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Figure 1: A geometric graph grammar was learnt from the road network of the city of Barcelona (left) and similar structures were replaced by
a single node (middle). Detected similar subgraphs were encoded as terminal symbols of the grammar and replaced by a manually selected
subgraph (right).

Abstract

We introduce geometric graph grammars, demonstrate how they
can generate geometric structures, and introduce an algorithm for
their automatic learning (inverse procedural modeling). Our ap-
proach extends the concept of graph grammars to allow for cod-
ing not only topological data, but also geometry. Forward model-
ing generates geometric graphs and considers various strategies for
node connectivity. Inverse procedural modeling performs learning
of geometric graphs, by discovering repeated structures and their
connectivity. These structures are encoded into geometric graph
grammar rewriting rules. We demonstrate usability of our approach
on an example using urban networks. Graph learning is reasonably
fast; in our implementation, learning of a road network with 72k
vertices and 100k edges is performed in less than one minute.

Keywords: Graph Grammars,Inverse Procedural Modeling, Shape
Representation, Grammar Learning, Computer Graphics

Concepts: •Computing methodologies→ Shape analysis; Mesh
models; Parametric curve and surface models;

1 Introduction

Capturing, modeling, and representing real-world structures are im-
portant outstanding problems in computer graphics. One popular
representation is procedural modeling that expresses structures in a
compact manner. However, the definition of procedural models is
complex and precludes their wider use in real-world applications.
Graphs are common in applications that require information about
topological connectivity and graph grammars have been used suc-
cessfully for a long time. Surprisingly, graphs that include geomet-
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ric information are not especially common in grammar representa-
tions.

We extend graph grammars so they consider geometric information,
thus merging the expressive power of procedural models with graph
algorithms. This extension is non-trivial. Since a graph grammar
can replace a single node with a sub-graph, an algorithm is needed
to define the connectivity of the inserted sub-graph. An additional
problem is the creation of a procedural representation of an exist-
ing graph - a task called inverse procedural modeling. Similar to
dictionary-based encoding, large and/or frequently repeated blocks
are encoded as terminal symbols of a grammar. Higher-level struc-
tural blocks and their connections are encoded as non-terminal sym-
bols and rules.

We introduce context-free non-parametric geometric graph gram-
mars that extend graph grammars such that they allow for cod-
ing not only topological data, but also geometry. Inspired by L-
systems [Prusinkiewicz 1986], we have generalized the concept of
turtle interpretation of the string of modules. L-systems, however,
are linear, while our approach allows for graph rewriting. We also
present a new algorithm for learning geometric graphs.

We demonstrate our approach on practical examples of urban road
network learning and synthesis. We show how frequently repeated
structures can be detected and a new graph can be synthesized or
an existing graph can be modified by reusing the learnt geometric
graph grammar and its rules. Our work claims two main contribu-
tions: 1) the definition of a geometric graph grammar that allows
for encoding topological and geometrical information and, 2) an al-
gorithm for learning geometric graph grammars (inverse procedural
modeling).

2 Previous work

Graph grammars (graph rewriting or graph transformation) study
how to generate one graph from another graph. In the context of
computer graphics, graph grammars have had limited use in pro-
cedural modeling [Siromoney and Siromoney 1987] and our work
is based on the Node Label Controlled Graph Grammars (NLC-
GGs) that were introduced in [Janssens and Rozenberg 1980] and
extended in [Engelfriet and Rozenberg 1991].

Graph inference, or graph learning, techniques are used to induce
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grammars from input graphs [Nevill-Manning et al. 1994; de la
Higuera 2010]. Graph grammar induction is a method by which
a set of graph grammar production rules are obtained by analyz-
ing a given graph [Jiang et al. 2012]. A key component of graph
learning is the study of algorithms that find frequent subgraphs con-
tained in a graph [Cook and Holder 2006]. One of the fundamental
inexact frequent graph learning algorithms is SUBDUE by [Cook
and Holder 1994], which uses the minimal description length prin-
ciple for substructure discovery inside graphs. Recently, Block-
eel and Nijssen [Blockeel and Nijssen 2008] extended SUBDUE
to develop algorithms on NLC-GG induction. Our method is in-
spired by Blockeel and Nijssen [Blockeel and Nijssen 2008], but it
is different in two main ways. First, we are working with geomet-
ric and topologic graphs whereas [Blockeel and Nijssen 2008] deal
with purely topological graphs. Second, they assume that the input
graph is already labeled, but in our work the grammar is not label
controlled. Kuramochi and Karypis [Kuramochi and Karypis 2007]
describe gFSG, an algorithm for finding frequent geometric graphs
invariant to rotation, translation or scaling. Our approach also finds
subgraphs that are invariant under such transformations, but we use
vertex expansion to robustly find all subgraphs in large inputs.

