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Figure 1: Examples of 3D Building Models. a-d) Our method automatically creates lightweight procedural buildings from
satellite-based point clouds despite noise, occlusions, and incomplete coverage.

ABSTRACT
Automatic creation of lightweight 3D building models from satellite
image data enables large and widespread 3D interactive urban
rendering. Towards this goal, we present an inverse procedural
modeling method to automatically create building envelopes from
satellite imagery. Our key observation is that buildings exhibit
regular properties. Hence, we can overcome the low-resolution,
noisy, and partial building data obtained from satellite by using
a two stage inverse procedural modeling technique. Our method
takes in point cloud data obtained from multi-view satellite stereo
processing and produces a crisp and regularized building envelope
suitable for fast rendering and optional projective texture mapping.
Further, our results show highly complete building models with
quality superior to that of other compared-to approaches.
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1 INTRODUCTION
Automatically building crisp lightweight 3D models from point-
cloud data at a large scale is beneficial for many interactive appli-
cations including training and simulation and entertainment. The
major inputs include 1) ground/aerial images or LIDAR data, and 2)
satellite images. While satellite data is available in very large quanti-
ties, potentially worldwide, such point clouds suffer from relatively
low-resolution, noise, non-standard camera/projection models, par-
tial coverage, and occlusions. These aspects hinder creating crisp
detailed building models.

https://doi.org/10.1145/3384382.3384526
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Figure 2: Pipeline. The pipeline of our geometry synthesis method.

One key observation is that (man-made) buildings exhibit “regu-
lar” properties such as a division into one or more floors, parallel
walls, walls meeting at one of a set of predetermined angles (e.g.,
90 or 135 degrees), inter and intra-floor alignments, symmetrical ar-
rangements, straight or smoothly curved walls, and other features.
We exploit this observation via an inverse procedural modeling ap-
proach to determine the procedural parameter values for a building
envelope. This methodology significantly improves the resilience to
partial/noisy data and produces crisper and more accurate models
as compared to alternative satellite-based methods. Some results
are shown in Figure 1.

Our automatic approach has two main stages (Figure 2). During
a first stage, 2.5D point-clouds obtained from multi-view stereo
satellite reconstruction are used to create a tree of layers and a
set of line segments for each layer. During a second stage, a set of
regularity constraints are pursued to arrive at parameter values
producing a watertight and crisp procedural building model.

Our results yield improvements over other methods applied to
the same data. Moreover, our building reconstruction produces
compact and crisp models with an accuracy averaging 92% in our
tested urban regions.

Our main contributions include:

• an approach to automatically create a tree of layers from
satellite-based 2.5D point cloud data;

• a method to progressively enforce a set of inter- and intra-
layer architectural constraints to convert a point cloud into
a closed procedural building envelope; and

• a technique to find the best building model from different
versions of models ranging from detailed ones to crisp ones.

2 RELATEDWORK
In recent years, many researchers have been focused on building
reconstruction from point clouds. Musialski et al. [2013] and Wang
et al. [2018] provide reviews of urban modeling and reconstruction.
In addition, with the rapid development of deep learning, many
works are using deep networks to help reconstruct and render build-
ings from points clouds. While numerous papers address building
modeling from ground/aerial/LIDAR data, very few works address
full building modeling from satellite data. Even in the highest-
resolution commercially available satellite imagery (i.e., World-
View3), the main structure of a building occupies on average 90x90
pixels on the ground plane. Aside from the obvious relatively low-
resolution of satellite imagery, there are several other aspects that

differentiate the problem of satellite multi-view stereo reconstruc-
tion from ground/aerial multi-view stereo reconstruction [Ozcanli
et al. 2015; Qin 2017]. First, satellites use pushbroom-like cameras
producing images different than standard frame cameras. Usually a
rational polynomial coefficient (RPC) model is used. Such RPCs are
hard to calibrate, require iterative processes, needmany ground con-
trol points, and performing 3D to 2D as well as 2D to 3D mapping is
difficult [Zheng et al. 2015]. Second, the image quality is challenged
because the viewing angles of satellite sensors are greatly limited
by the orbit (i.e., not very off-nadir), images of an area might be
days/weeks/months apart yielding different illumination and po-
tentially physical changes, and radiometric quality is lower despite
attempts of atmospheric corrections (see Figure 3). One interesting
approach is that of Facciolo et al. [2017] that won the 2016 IARPA
automatic multi-view stereo challenge – their work shows the best
quality possible with typical satellite images. Nonetheless, we dis-
cuss and compare to some ground/aerial methods that start with
a point cloud as does our method. Those works could be roughly
divided into 4 classes: Planar Primitive Fitting, Volumetric Primitive
Fitting, Semantic Reconstruction and Deep Learning approaches.

