

2015

Proceduralization of Urban Models

Ilke Demir Purdue University 10.14.15

Who Am I?

- PhD candidate at Purdue
- Uncomfortable researcher
- Woman in CS
- Blissful Pixarian!
- Dancer
- Musician
- Gamer

Who Am I?

PhD candidate at Purdue

Uncomfortable researcher

Woman in CS

Blissful Pixarian!

- Dancer
- Musician
- Gamer

ANITA BORG INSTITUTE RACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Modeling buildings, plants, clouds, cities, worlds; using an underlying system of rules.

 Procedural Modeling of Cities [Parish and Müller, 2001]

Instant Architecture
 [Wonka et al., 2003]

 Procedural Modeling of Cities [Parish and Müller, 2001]

 Procedural Modeling of Buildings [Müller et al., 2006]

...and streets, parcels, roads, et

GRACE HOPPE

CELEBRATION OF WOMEN IN COMPUTING

2015

PROCEDURAL MODELING: THE GRAMMAR

 $G = \{S, \Sigma, N, R\}$

CELEBRATION OF WOMEN IN COMPUTING

Computing Machinery

ANITA BORG INSTITUTE

PROCEDURAL MODELING: THE GRAMMAR

ANITA BORG INSTITUTE CELEBRATION OF WOMEN IN COMPUTING

2015

PROCEDURAL MODELING: A GRAMMAR

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

ANITA BORG INSTITUTE

PROCEDURAL MODELING: A GRAMMAR

```
G = {
       Building,
       {wall, win, ...},
       {Building, Roof,...},
       <R>
```


PROCEDURAL MODELING: A GRAMMAR

R:

- Building -> Roof (MidFloor)* Base
- Roof -> roofPl (chimney | roofWin)*| Roof roofPl
- MidFloor -> wall (win wall)*
- Base -> (wall)+

PROCEDURAL MODELING: AN INSTANCE

PROCEDURAL MODELING: AN INSTANCE

PROCEDURAL MODELING: A RESULT

ANITA BORG INSTITUTE **CELEBRATION OF WOMEN IN COMPUTING**

Procedural Representation (Grammar)

CELEBRATION OF WOMEN IN COMPUTING

Geometric Model

ANITA BORG INSTITUTE

Computing Machinery

Procedural Representation (Grammar)

CELEBRATION OF WOMEN IN COMPUTING

Geometric Model

ANITA BORG INSTITUTE

Computing Machinery

Procedural Representation (Grammar)

CELEBRATION OF WOMEN IN COMPUTING

Geometric Model

> Association for Computing Machinery

ANITA BORG INSTITUTE

MOTIVATION

- Urban reconstruction, manual modeling and crowd-sourced models: available.
- New content synthesis, rendering and compaction: hard.
- Repetitions: exploitable (for procedural representation and completion)
- Models contain semantic information, but discovering such influences is hard.

 Converting existing urban models into procedural representation.

CELEBRATION OF WOMEN IN COMPUTING

Computing Machinery

ANITA BORG INSTITUTE

 Converting existing urban models into procedural representation.

Using inverse procedural modeling methods,

CELEBRATION OF WOMEN IN COMPUTING

Computing Machinery

 Converting existing urban models into procedural representation.

Using inverse procedural modeling methods on, meshes, point clouds, textured models

• Converting existing urban models into procedural representation.

Using inverse procedural modeling methods on, meshes, point clouds, textured models of, buildings and cities.

PROCEDURALIZATION FRAMEWORK

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

2015

WHY PROCEDURALIZE?

Proceduralization for Grammar Creation

Proceduralization for Reconstruction

Proceduralization for Editing

WHY PROCEDURALIZE?

Proceduralization for Grammar Creation

Let's Organize...

- Who? Why? What?
- Previous Work
- Our Research
- City Proceduralization
 - Dissimilarity Clustering
 - Proceduralization
 - Results
- What next?
- Have fun!