Early work on inverse procedural modeling addressed automatic
detection of repetitive urban structures in [Aliaga et al. 2007]. The
work of [Šťava et al. 2010] detects an L-system for an input vec-
tor image. This work, however, detects linear structures and does
not provide a procedural model for complex topologies. Bokeloh
et al. [Bokeloh et al. 2010] described a connection between trian-
gles and an underlying procedural model for 3D meshes. There are
various methods that use an existing procedural model and attempt
to find an optimal set of parameters. Talton et al. [Talton et al.
2011] use Metropolis optimization to fit a 3D procedural model
into predefined constraints. Vanegas et al. [Vanegas et al. 2012]
used Metropolis-Hasting optimization to learn a set of input param-
eters for a procedural model that generates a city model with given
properties. Talton et al. [Talton et al. 2012] induced a probabilistic
grammar over a set of design patterns using Bayesian networks and
Stava et al. showed how to find a procedural representation for bi-
ological trees [Šťava et al. 2014]. Most of these approaches depend
upon an existing procedural model and attempt to find parameters
for a given output that would generate this model.

An important field that deals with the topic of encoding geometry
into grammars is pattern recognition. Han et al. [Han and Zhu 2005]
reconstruct a scene of mainly rectangular shapes using attributed
graph grammars. Lin et al. [Lin et al. 2009] use attributed stochas-
tic graph grammars for generation and recognition of categories.
Schmittwilken et al. [Schmittwilken et al. 2009] demonstrate how
to construct 3D buildings using attributed graph grammars. We re-
fer the reader to the book [Zhu and Mumford 2007] for an overview
of recent algorithms in this field.

3 Geometric Graph Grammars

We introduce geometric graph grammars (GGGs) by extending
node label controlled graph grammars [Engelfriet and Rozenberg
1991; Blockeel and Brijder 2009] and by generalizing the concept
of turtle interpretation of L-systems [Prusinkiewicz 1986].

3.1 Geometric Graph Definition

A graph is an ordered pair G = (V,E) of a non empty set of
vertices V and a set of edges E = {e = {a, b}|a, b ∈ V, a 6= b},
such that each edge e ∈ E connects two vertices from V . A graph is
said to be simple if it is unweighted, undirected, without loops, and
without parallel edges. A graph is a geometric graph if every v ∈ V

has a spatial position assigned so a vertex v has two coordinates
c(v) = (x,y) in 2D.
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Figure 2: Induced
subgraph S of G.

We say two graphs G and H are ge-
ometrically isomorphic when there ex-
ists a bijection f : VG → VH , such
that {a, b} ∈ EG iff {f(a), f(b)} ∈
EH and there exists a transformation
T : R2 → R2, such that T (c(a)) =
c(f(a))∀a ∈ VG, i.e., coordinates of
corresponding vertices do not change
after transformation. Although T could
be any transformation, we use affine
transformations.

Given a set of graphs X = {G1, G2, . . . , Gn}, we call call X an
isogroup if G1, G2, . . . , Gn are geometrically isomorphic to each
other.

A graph S = (VS , ES) is a subgraph ofG if VS ⊆ V andES ⊆ E.
A subgraph S ⊆ G is called induced iff ES consists of all edges
in EG that have both endpoints in VS . Figure 2 shows a graph G
and an induced subgraph S; S contains vertices a, b, c, e from G
and must include all edges that connect these vertices in G and no
additional edges.