Figure 3: Satellite Images. Example satellite images contain-
ing shadows, noise, reflections, occlusions, and vegetation.

2.1 Planar Primitive Fitting
These approaches usually start with extraction/detection of planar
primitives (e.g., planes), and then generate the final model with
a set of primitives or further optimize them so as to create com-
pact and visually appealing 3D models. Currently, two common
methods of plane detection in point clouds are Region Growing
(RG) [Besl and Jain 1988; Chen 1989] and Random Sample Consen-
sus (RANSAC) [Fischler and Bolles 1981]. Chen and Chen [2008]
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describe a pipeline to reconstruct the geometry of buildings by
detecting planar surfaces with a RG algorithm, and then a graph is
created to represent the relationship between those planes. Finally
a complete polyhedron is obtained after computing the plane con-
nections. Li et al. [2016] extracts a large number of planes using
the Efficient RANSAC algorithm [Schnabel et al. 2007] and then
intersects those planes to form a set of axis-aligned candidate boxes.
The final result is the subset of the boxes that have good data sup-
port and are smooth. Later, Nan and Wonka [2017] generalized the
same idea to reconstruct general piecewise planar objects. Their
method seeks an optimal combination of the intersected planes
under manifold and watertightness constraints.

Other primitive extraction methods have also been proposed.
Kelly et al. [2017] yield impressive models but their work assumes
availability of 2D building footprints, polygonal meshes, and both
aerial and street-level imagery. Zhou and Neumann [2010] also
produce clean buildings but their LIDAR-based approach does not
work well with satellite based point clouds.

Though some of these works produce crisp building models suit-
able for interactive rendering their approaches do not work well
for the relatively noisy and low-resolution satellite data (see later
comparisons in the Results section), and also they may encounter
computation bottlenecks for large complex buildings and urban
scenes (e.g., we used Nan and Wonka [2017] on a similar size urban
environment as ours and encountered very long processing times).
Solutions for such large models results in a huge number of can-
didate primitives and the computation may not be affordable. In
contrast, our approach benefits from a simple layering strategy and
we avoid the difficulty and inefficiency of finding the plane/surface
primitives. Instead, we look for simpler line segments or curved
primitives in 2D layer images. In our pipeline, we also make use of
high-level architectural regularization terms to improve the quality
of our models.

2.2 Volumetric Primitive Fitting
These approaches use a customized 3Dmodel librarywhich includes
cube, sphere, cylinder, and other basic solids. The 3D building re-
construction is done by directly fitting the primitives. Nan et al.
[2010] presented an interactive tool called Smart-Boxes to recon-
struct building structures directly from point clouds using cuboid
primitives. This method achieves appealing results with significant
user interaction. Xiao and Furukawa [2012] proposed a reconstruc-
tion method for indoor environments based on constructive solid
geometry (CSG). They first split the 3D space into a set of horizontal
slices, each of which shares the same horizontal structure, and each
horizontal slice is used to find 2D rectangular primitives. In the
end, they extend the 2D primitives into 3D models. Usually these
methods suffer from the limitation of using a fixed primitive library
and when it comes to the noisy, incomplete satellite point cloud,
it’s also difficult to guarantee the accuracy of reconstruction.