STYLE GRAMMARS FOR INTERACTIVE VISUALIZATION OF ARCHITECTURE [ALIAGA ET AL., 2007]

- Map images to a simple model
- Subdivide into features
- Create a grammar instance
- Apply to a new model
- Render with tex or stylized

A CONNECTION BETWEEN PARTIAL SYMMETRY AND INVERSE PROCEDURAL MODELING [BOKELOH ET AL., 2010]

- Grammar extraction using dockers and docking sites
- · Operational on both polygonal and point set input
- · Limited decomposition, no reconstruction/completion
- No (hierarchical) rules, only "glueable" components

METROPOLIS PROCEDURAL MODELING [TALTON ET AL., 2012]

- A method for bringing artistic control to PM
- Find the best derivation by maximizing the likelihood of an instance based on user input. (Bayesian inference)
- Use rjMCMC to span the derivation space.

ANITA BORG INSTITUTE

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

2015

CITY PROCEDURALIZATION

ANITA BORG INSTITUTE

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

2015

CITY PROCEDURALIZATION

PROCEDURALIZATION FRAMEWORK

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

2015

PROCEDURALIZATION FRAMEWORK

Hierarchical clustering

Grouping:
Simplified
Components

Construct

Segments:
Components

Splic planes

Geometric
Input:
Buildings

Parse Tree: Hierarchical Tree

> Grammar: CFG

ANITA BORG INSTITUTE

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

PROCEDURALIZATION FRAMEWORK

Hierarchical clustering

Grouping:
Simplified
Components

Construct

Parse Tree:

Hierarchical

Tree

Segments: Components

Proceduralization for Grammar Creation

Geometric
Input:
Buildings

Grammar: CFG

ANITA BORG INSTITUTE

Splic planes

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

PROCEDURAL EDITING OF 3D BUILDING POINT CLOUDS

ILKE DEMIR, DANIEL ALIAGA, BEDRICH BENES

ICCV 2015

- A semi-automatic segmentation adaptive to segmentation granularity
- A proceduralization method to convert the segments and their patterns into a grammar, and exploit them for completion
- A synthesis method that uses the procedural representation to directly edit the point cloud, while preserving the structure

COUPLED SEGMENTATION AND SIMILARITY DETECTION FOR ARCHITECTURAL MODELS

ILKE DEMIR, DANIEL ALIAGA, BEDRICH BENES

- A set-cover formulation for architectural model segmentation
- A novel combinatorial optimization to couple segmentation and similarity detection
- A geometric approach to reduce the search-space for a combinatorial optimization

INFERRING HIERARCHICAL SPLIT GRAMMARS FOR SYNTHESIS OF ARCHITECTURAL MODELS

ILKE DEMIR, DANIEL ALIAGA, BEDRICH BENES (SUBMITTED)

- A novel inverse procedural modeling approach, without any template grammar,
- A structure discovery method to parse a collection of building elements into a split tree.
- An interactive procedural engine for local and global style-preserving synthesis and editing of 3D architectural models.

SUMMARY

ANITA BORG INSTITUTE

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

CONTRIBUTIONS

- Any building => Procedural representation
- Hierarchical de-instancing to organize the city based on similarity
- Hierarchical clustering to organize the city based on structure

APPROACH

Model => Components => Features => S. Tree => T. Graph => Rules => Grammar

ANITA BORG INSTITUTE CELEBRATION OF WOMEN IN COMPUTING

ANITA BORG INSTITUTE

DE-INSTANCING

- Provides flexible and visually coherent component labeling,
- Supports control over alphabet size

ANITA BORG INSTITUTE

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

DE-INSTANCING

- Find split planes
 - move near plane
 - render top-down
 - calculate der of pix.
- Find comp. orientation
 - render the comp. cont.
 - fit&extrude or rect.
- Extract features
 - img proc. for windows
 - comp. props.
- Cluster hierarchically
 - k-means, $k(h)=(1/2)^h *n$
 - repr. is closest to mean

PROCEDURALIZATION

- Provides control over the generated rules by changing weights of edges.
- Based-on-need grammar extraction is available.