3.2 Geometric Graph Grammar Definition

We define a context-free deterministic non-parametric geometric
graph grammar (GGG) that replaces a single node with a graph.
A GGG production (or rewriting) rule has the form (see Figure 3)

q → S/B, (1)

where q is the replaced node, S is the subgraph that replaces q in
the main graph G, and B is the geometric graph embedding. The
geometric embedding has the form

B = {(v0, T0, {p00 , p01 , . . .}) (2)
(v1, T1, {p10 , p11 , . . .}), . . .
(vn, Tn, {pn0 , pn1 , . . .})},

where i = 1, . . . , n is the number of vertices, vi ∈ S is a vertex, Ti

is a transformation of the local coordinate system of vi, and pij =
[xij , yij ] specifies coordinates of the embedding vertices relative
to vi i.e., vertices that are supposed to be present in the other graph
and that will connect to vi.

Figure 3: A GGG production rule that replaces a node q with a
graph and its embedding. The gray edges and circles denote the ex-
pected vertices in the graph where the subgraph will be connected,
the red arrows symbolize one of the axes of the transformed local
coordinate system used for next rule placement.

Linear string rewriting systems, such as L-systems, encode the ge-
ometry explicitly in the symbol parameters or implicitly using a
transformation table (e.g., ” + ” means ”turn right”). The geom-
etry is produced after the list of symbols has been generated from
the production rules locally by the turtle [Prusinkiewicz 1986]. In
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Figure 4: The geometric graph analyzer takes the input graph and finds the list of the similar subgraphs called isogroups. Isogroups are
encoded as a set of rules by the graph grammar encoder.

GGG the geometry changes affect the graph globally so it would be
difficult to use post processing. Instead, we generate the topology
and the geometry in a single pass. In GGG each vertex stores the
associated transformation Ti that defines its local coordinate sys-
tem and the initial transformation must also be provided explicitly
in the axiom ω, i.e., in the starting symbol of the rewriting.

A GGG production rule is shown in an example in Figure 3. It
replaces a node q with a graph

S = ({a, b, c}, {(a, b), (b, c), (c, a)}),

with embedding

{(a, Rotate 90o,{[−1, 0]} ),

(b, Scale 1/2,{[0, 1]} ),

(c, I,{[0,−1], [−1, 0]} )},

where I is the identity matrix. The empty nodes originating in a, b,
and c are the embedding connections to the vertices that are antic-
ipated in the main graph G, which is the graph on the left side of
the production, and the arrows represent the coordinate system after
transformation Ti. More specifically, node a has an embedding of
a vertex at location [−1, 0] as indicated by the gray node. The red
arrow pointing up from the node a indicates how a new rule in a
new derivation, if applied, will be oriented with respect to node a.
Note that node c has two embedding edges.

Rule Application occurs in four steps. 1) The rule is transformed
into the local coordinate system of qi ∈ G according to the transfor-
mation Ti. 2) Vertex qi ∈ G is erased, together with its connecting
edges. 3) S is placed relative to qi insideG. 4) The embeddingB is
connected toG; i.e., the vertices of the instance of Si are connected
to those vertices in G that are at the location pi = [xi, yi] indicated
by the embedding Bi.

3.3 Relaxed Embedding

The embedding imposes a strong restriction on rewriting. If a ver-
tex cannot embed its entire subgraph, it cannot be replaced. Design-
ing such rewriting is difficult and impractical, although possible as
shown later in Section 7. In our work, instead of requiring strict
connectivity where each node of the subgraph needs to embed all
vertices, rewriting is always allowed even with partial connectiv-
ity between the newly inserted nodes and the surrounding existing
nodes.

Figure 5 shows such relaxed embedding. Node d in Figure 5 i)
is to be replaced by the subgraph from Figure 5 ii). The result-
ing graph depends on the local coordinate system of d, three ex-
amples of these systems are illustrated by the red arrows. If the

Figure 5: Relaxed embedding. The node d from the graph in i) is
replaced by the subgraph from the production ii) If the structure is
rotated, the embedding might not connect to anything, as in iii) or
either to vertex b in iv) or to vertices a, c in v) .

identity transformation is applied, the embedding does not attach to
any node because the distance to other nodes is larger than a sys-
tem imposed parameter. The production rule is still executed (Fig-
ure 5 iii)). However, if the rule is rotated by ±45o, the embedding
connects to vertices b or a, c respectively. Note that in Figure 5 iv),
only one vertex b is embedded.