2.3 Semantic Reconstruction
These methods start with segmenting the point cloud into mean-
ingful labels (e.g., ground, building, roof, facade, etc..). and then
applying the aforementioned primitive fitting methods in order to
perform the reconstruction. Nguatem and Mayer [2017] segment

point clouds intomeaningful structures, such as the ground, facades,
roofs and roof superstructures, and then use polygon sweeping to
fit predefined templates for buildings, They produce compelling
results but only have a fixed set of template buildings. To obtain a
level-of-detail representation of urban scenes, Verdie et al. [2015]
extract a large set of plane candidates after classifying the point
clouds, and then a surface model is extracted from a set of 3D ar-
rangements based on a min-cut formulation. Leotta et al. [2019]
apply a semantic segmentation and extract roof points from the
point cloud. Then they iteratively apply RANSAC [Fischler and
Bolles 1981] to detect one or more core roof shapes. These roof
shapes are then extended to the ground plane. The work does not
include any architecturally inspired decimation or simplification
to yield crisp and lightweight building models (note: in results we
show a visual comparison).

2.4 Deep Learning
More recently, deep learning based methods have obtained excel-
lent results for many applications in computer graphics. Several
papers [Nishida et al. 2018; Sharma et al. 2017; Zeng et al. 2018] are
using deep learning methods in their 3D reconstruction process.
Sharma et al. [2017] build a neural network architecture, trained
with many synthetic CAD models, to generate a CSG representa-
tion from an input 3D object. Their work is capable of predicting
a variety of primitives but with low accuracy as the parameter
extraction is done by performing classification on a discretized pa-
rameter space. In addition, the reinforcement learning steps during
training require rendering a CSG model at every iteration, making
the computation demanding. A small library of CSG primitives is
also too limited to faithfully represent realistic scenes. In the same
year, Nishida et al. [2018] proposed a pipeline to automatically gen-
erate a 3D building from a single image. Though the results are
appealing, they require street-view input images. Later, Zeng et al.
[2018] created a framework whose input is an aerial point cloud
and their outputs are procedural models. However, their work is
only focused on residential buildings for which they define specific
shape grammars.

3 GEOMETRY SYNTHESIS
Our approach is based on a regularity assumption exploited via
an energy-based optimization. The optimization seeks to alter an
initial polygonal model so as to produce an output that most likely
resembles the underlying structure even if partial/noisy data is
given. We describe our key observation, the architectural priors,
layering, and regularization.

3.1 Observation
One key observation is that (man-made) buildings exhibit “regular”
properties (Figure 4) such as a division into one or more floors,
parallel walls, walls meeting at one of a set of predetermined angles
(e.g., 90 or 135 degrees), co-planarity between wall segments of
different building stories and between adjacent/nonadjacent wall
segments within the same floor, symmetrical arrangements, straight
or curved walls, and other features. Moreover, the balance of these
characteristics per building varies geographically.
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Figure 4: Observation. Man-made buildings exhibiting regu-
lar properties.

3.2 Architectural Priors
Given a hypothetical function A maximized when the provided
model is equal to ground truth, we can state our geometry synthesis
goal as maximizing A. Instead of arbitrarily changing a building’s
vertices, edges, and polygons we change them in a structured way
via procedural parameters. In particular, we define B(Pi ) to be a
parameterized procedural generation function where the parameter
values Pi define a building that uses a set of architectural properties
to varying amounts. Thus, our goal is to maximize A(B(Pi )). This
approach improves the resilience to noisy/partial data and produces
crisp complete models.

Our approach includes the following extensible set of architec-
tural properties (Figure 5):

• Symmetry: buildings might exhibit symmetry.
• Parallelism: walls might be parallel to each other.
• Predetermined Corners: corners of a building often form
known angles (e.g., 90 or 135 degrees).

• Alignment: often walls between adjacent floors, or nearby
same-floor segments, are aligned to each other.

a)

d)

b) c)

1st layer

3rd layer

2nd layer

Figure 5: Architectural Priors. Geometry synthesis enforces
some/all of a) parallel walls, b) symmetry (about an axis), c)
predetermined corner angles, and d) inter- and intra-layer
alignment.

