M., WANG, W., AND POWERS, J. G. 2005. A description of the
advanced research wrf version 2. Tech. rep., DTIC Document.

SOLECKI, W. D., ROSENZWEIG, C., PARSHALL , L., POPE, G., CLARK ,
M., COX, J., AND WIENCKE, M. 2005. Mitigation of the heat island
effect in urban new jersey.Global Environmental Change Part B: Envi-
ronmental Hazards 6,1, 39–49.

SOONG, S.-T. AND OGURA, Y. 1973. A comparison between axisym-
metric and slab-symmetric cumulus cloud models.Journal of the Atmo-
spheric Sciences 30,5, 879–893.

STEINHOFF, J.AND UNDERHILL , D. 1994. Modification of the euler equa-
tions for vorticity confinement: application to the computation of interact-
ing vortex rings.Physics of Fluids 6,8, 2738–2744.

STRAKA , J., WILHELMSON, R. B., WICKER, L. J., ANDERSON, J. R.,
AND DROEGEMEIER, K. K. 1993. Numerical solutions of a non-linear
density current: A benchmark solution and comparisons.International
Journal for Numerical Methods in Fluids 17,1, 1–22.

STULL , R. B. 1988. An introduction to boundary layer meteorology.
Vol. 13. Springer Science & Business Media.

TALTON , J. O., LOU, Y., LESSER, S., DUKE, J., MĚCH, R., AND

KOLTUN, V. 2011. Metropolis procedural modeling.ACM Transactions
on Graphics (TOG) 30,2, 11.

TETENS, O. 1930. Uber einige meteorologische begriffe.Z. Geophys. 6,
297–309.

US-CENSUS. 2016. www.census.gov. Accessed: 2016-10.
VANEGAS, C. A., ALIAGA , D. G., WONKA , P., MÜLLER, P., WADDELL ,

P., AND WATSON, B. 2010. Modelling the appearance and behaviour
of urban spaces. InComputer Graphics Forum. Vol. 29. Wiley Online
Library, 25–42.

VANEGAS, C. A., GARCIA-DORADO, I., ALIAGA , D. G., BENES, B.,
AND WADDELL , P. 2012. Inverse design of urban procedural models.
ACM Transactions on Graphics (TOG) 31,6, 168.

WICKER, L. J. AND SKAMAROCK , W. C. 2002. Time-splitting methods
for elastic models using forward time schemes.Monthly Weather Re-
view 130,8, 2088–2097.

WONKA , P., WIMMER , M., SILLION , F., AND RIBARSKY, W. 2003. In-
stant architecture. Vol. 22. ACM.

WRENNINGE1, M. AND BIN ZAFAR, N. 2011. Production volume render-
ing. In ACM SIGGRAPH 2011 Courses. ACM, 71.

WRP-URL. www.whiteroofproject.org. The White Roof Project. Ac-
cessed: 2016-10.

YUAN , C., LIANG , X., HAO, S., QI , Y., AND ZHAO, Q. 2014. Modelling
cumulus cloud shape from a single image. InComputer Graphics Forum.
Vol. 33. Wiley Online Library, 288–297.

ZHANG, C. L., CHEN, F., MIAO , S. G., LI , Q. C., XIA , X. A., AND

XUAN , C. Y. 2009. Impacts of urban expansion and future green plant-
ing on summer precipitation in the beijing metropolitan area.Journal of
Geophysical Research: Atmospheres (1984–2012) 114,D2.

Received Xxxxx XXXX; accepted Xxxx XXXX

ACM Transactions on Graphics, Vol. XX, No. X, Article xx, Publication date:Xxxxx XXXX.