4 GGG Learning Overview

Figure 4 presents a pipeline summary of the GGG learning. Given
a 2D geometric graph, our method analyzes and encodes it into a
set of GGG rewriting rules.

The Graph Analyzer finds a set of isogroups (groups of isomor-
phic graphs) in the input. Each isogroup represents a particular
subgraph of the input graph that repeats frequently. The isogroups
are built bottom-up. The algorithm starts with a single edge and
forms a single isogroup. The Isogroup Detection iteratively ex-
pands each isogroup by one node until a maximum graph size is
reached. The Isogroup Selection block of the graph analyzer takes
the set of isogroups and selects the largest isogroup that satisfies ad-
ditional constraints, such as being overlap-free. The data analyzer
then repeats the process until no further isogroups can be detected.
The result of the graph analyzer is a set of the most frequently re-
peated subgraphs. While our automatic search starts with a single
edge, the user can also initiate the search with a user-defined graph.
This user-assisted learning enables searching for user-defined sub-
graphs.
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Figure 6: a) Candidate vertices for expansion are counted in a discrete grid shown in b). The weighted contribution to the newly added area
of the graph is shown in c), and the actual value of the area multiplied by the frequency of repetition is shown in d). The expanded graph by
the selected vertex is shown in e).

The Graph Grammar Encoder creates rewriting rules that replace
each occurrence of an isogroup’s subgraph by a single graph vertex.
The subgraph is erased and the new vertex is embedded by connect-
ing it with its neighbors. At the same time a rewriting rule is gen-
erated. The new graph is then encoded again generating a higher
hierarchy level.

5 Graph Analyzer

Inspired by data compression, we seek to find a grammar that ef-
ficiently codifies large, or frequently repeated structures of a graph
and the graph analyzer finds the most frequently repeating patterns.

5.1 Isogroup Detection

Isogroup detection attempts to find all isogroups of the most fre-
quently repeating subgraphs by iteratively expanding previously
found isogroups. The algorithm is initialized with a seed graph F
that is in the simplest case a single edge. Alternatively, in the case
of the user-assisted learning, the F is given by the user by select-
ing a part of the graph. The seed graph is iteratively expanded by
adding a vertex. The vertex selection makes sure that the expanded
graph is frequently repeated in the input graph. As the graph be-
comes larger, the likelihood of multiple occurrences decreases.

An example from Figure 7 that shows the analysis of the graph from
the upper right-hand corner. The isogroup detection algorithm pro-
ceeds in a loop that tests the neighboring vertices of each isogroup
in each iteration. The algorithm starts with a single edge and forms
a single isogroup that contains all edges from the graph (first row
of Order 2 in Figure 7). Both vertices are expanded resulting in
graphs of Order 3 (we only show a sample of the candidates). The
resulting graphs have three vertices and their number of repetitions
is given by the multiplicity of the added vertex. The most frequent
groups are then expanded further to Order 4 by adding a new vertex.
The algorithm continues until no more structures can be detected.
In each iteration the algorithm provides all subgraphs of the given
order and their repetitions. Note that the same graph can be found
as a result of expansion from different directions. These graphs are
merged as indicated in the circular inset.

The vertex expansion takes an existing graph and extends it by one
vertex such that the new graph is frequently repeated in the input.
Vertex expansion proceeds by iteratively adding a new vertex q. As-
suming that we have a frequently repeated graph F , vertices from
all occurrences of F in the input are analyzed and the new vertex q
is selected by using two heuristics: (1) the new graph is the most
frequently repeated in the input, and (2) the new vertex increases
the area of the new graph (the area of the convex hull). The first
heuristic finds frequently repeated graphs, and the second one pre-
vents the algorithm from finding long edges and generates results

Order 2

Order 3

Order 4

Order 5

Order 6

Analyzed graph

Merged
subgraphs

expansion

Figure 7: Generation of the frequently repeated large subgraphs.
The algorithm expands edges from the level Order 2 to all possi-
ble cases resulting in Order 3, then detects isomorphic graphs and
prunes them. The algorithm continues by expanding Order 3 to 4,
etc.

that prefer bifurcations.