However, in practice even if the listed properties are present we
rarely have the ground truth data for defining the function A. Our

conjecture is that the parameter set that maximizes A can also be
found by maximizing

αR(B(Pi )) + (1 − α)S(B(Pi )), (1)

where R quantifies the regularization of a generated procedural
model (i.e., how well the set of architectural priors are enforced)
and S measures the similarity of the produced model to a mesh con-
structed with the incoming point cloud. Intuitively, this expression
implies that by balancing regularity with similarity, we can find an
optimal combination in the sense of maximizing the similarity to
ground truth. Kozinski et al. [2015] arrived at a similar conclusion.
Hence, we can use expression (1) as a proxy to maximizing A.

In order to calibrate the level of regularization, we use a small set
of example buildings to calibrate constant and varying procedural
parameters. In particular, given a small sample of known building
structures, we perform the following minimization:

minPc | |(αR(B(Pk )) + (1 − α)S(B(Pk ))) −A(B(Pk ))| |, (2)

where k = [1,K] for K known buildings, Pk = {Pc , Pd (Ik )},
Pd (Ik ) are parameters computed from satellite image set Ik for
building k , and Pc are constant for all buildings in this geographic
region (or everywhere). Thus, once we have Pc , at runtime we can
produce crisp procedural models from the satellite images despite
incompleteness and noise, and without needing a priori known
models.

3.3 Layering and Polyline Creation
The first phase of geometry synthesis is dividing the point data into
a tree of horizontal layers. We observe that (i) buildings may consist
of segments of different vertical heights and (ii) some non-adjacent
segments of the building might be of the same height. To perform
the layering, we place all points into a grid with voxel size equal
to the satellite image pixel size of 0.3m. Then, we use a relative
layering threshold to determine when the intersection-of-union
(IOU) between the current layer and next horizontal single-cell
voxel slice is big enough to begin a next layer. See Figure 6 for one
example.

Figure 6: Layering. We show the input point cloud as a tree
of layers. To the left is the point cloud and to the right is the
tree of decomposed layers.
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Our layering scheme produces a tree of layers, as opposed to
a linear array of layers, because of the aforementioned second
observation: a building might have non-adjacent segments of the
same height. When creating a new layer, we solve an approximate
connected component problem to determine if the new layer has
multiple disjoint components (e.g., a lower part of a building then
becoming two separate towers in the upper part).

We choose a representative slice for each layer and compute
a single closed polyline per layer. Since a layer might consist of
multiple horizontal one-cell slices through the grid, we must obtain
a consensus of the layer geometry. We attempted several consensus
estimation schemes and found the best one to be choosing the slice
that is most similar to all other slices in the layer. Then, we use a
RANSAC-based method to determine line segments with significant
support (i.e., line segments that pass through, or nearly through, a
sufficient number of points). The line segment determination algo-
rithm makes use of a support threshold parameter and a closeness
threshold parameter. See Figure 7 for some examples. To form the
closed polyline, our method uses several heuristics. Figure 8 de-
scribes visually some of the heuristics. For example, almost collinear
and close-by line segments are replaced with a best fitted single line
segment and almost coincident line segment start-end points are
snapped together. Other scenarios (e.g., b, c and d of Figure 8) are
shown as well, collectively using various parameter values which
we have determined empirically.

1

a)

b)

Figure 7: RANSAC. Layer examples of using a RANSAC-
based method to detect line segments. a) Layer inputs, b)
Line segments.

a) b) c) d)

Figure 8: Heuristics. Heuristics for Connecting Line Seg-
ments to Define Each Layer. a) Almost collinear and close
enough, b) Almost collinear, c) Some supporting points near
the intersection, and d) No supporting points near the inter-
section.

3.4 Regularization
In this second phase, we iteratively alter the regularization parame-
ters (e.g., thresholds, weights, α ) so as reduce the difference between
the values produced by the similarity and regularization metrics
and the desired values as per equation 2 (Figure 9). This iteration
continues under user control or under an external optimization
loop. The resulting set of regularization parameters are later used
to produce building models. The parameters can be used globally
or new values can be computed for each region. In our case, we
compute them once and use in all areas.

Detailed Crisp

Figure 9: Regularization. We alter regularization parameters
until producing an output of desired detail/crispness.

3.4.1 Metrics. The similarity and regularization metrics are calcu-
lated via a set of functions computed using each layer’s poly-lines.
The similarity metric computes the IOU between the current poly-
line and the original poly-line of a layer. The regularization metric
makes use of several sub-metrics explained in the following para-
graphs.