PROCEDURALIZATION

- Select a simp. level
- Create the terminal graph
 - vertices = simplified bdgs
 - edges = nbrs in a thresh.
- weights = F (std,mean,freq)

$$D(A,B) = \frac{w_m \bar{d}_{AB} + w_s \sigma_{AB}}{N_{AB}}$$

- Apply Neumann-clustering recursively
- Obtain the parse tree of the city instance

RESULTS

Rendering:

Allows existing content to be renderable by procedural renderers.

Compression:

Allows model compression without loss in visual content.

RESULTS

- reduces geo and tex by 2 to 21 times
- produces 177 ~1000 terminals & 5 ~100 nonterminals.
- simp+proc take 2-4 hrs for 3000 to 6000 bdgs (180km2)
- provides interactive editing and novel synthesis

Simplification levels

RESULTS - VIDEO

Simplified & Proceduralized New York

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

RESULTS

Localization: provides model based location estimation, based on the same feature computation.

ANITA BORG INSTITUTE

10re details.

What Next?

- Extending city proceduralization:
 - Co-segmentation for component coherency, inter-building similarity, and compression.
 - Learn a per-type grammar from the segments.
 - Learn also the constraints and extents, to improve the editing and semanticality of the synthesis.
- Apply the proceduralization framework to other domains.
- Create an infinite database of buildings.

GRACE HOPPER **CELEBRATION OF WOMEN IN COMPUTING**

THANKS!

ANITA BORG INSTITUTE

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

2015 ANITA

Got Feedback?

Talk about it! #GHC15 #proceduralization @ilkedemir

Say hi! <u>ilke@pixar.com</u> <u>idemir@purdue.edu</u>

Rate and review! http://ddut.ch/ghc15 (GHC 2015 in app store)

OUR REFERENCES

- Demir I., Aliaga D., Benes B., 2015. *Procedural Editing of 3D Building Point Clouds*. ICCV 2015.
- Demir I., Aliaga D., Benes B., 2015. Coupled Segmentation and Similarity Detection for Architectural Models. ACM Transactions on Graphics (ToG), also SIGGRAPH 2015.
- Demir I., Aliaga D., Benes B., 2014. *Proceduralization of Buildings at City Scale*. 2014 International Conference on 3D Vision (3DV; formerly known as 3DVIMPT).

REFERENCES

- Aliaga D., Rosen P., and Bekins D., 2007. Style grammars for interactive visualization of architecture, IEEE Trans. on Vis. and Comp. Graphics, (4), 786–797.
- Bokeloh M., Wand, M., Seidel, H., Kolun, V., 2012: An algebraic model for parameterized shape editing. ACM Trans. Graph., 78.
- Müller P., Wonka P., Haegler S., Ulmer A., Van Gool L. 2006. Procedural modeling of buildings, ACM Trans. on Graphics, 25(3), 614-623.
- Parish, Y. I. and Müller, P. 2001: Procedural modeling of cities, ACM SIGGRAPH, 301-308.
- Talton J.O., Lou Y., Lesser S., Duke J., Mech R., and Koltun V. 2010: Metropolis procedural modeling. ACM Trans. on Graphics, 30(2), 11.
- Wonka P., Wimmer M., Sillion F., 2003: Instant Architecture, ACM Trans. on Graphics, 22(3), 669-677.
- Bokeloh M., Wand M., and Seidel H.-P., 2010: A connection between partial symmetry and inverse procedural modeling, ACM Trans. on Graphics, (4).

ADDITIONAL MATERIAL

CELEBRATION OF WOMEN IN COMPUTING

Association for **Computing Machinery**

ANITA BORG INSTITUTE

RESULTS (ICCV)

Consensus model (CM) improves the reconstruction and point cloud.

RESULTS (ICCV)

ANITA BORG INSTITUTE

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

RESULTS - VIDEO (SIGGRAPH)

CELEBRATION OF WOMEN IN COMPUTING

Computing Machinery

ANITA BORG INSTITUTE

RESULTS - VIDEO (SIGGRAPH)

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING

RESULTS (SIGGRAPH)

GRACE HOPER
CELEBRATION OF WOMEN IN COMPUTING

ANITA BORG INSTITUTE