For each vertex we need to test many possible expansions and we
simplify this step by using two discrete grids in polar coordinates.
One grid is a counter of candidate vertices f(α, d) denoted by
∆a(α, d) (Figure 6 b)), and the other counts the added area (Fig-
ure 6 c)). The expanded graph is transformed into a canonical nor-
malized form with the expanded vertex in the origin of the coordi-
nate system (labeled v in Figure 6 a)). Normalization is done such
that all expanded graphs are aligned to each other (same scale and
rotation). We then traverse all occurrences of the graph and test all
expansion vertices by adding them to their corresponding cells in
both grids. After all vertices have been visited, the algorithm cal-
culates a score for each cell by multiplying the frequency and the
area (Figure 6 d)). The cell with the highest value is selected. The
new vertex q is positioned on the center of the cell and a new edge
connecting the expanded vertex q to F is added (Figure 6 e)).

The discretization of the polar coordinate provides quantization of
the vertex neighborhood, helps to avoid difficulties with numerical
precision, and increases the speed of evaluation. The resolution of
the grid affects the number of detected subgraphs and the level of
their similarity. As shown in Figure 8, increasing the grid cell size
(i.e., decreasing the grid resolution) detects fewer subgraphs but in-
creases their similarity. The actual resolution depends on the input
graph and we use discretization into 10 × 12 cells in all examples
in this paper except Figure 6, where we demonstrate the smooth
transition between different cells. We discuss the effect of the grid
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a) b) c)

Figure 8: The grid resolution (Figure 6) affects the precision and
the count of detected subgraphs. By increasing the resolution we
detect fewer, but more similar subgraphs. For this example, the
resolution a) 6× 8 detects 15 subgraphs, b) 10× 12 finds 13, and
c) 20× 24 detects 9 subgraphs.

resolution further in Section 7 in Figure 11.

Accelerating Isogroup Search Since the number of generated
isogroups by vertex expansion can be large, we exploit two obser-
vations to accelerate performance. First, not all groups are impor-
tant for further analysis. Certain expansions produce graphs with
a low number of repetitions and not expanding them allows for a
speedup of the search. Second, the same isogroup can be detected
by expanding different subgraphs.

Figure 9: The percentage of
removed isogroups as a func-
tion of the iteration.

Frequency-based Removal. The
isogroups are sorted by the num-
ber of repetitions with a certain
percentage of the last isogroups
discarded. The cut value is
smaller at the beginning of the
analysis when the isogroups are
not well-formed (Figure 9). The
actual threshold is close to 90%
but we use conservative 80% be-
cause there was no significant per-

formance hit. We provide further results and comparisons in Sec-
tion 7.

Isomorphism-based Removal. Since we work with induced sub-
graphs, it is possible to detect the same isogroup from different di-
rections of the search. Figure 7 shows an example of detection of
the isogroup of Order 5 in column B from different patterns of Or-
der 4, as shown in the circular inset. This is why we merge isomor-
phic graphs after each vertex expansion. However, testing graph
isomorphism is slow due to the need to check the topological and
the geometric isomorphism (see Section 3.2), we perform this step
after frequency-based isogroup removal.

The result of this step is a frequency table that stores the isogroups,
their repetition count, their embedding, and the actual locations in
the input graph. The detected geometric subgraphs can be overlap-
ping.

5.2 Isogroup Selection

The size of the isogroup (i.e., the order of the graph) is controlled
either explicitly by the number of performed iterations, or implicitly
by stopping the algorithm, when no further expansion is possible.
In most examples in this paper the complete analysis of the input
was applied.

The largest from the most-frequently-repeated isogroups is se-
lected. We can impose additional geometric constraints such as
isogroups with near-to-one aspect ratio or graphs with large num-
ber of leaves as shown later in Section 7 in Figure 18. All sub-
graphs ofG that belong to that isogroup are found, and their largest
non-overlapping subset is detected. To do this, we create a dual
topological graph that stores each graph as a node and codes two
non-overlapping graphs by an edge that connects them. We then

find the largest clique of the dual graph, which gives us the biggest
non-overlapping subset of graphs within the isogroup.