• Symmetry Metric. This function seeks an axis of reflective
symmetry for the provided poly-line. For a proposed axis,
the subset of the poly-line on one side of the axis is reflected
over the axis. Then, if the reflected poly-line and existing
poly-line are very similar (e.g., determined via IOU), it indi-
cates a strong reflective symmetry. Our approach performs
a gradient descent to compute the rotation angle and 2D
intercept point that most reduces the aforementioned error
sum. We prime the optimization by first evaluating the cost
function with a sampling of axis rotations (e.g., one every
10 degrees) and assume all axis pass through the midpoint
of the poly-line.

• Corner Metric. This function is evaluated for wall-to-wall
corner angles of 90, 135, or 180 degrees. Given two adjacent
wall segments that exceed a length threshold (e.g., 1 meter),
we determine the typical corner angle to which they are
most similar. If the actual angle is within a threshold of the
typical corner angle (e.g., 10 degrees), we compute an error
metric proportional to the angular difference (else zero).

• Parallel Wall Metric. This function computes the angular
difference between each wall segment and the most parallel
other wall segment in the layer. If the angular difference is
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smaller than a threshold (e.g,. 3 degrees), the error is the
angular difference (else zero).

• Alignment Metric. This function has both an inter- and intra-
layer component. The inter-layer component seeks for a poly-
line segment of the layer above it and also a segment beneath
it that are closest in both orientation and distance. The intra-
layer component seeks for each segment in the poly-line
another segment closest in orientation and distance (but not
adjacent). If the paired segments from the intra- or inter-
layer components are similar enough, they are considered
candidates to be aligned. The error value is a weighted sum
of the orientation difference and distance value.

• Curved Wall Metric. This function seeks to find a sequence
of polyline segments that approximately form a circular arc
of least a pre-specified minimal angular span. If found, the
sequence is considered a candidate to become a (circular)
curved wall.

3.4.2 Calibration Process. The calibration process described at the
end of Section 3.2 is performed via an additional loop placed over
both the layering and regularization phases. The calibration process
first decomposes a set of known models into a tree of layers. Then,
a simple minimization is computed to reduce the average difference
between the computed layers and the known-model layers, thus
yielding best values for all the parameters described in the afore-
mentioned layering and regularization phases. We perform this
calibration once using five buildings that were manually modeled
in one test area. We iteratively alter the parameters and confirm a
reasonable convergence by visual inspection.

4 RESULTS
Our method is implemented using OpenCV, OpenGL, and QtUrban,
and it runs on an Intel i7 workstation with a NVIDIA GTX 1080. We
have applied our method to two test areas in the United States cap-
tured byWorldView3 satellite images: a portion of (A1) Jacksonville,
Florida (1.9 km2) and (A2) UC San Diego, California (1 km2). Collec-
tively, the areas have a few hundred buildings and medium to tall
buildings have from 20 to a few hundred windows/doors each. The
2.5D point cloud dataset we use was produced by an implementa-
tion based on Rothermel et al. [2016, 2012]. Our entire method runs
automatically yielding 14 buildings per minute.

4.1 Regularization
Figure 10 shows examples of the progression of models through our
pipeline including applying regularization. As you can see, the cor-
ner regularization will make the corner angles into typical angles
(e.g., 90), the parallel regularization will make the almost parallel
wall segments parallel, the symmetry regularization will make the
model hold the symmetry property, and the alignment regulariza-
tion will remove misalignment between layers. In our experiments,
we found the symmetry and curved-wall regularization to occur
the least amongst these 5 metrics.