The graph analyzer proceeds until there is no other isogroup avail-
able. The output of this step is a list of isogroups that are sorted by
the order of the most frequently present.

6 Graph Grammar Encoder

The graph grammar encoder converts a set of isogroups into geo-
metric graph grammar rules. The input of the encoder (Figure 4)
is an ordered list of selected isogroups. The encoder’s output is a
group of rules with an embedding.

Right-hand Side Rule Generation The isogroup contains the sub-
graph S, its occurrences in the input graph, and its embedding Bi

Eqn.(2). The subgraph S is unique, but its embedding and transfor-
mations can vary for each instance of the rule. This information is
simply copied to the rules.

Left-hand Side Generation The left-hand side of the rule is a new
node that replaces the graph. As we process the geometric graphs
we need to determine the location of the newly created node. The
straightforward solution is to place the node in the center of the
replaced subgraph as shown in Figure 10 b). This causes star-like
artifacts that change the graph appearance and cause decoding dif-
ficulties in later iterations.

a) b) c) d)

Figure 10: The highlighted subgraph in a) is replaced by a single
node. If the new node is located in the center of the subgraph b) it
causes distortion of the original graph. A better solution is to locate
the new node at the position of an existing vertex from the original
subgraph, but the connecting edges can be visually distracting c).
This can be alleviated by not rendering some edges d).

The location of the new node depends on the application area, for
example if we encode an urban graph, or a 2D representation of
art, and is determined by considering properties of the input. In the
case of road networks, we place the new node close to the streets
with higher importance (arterials, highways), (Figure 10 c)) which
minimizes the angles between the original graph and the embedding
edges. The new node embedding stores the connection to all nodes
from the original subgraph (pij in Eqn.(2)), so we do not need to
keep all the edges when substituting a subgraph with a single node
as shown in Figure 10 d).

Hierarchical Encoding Once subgraphs are replaced by the nodes,
learning can continue with higher-level rule generation.

7 Results

Our system was implemented in C++, used BGL Boost for graph
representation, Qt for direct rendering, and Open Street Map files as
input. Our implementation was optimized for multi-core computing
and all tests were run on eight cores of an Intel i7 CPU clocked at
3.2 GHz equipped with 16 GB of memory.

Forward GGG application An example in Figure 12 shows the
production of a recursive Sirepińsky triangle using GGG. The ax-
iom is a triangle with nodes labeled P . Each vertex in the axiom
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a) b) c)

Figure 11: Effect of the grid resolution for vertex expansion on the decoded graph. The original model a) was encoded into three levels
of hierarchy using grid resolution 10 × 12 cells and decoded back b). If higher resolution of 20 × 24 is used, the result provides better
resemblance to the original c).

has a local coordinate system oriented in the direction of the edge
that connects the node with its neighbor in an anticlockwise direc-
tion (i.e., the red arrow in Figure 12). The first rule replaces vertex
P with itself and the additional structure forming the rest of each
triangle. Each transformation in the non-terminal symbol scales the
structure by half and rotates by 0o, 120o, and 240o as indicated by
the arrows in the rules. The second rule replaces each vertex H
with a more complex structure. All rules are applied in parallel.

Figure 12: Geometric Graph Grammars can produce recursive
structures.

Inverse GGG Modeling The graph grammar generation in Fig-
ure 13 shows several iterations of a complete encoding of Paris into
a single node. The fully automatic analysis took 12 minutes and
it was generated in 37 iterations (i.e., the rules have 37 levels of
hierarchy). The total number of rules is 3, 098.

Vertex Expansion and Grid Resolution The effect of grid resolu-
tion on the vertex expansion algorithm is shown in Figure 11. Part
of the map of Paris in Figure 11 a) was encoded into three levels
of hierarchy and then decoded back. The reconstructed graph has
significant visual artifacts for a vertex expansion grid of resolution
10 × 12 as seen in Figure 11 b). The errors are diminished if a
higher resolution of 20× 24 cells is used as in Figure 11 c).