4.2 Geometry Synthesis
Table 1 reports statistics about the synthesized building geometries.
Table 2 contains the globally averaged accuracy of our produced
buildings in terms of 2D and 3D completeness and correctness using

1 1

2

2

2

2

3 3

a) b) c)

2 2

4 4

Figure 10: Metrics. We show examples of the metrics used in
our regularization. a) Incoming satellite-based point cloud,
b) the output models before regularization, and c) the output
models after applying specific regularization terms. "1" is cor-
responding to the corner regularization. "2" is corresponding
to the alignment regularization. "3" is corresponding to the
symmetry regularization. "4" is corresponding to the parallel
regularization.

an implementation of the testing method of Bosch et al. [2017]. Our
models are compared against a manually-refined high-resolution
aerial LIDAR capture of the test area. The overall accuracy is above
90%. Further, we compare our approach to a similar set of prior
methods as in the recent paper by Zeng et al. [2018]. In particular,
we show in Figure 11 a visual comparison between Poisson surface
reconstruction, dual contouring [Zhou and Neumann 2010], Poly-
fit [Nan and Wonka 2017] and our method. We also compare to a
surface simplification method QSlim [Garland and Heckbert 1997]
to demonstrate that general polygonal simplification does not main-
tain the expected geometric and architectural properties. Overall,
our approach produces the best crisp and regularized models.

Leotta et al. [2019] focused on building reconstruction from
satellite-based point clouds (in fact, also Worldview 3 based). They
developed neural networks to do semantic segmentation and then
to find roof points. They extract roof shape primitives by applying
RANSAC [Fischler and Bolles 1981]. The final results are refined
by the boundary and the continuity of the model. Nonetheless,
as you can see in Figure 12 (copied with permission from their
paper), our work essentially extends such an approach to further
produce crisp and lightweight building models. Although these are
not the same urban areas in the figure, the quality of our solution is
notably cleaner and crisper. In addition, Leotta et al. [2019] report
geometric accuracy for several areas also using Bosch et al. [2017].
Their average values for the same terms as in Table 2 are 0.905, 0.73,
0.895, 0.75. As seen, our approach is consistently more accurate by
7% on average which visually amounts to a significant spread.

Finally, we show in Figure 13 many close-ups of reconstructed
buildings from both areas, textured with projected satellite images.
Views of our additional buildings are in supplemental figures.
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Figure: Comparison with four state-of-the-art methods 

on a building dataset. (a) Input point clouds. (b) The 

results of Poisson surface reconstruction algorithm. (c) 

The results of the 2.5D Dual Contouring approach. (d) 

The results pf applying the quadratic simplification to 

(b). (e) The results of PolyFit. (f) Our results.

(a) (b) (c) (d) (e) (f)

Figure 11: Geometry Comparison. a) Incoming satellite-based point cloud, b) Poisson surface reconstruction, c) 2.5D dual con-
touring, d) QSlim [Garland and Heckbert 1997] of b), e) PolyFit, and f) Our method.
Table 1: Building Complexity. Average number of vertices,
edges, and faces in buildings by our method.

Zone #Vertices #Edges #Faces
A1 164.6 67.2 183
A2 224.24 90.93 248.5

Table 2: Geometric Accuracy. Accuracies for our areas in
terms of the metric by Bosch et al. [2017].

Zone 2D 2D 3D 3D
Correctness Completeness Correctness Completeness

A1 0.93 0.90 0.92 0.92
A2 0.95 0.80 0.92 0.83

5 CONCLUSIONS AND FUTUREWORK
We have presented a method to automatically reconstruct crisp
and compact procedural buildings from satellite-based 2.5D point
clouds suitable for interactive rendering (and projective texture
mapping). The building envelope stage determines a tree of layers
and a set of architecturally-inspired regularization metrics are used
to produce a buildingmodel. The level of regularity of the model can
be chosen, or calibrated, to produce a best result. The combination
of regularization and procedural inference enables us to be resilient

Fig. 1 ©Matthew Leotta et al.

Figure 12:Comparison.The top row is a result image cropped
fromLeotta et al. [2019]. The bottom row is generated by our
system.

to noise, occlusions, and partial-coverage as is typical for satellite
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Figure 13: Examples. We show close-ups of our buildings using projective texture mapping.

data. Our accuracy ranges from 83% to 98% and our comparisons
to other approaches show the improvement our method provides.

Our approach has the following limitations.

• Local regularization. Our approach cannot automatically de-
termine globally-adequate regularization parameters – in-
stead local parameter values are used.

• Non-regular structures. We did not attempt to determine if a
structure was particularly non-regular and as such we could
adapt our parameter usage automatically.