Noise Sensitivity Figure 14 shows the result of a detailed analy-
sis of the robustness of the algorithm against noise. The input was
a regular mesh and the parameters of the analysis were set to de-
tect the smallest rectangular graphs of size four. As shown in the
first column, the algorithm found 100% of them. We have injected
noise into the graph by jittering. The percentage of jittering in each
column refers to the size of the standard deviation of the Gaussian
random number generator that moves vertices from their location.
As seen in Figure 14, even for 20% noise, the algorithm still was
capable of finding all subgraphs.

Isogroup Removal We evaluated the speedup and precision of the
isogroup removal strategy described in Section 5.1. A test was con-
ducted with results shown in Table 1 where parts of Mexico City,

0) 3)

6) 32)

Figure 13: Successive encoding of a part of Paris into a single ter-
minal node (axiom). The original graph (top left) with color-coded
isogroups is compressed and displayed after 3, 6 and 32 iterations.

Barcelona, and Indianapolis were used that contain both highly reg-
ular and irregular patterns. We performed the complete analysis
where all vertices were expanded in each iteration. This was used
as the ground truth for these particular cases. We then performed
learning in which the number of expanded isogroups was reduced
in each iteration.

City Time [s] Spdup Isogroup # %Full Cut Full Cut
Indy 2 0.3 8 775 54 7

Barcelona 131 1.5 89 5439 338 6
Mexico 2.9k 5.0 584 25k 242 1

Table 1: Comparison of the geometric graph learning of the full
expansion of all isogroups and with the cut of the least important
isogroups.

The number of the detected isogroups and the speedup are shown in
Table 1. The speedup is significant for large datasets. For instance,
the total time of analysis for a selected part of Mexico City was
reduced from 48 minutes to 5 seconds. The total number of detected
isogroups is around 1% of the possible cases. As Figure 15 shows,
the reduced learning finds the most frequently repeated isogroups.

The graph in Figure 16 shows the comparison of the frequencies
of the detected isogroups in the city of Barcelona for graphs of Or-
der 6. The frequencies of the subgraphs with highest repetitions are
similar for the full and the simplified search and the actual differ-
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Figure 14: Noise sensitivity analysis. A regular grid was analyzed and all squares were detected. The same analysis was performed after the
locations of graph vertices were randomized by increasing amounts of noise.

a)

b)

Figure 15: The full analysis a) provides slightly different results
than the analysis in which non-important isogroups are not ex-
panded, b) the difference is in the subgraph ordering.

ence between both graphs is less than 1%. Although a downside to
the speedup is that the optimized pruning detects fewer isogroups
(314 vs. 711 in this case), the missed isogroups have less than 10
repetitions and thus do not contribute significantly during encoding.
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Figure 16: Comparison of the frequency of occurrences of
isogroups detected with the ground truth learning and the optimized
version.

Terminal Replacement Figure 1 shows an example of the gram-
mar terminal node replacement. The highly regular structure of
Barcelona was analyzed and frequently repeating regular patterns
were automatically detected. These structures were encoded as
a terminal symbol of the grammar. Then a round structure (i.e.,
a plaza) was manually selected and used to replace the most fre-
quently repeated structures.

Complex Example An example in Figure 18 shows stitching of
two different cities. In Figure 18 a) both cities were converted to
grammars with different user criteria: frequently repeated graphs
with near-to-one aspect ratio were learned from Manhattan as well
as graphs with a large number of leaves (”spiders”), and highly ir-
regular graphs were detected in Paris. The large repetition reflects
the overall style of each city. The rules were manually placed in the

Figure 17: User-guided analysis. The user selected the pattern in
the lower right-hand corner and the system automatically found all
its occurrences.

empty area in Figure 18 b) and the procedural growth automatically
connected both examples in Figure 18 c). The overall editing time
was under two minutes and most of the time was spent on selecting
the suitable part for replacement. The grammar was generated in
under one second.

User-guided Analysis starts vertex expansion from a user-defined
isogroup as opposed to automatic learning that starts from a simple
edge. The user-guided analysis (see the accompanying video) al-
lows user intuition to help analyze the graph; the user can see over-
all patterns that may be visually important and difficult to capture
by automated analysis. It also significantly speeds up the search.
When the full analysis is performed, the most time demanding part
is the expanding of small graphs with 2-5 vertices. However, if the
user selects a larger graph, its expansions are much faster because
of the low number of repetitions.

Figure 17 shows large patterns found in a significant portion of
Mexico City. This is the largest graph used in the paper (110k
edges) and the time for the user-guided analysis was approximately
one minute for the pattern in the inset of Figure 17.

Performance evaluation of the GGG learning is provided in Ta-
ble 2 which shows the number of edges and vertices for each graph,
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Figure 18: The cities of Manhattan and Paris were analyzed, encoded, and automatically stitched together. a) Frequently repeated and user-
selected subgraphs were found and encoded. Rules from Manhattan (red), from Paris (blue), and the red arrows show the scaling of each
instance. The left column shows subgraphs with preferred aspect ratio, the center column shows subgraphs with a larger number of leaves,
and the right column shows user guided selection. b) Part of Paris was replaced by Manhattan by adding the rules orientation and location.
c) The applied rules stitched both cities together. The bottom row of 3D renderings represent the scene from the camera view indicated by the
blue arrow. The street hierarchy and continuity is preserved as well as the overall style.

the encoding time, the number of generated rules, and the original
and encoded size. The size of the input graph is given by the num-
ber of vertices and edges. The size of the encoded graph is given
by the number of rules, the size and frequency of repetitions of the
detected isogroups, and by the size of the axiom.

Fig |V | |E| time
[s]

Rules Orig.
[MB]

Encod.
[MB]

1 4.8k 7.1k 22 27 0.10 0.07
11 b) 6.7k 1.0k 20 2696 0.14 0.17
11 c) 6.7k 1.0k 20 2696 0.14 0.17

17 72k 110k 67 1411 1.52 1.47
13 6.7k 10.2k 704 3098 0.17 1.26

Table 2: Performance and comparison of the examples in the paper.
Number of vertices of the input graph |V |, number of edges |E|,
encoding time in seconds, number of generated rules, original size
and encoded size in [MB]. The encoded size includes the rules and
the axiom.

8 Conclusions and Future Work

We have introduced geometric graph grammars and provided algo-
rithms to construct them by using vertex expansion of groups of
isomorphic graphs. Since the actual number of possible expansions
is exponential, we use heuristics that improve the speed of analy-
sis without missing the most frequently repeated subgraphs. After
the subgraphs are detected, they are coded into a geometric graph
grammar.

Our system is not without some limitations. First it limits graph
grammars to those expanding a single node into a new graph. It
would be interesting to explore replacing an arbitrary graph with a
different graph. The concept of geometric embedding should allow
for such operations; however, the task of learning similar graphs
would be more challenging. A second limitation is the quanti-
zation of the vertex expansion that makes the graph analysis fast,
but introduces error in the coding of the vertices that then amplify

throughout successive encoding. A third limitation is that new node
placement and its connection to the rest of the graph change the ap-
pearance of the new graph. Lastly, our system uses edge embed-
ding, where each edge is represented as a line segment. This causes
problems when distant parts are connected. Using different edges
could improve the visual quality of the result.

There are many possible avenues for future work. We could speed
up the isogroup search by implementing different algorithm such
as [Cheng et al. 2010]. One of the most significant extensions
would be the parametrization of the production rules. Another ex-
tension would be the introduction of context sensitivity and en-
vironmental responses similar to Open L-systems. In this paper,
we have only showed one application area: encoding a road net-
work. An obvious extension is to use geometric graph grammars
in 3D. GGGs could be used to explore 3D meshes resulting from
other modeling approaches. As triangular meshes are common data
structures in computer graphics, a geometric graph grammar analy-
sis could allow mesh encoding and semantic analysis. Graphs are a
common dual representation for various semantic analyses in com-
puter vision and the presented approach could be applied to scene
analysis.

Figure 19: Two visually simi-
lar graphs are detected as dif-
ferent.

Another avenue for future work
comes from the limitation of our
approach. Our framework con-
siders the exact topology of the
graph so the two graphs from the
Figure 19 are considered different
even though their shape is exactly

the same. If the vertex in the middle is not part of the embedding
(i.e., it does not have connection to the rest of the graph), then both
graphs could be considered ”visually isomorphic” and this, in ef-
fect, would improve analysis.
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