• Roof structures. Our modeling process did not include roof
structures and this caused lower accuracy for buildings with
complex non-flat roofs (e.g., the tallest building shown at the
bottom of Figure 13 does not have a correct roof structure).

• 2.5D assumption. At present we assume only 2.5D building
structures and this could be extended to full 3D buildings
assuming the point cloud data becomes fully 3D.

Our approach has several avenues of future work. First, we
could develop a scheme for geographically-dependent regulariza-
tion when scaling to other regions. Second, our system could be
extended to include rooftops, which it currently does not handle.

ACKNOWLEDGMENTS
This research was supported in part by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Interior/ Inte-
rior Business Center (DOI/IBC) contract number D17PC00280. The
U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright anno-
tation thereon. Disclaimer: The views and conclusions contained
herein are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements, either
expressed or implied, of IARPA, DOI/IBC, or the U.S. Government.
Additional support came from National Science Foundation grants
#10001387 and #1835739.

REFERENCES
P. J. Besl and R. C. Jain. 1988. Segmentation through variable-order surface fitting.

IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 2 (March 1988),
167–192. https://doi.org/10.1109/34.3881

M. Bosch, A. Leichtman, D. Chilcott, H. Goldberg, and M. Brown. 2017. Metric Eval-
uation Pipeline for 3d Modeling of Urban Scenes. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences (May 2017), 239–
246.

D. S. Chen. 1989. A data-driven intermediate level feature extraction algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence 11, 7 (July 1989), 749–758.
https://doi.org/10.1109/34.192470

Jie Chen and Baoquan Chen. 2008. Architectural Modeling from Sparsely Scanned
Range Data. International Journal of Computer Vision 78 (07 2008), 223–236. https:
//doi.org/10.1007/s11263-007-0105-5

Gabriele Facciolo, Carlo De Franchis, and Enric Meinhardt-Llopis. 2017. Automatic
3D reconstruction from multi-date satellite images. In IEEE Computer Vision and
Pattern Recognition Workshops. 57–66.

Martin A. Fischler and Robert C. Bolles. 1981. Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartography.
Commun. ACM 24, 6 (June 1981), 381–395. https://doi.org/10.1145/358669.358692

Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric
Error Metrics. In Proceedings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 209–216. https://doi.org/10.1145/258734.258849

Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra. 2017. BigSUR: Large-scale
Structured Urban Reconstruction. ACM Transactions on Graphics 36, 6 (Nov. 2017).

Mateusz Kozinski, Raghudeep Gadde, Sergey Zagoruyko, Guillaume Obozinski, and
Renaud Marlet. 2015. A MRF shape prior for facade parsing with occlusions. In
IEEE Computer Vision and Pattern Recognition. 2820–2828.

Matthew J. Leotta, Chengjiang Long, Bastien Jacquet, Matthieu Zins, Dan Lipsa, Jie
Shan, Bo Xu, Zhixin Li, Xu Zhang, Shih-Fu Chang, Matthew Purri, Jia Xue, and
Kristin Dana. 2019. Urban Semantic 3D Reconstruction From Multiview Satellite
Imagery. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops.

https://doi.org/10.1109/34.3881
https://doi.org/10.1109/34.192470
https://doi.org/10.1007/s11263-007-0105-5
https://doi.org/10.1007/s11263-007-0105-5
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/258734.258849


Progressive Regularization of Satellite-Based 3D Buildings for Interactive Rendering I3D ’20, May 5–7, 2020, San Francisco, CA, USA

Minglei Li, Peter Wonka, and Liangliang Nan. 2016. Manhattan-World Urban Recon-
struction from Point Clouds, Vol. 9908. 54–69. https://doi.org/10.1007/978-3-319-
46493-0_4

Przemyslaw Musialski, Peter Wonka, Daniel G Aliaga, Michael Wimmer, Luc Van Gool,
and Werner Purgathofer. 2013. A survey of urban reconstruction. In Computer
Graphics Forum, Vol. 32.

Liangliang Nan, Andrei Sharf, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2010.
SmartBoxes for Interactive Urban Reconstruction. ACM Trans. Graph. 29, 4, Article
93 (July 2010), 10 pages. https://doi.org/10.1145/1778765.1778830

Liangliang Nan and Peter Wonka. 2017. PolyFit: Polygonal Surface Reconstruction
from Point Clouds. (2017).

William Nguatem and Helmut Mayer. 2017. Modeling urban scenes from pointclouds.
In IEEE International Conference on Computer Vision. 3837–3846.

Gen Nishida, Adrien Bousseau, and Daniel G. Aliaga. 2018. Procedural Modeling of
a Building from a Single Image. Computer Graphics Forum (Eurographics) 37, 2
(2018).

Ozge C Ozcanli, Yi Dong, Joseph L Mundy, Helen Webb, Riad Hammoud, and Victor
Tom. 2015. A comparison of stereo and multiview 3-D reconstruction using cross-
sensor satellite imagery. In IEEE Computer Vision and Pattern Recognition Workshops.
17–25.

Rongjun Qin. 2017. Automated 3d recovery from very high resolution multi-view
satellite images. In ASPRS (IGTF) annual Conference. 10.

M Rothermel, N Haala, and D Fritsch. 2016. A MEDIAN-BASED DEPTHMAP FUSION
STRATEGY FOR THE GENERATION OF ORIENTED POINTS. ISPRS Annals of
Photogrammetry, Remote Sensing & Spatial Information Sciences 3, 3 (2016).

Mathias Rothermel, Konrad Wenzel, Dieter Fritsch, and Norbert Haala. 2012. SURE:
Photogrammetric surface reconstruction from imagery. In Proceedings LC3D Work-
shop, Berlin, Vol. 8. 2.

R. Schnabel, R. Wahl, and R. Klein. 2007. Efficient RANSAC for Point-Cloud Shape
Detection. Computer Graphics Forum (2007). https://doi.org/10.1111/j.1467-8659.
2007.01016.x

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu
Maji. 2017. CSGNet: Neural Shape Parser for Constructive Solid Geometry. CoRR
abs/1712.08290 (2017). arXiv:1712.08290 http://arxiv.org/abs/1712.08290

Yannick Verdie, Florent Lafarge, and Pierre Alliez. 2015. LOD Generation for Urban
Scenes. ACM Transactions on Graphics 34, 3 (2015).

R.Wang, J. Peethambaran, andD. Chen. 2018. LiDAR Point Clouds to 3-DUrbanModels:
A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 11, 2 (Feb 2018), 606–627. https://doi.org/10.1109/JSTARS.2017.2781132

Jianxiong Xiao and Yasutaka Furukawa. 2012. Reconstructing the World’s Museums.
In ECCV.

Huayi Zeng, Jiaye Wu, and Yasutaka Furukawa. 2018. Neural Procedural Reconstruc-
tion for Residential Buildings. In The European Conference on Computer Vision
(ECCV).

Enliang Zheng, Ke Wang, Enrique Dunn, and Jan-Michael Frahm. 2015. Minimal
solvers for 3d geometry from satellite imagery. In IEEE International Conference on
Computer Vision. 738–746.

Qian-Yi Zhou and Ulrich Neumann. 2010. 2.5D Dual Contouring: A Robust Approach to
Creating Building Models from Aerial LiDAR Point Clouds. In European Conference
on Computer Vision.

https://doi.org/10.1007/978-3-319-46493-0_4
https://doi.org/10.1007/978-3-319-46493-0_4
https://doi.org/10.1145/1778765.1778830
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1111/j.1467-8659.2007.01016.x
http://arxiv.org/abs/1712.08290
http://arxiv.org/abs/1712.08290
https://doi.org/10.1109/JSTARS.2017.2781132

	Abstract
	1 Introduction
	2 Related Work
	2.1 Planar Primitive Fitting
	2.2 Volumetric Primitive Fitting
	2.3 Semantic Reconstruction
	2.4 Deep Learning

	3 Geometry Synthesis
	3.1 Observation
	3.2 Architectural Priors
	3.3 Layering and Polyline Creation
	3.4 Regularization

	4 Results
	4.1 Regularization
	4.2 Geometry Synthesis

	5 Conclusions and Future Work
	Acknowledgments
	References

