
Proceduralization of Urban Models

Ilke Demir
Purdue University

idemir@purdue.edu

ABSTRACT

An inverse modeling framework is presented for

converting existing urban models into compact procedural

representations that enable synthesis, querying, and

simplification. During the de-instancing phase,

dissimilarity clustering is performed to obtain the building

components. During the proceduralization phase, the

components are arranged into a context-free grammar,

which can be edited text-based or interactively. Our

approach proceduralizes several cities, up to 19,000

components over1802𝑘𝑚, into compact city grammars.

AUDIENCE: [Computer Graphics/Computer Vision],

[Procedural Modeling], [Urban Synthesis], [Interactive

Editing Techniques]

[Intermediate Technical Talk]

INTRODUCTION
The demand for city-scale 3D urban models has

significantly increased due to the proliferation of urban

planning, city navigation, and interactive applications [6].

Manual and reconstructed models are detailed and

realistic; but lack of structure causes inefficient editing,

storage and rendering [3, 5]. While procedural models are

known to be a powerful and compact parameterized

representation, it requires significant manual expertise to

procedurally code a city [1, 8, 9].

We present a framework for finding geometric

components, repetition, and a high-level structural

organization of a large collection of buildings and for

creating a compact procedural representation that enables

their synthesis, querying, and efficient rendering (Figure

1). Our input is an existing 3D city model represented as

an unorganized but renderable collection of 3D buildings.

Our automatic pipeline has two phases.

1) De-Instancing: A similarity-based clustering of

instances of building components is performed to

obtain a set of components and component types.

2) Proceduralization: Repetitive spatial patterns are

discovered amongst the components and result in a

compact context-free grammar applicable to synthesis,

querying, and other procedural applications.

We have used our approach to convert parts of several

large cities (e.g., New York, Chicago, and San Francisco)

into procedural models, containing 10,000 to 19,000

building components. The resulting grammars can be

directly edited (e.g., as a text file), interactively

manipulated, and several types of information queries can

be performed. Moreover, proceduralized models have been

demonstrated to be friendly to very efficient GPU-based

rendering [4, 7].

Figure 1. City-Scale Building Proceduralization. Our approach uses a) an unorganized 3D model as input, b) computes a hierarchical

clustering of building components, and c) extracts a context-free grammar of the urban area. We can procedurally generate (d-e)

structurally-similar cities, at a chosen de-instancing level.

c) Grammar
 (𝛼, 𝜏, 𝜂,𝜌)

b) Parse Tree

e) Synthesized and Simplified Procedural Model

A B

C

a) Input Model

S
d) Color-Coded Building
 Components

Grace Hopper Celebration of Women in Computing (GHC)
GFX Track - Research Presentation
Houston, Texas, USA, 14 - 16 October, 2015

Our main contributions include:

 a framework to convert an existing collection of 3D

building models into a procedural representation,

 a feature-based de-instancing algorithm to determine

building components and component types,

 a hierarchical clustering algorithm that finds repetition

and spatial patterns of building components and

enables extracting a compact context-free grammar.

METHOD

Our framework consists of two main parts:

1. De-instancing

This phase finds the terminal and non-terminal symbols of

the grammar. First, a cut-plane estimation is employed to

initialize the components by rendering a building and

“cutting” it whenever a change is observed. Then, from

each component, their geometric and visual properties are

extracted into an eleven element feature vector. Finally,

component types are determined by performing a

dissimilarity-based k-means clustering of those feature

vectors (Figure 2). The simplification level of the city

depends on the de-instancing threshold level in the tree.

2. Proceduralization

Proceduralization phase starts with defining a distance

metric between a pair of component types, based on their

repetition, closeness, and consistency of instances. That

distance metric is used as edge weights on the terminal

types graph (Figure 3), which is then partitioned using

Girvan-Newman clustering [2] iteratively to compute the

hierarchical parse tree. After a pre-order traversal of the

parse tree, current instantiation of grammar G is exported

by exporting rules and placing a relative transformation

matrix before each non-terminal/terminal.

RESULTS and DISCUSSION

Our approach enables a variety of applications, as well as

compaction of models. Our framework reduces geometry

and texture sizes by 2 to 21 times, producing grammars

with 177 to a few thousand terminals and 5 to

approximately 100 non-terminals. Preprocessing takes 2-4

hours for a city of 3,000 to 6,000 buildings.

The graph in Figure 4a shows two cost/benefit curves for

each or our models. The cost is the average standard

deviation of all clusters (i.e., feature vector error) and the

benefit is the number of polygons eliminated while de-

instancing for various threshold values td. For the curve

labels ending in “-poly”, the representative component (per

cluster) is chosen as the one with the least number of

polygons for the other curves the representative component

is the component closest to the mean of the cluster. The

cost/benefit curves imply that a good trade off occurs near

the bottom of the “u” shape. Moreover, the selection of

the least cost representative components does yield an

overall benefit (i.e., 10x fewer polygons at about same

clustering error). Figures 4b-e demonstrate the model at

various locations along the de-instancing progression.

Figure 2. Building Clusters. Four building clusters computed

automatically based on feature vector similarity. Inset: if the

feature weights are adjusted such that building height is

emphasized, the first cluster is divided into two separate

categories.

Figure 3. Proceduralization. a) The initial terminals in a city. b) The initial component type graph for Girvan-Newman clustering. For

edge values 𝑤𝑚 = 1 and 𝑤𝑠 = 0 and for edges of buildings within “d” distance; we also do not show unique edges. Dashed ovals are

the first clusters (i.e., nonterminals A and B). c) Another level producing nonterminal C. d) Final clustering producing the axiom S. e)
The parse tree of the small city.

Figure 5 shows original versus proceduralized versions of

Chicago and San Francisco, where the component types

are reduces to ½ to ¼ times. Our framework also enables

interactive synthesis of new cities, with the style of the

original. Given a starting symbol (as “GHC” in Figure 6),

our method best fills it with the grammar of New York and

generates new content, while keeping the style and

neighborhoods.

PARTICIPATION STATEMENT
I will attend the conference if the submission is accepted.

BIO

Ilke Demir is currently a PhD Candidate in Purdue

University, and a research assistant in Computer Graphics

and Visualization Lab. Her research highlights include

procedural modeling, 3D reconstruction and structure

preserving interactive editing. She also obtained her M.S.

degree in Computer Science from Purdue, and her B.S.

degree in Computer Engineering from Middle East

Technical University (METU, Turkey) in 2010 with a

minor in Electrics and Electronics Engineering. Starting

her research carrier in KOVAN Robotics Lab, she has also
served as the student system admin of the department for

2.5 years, and did a software internship at Havelsan Inc.

REFERENCES
[1] M. Bokeloh, M. Wand, And H.-P. Seidel. A connection

between partial symmetry and inverse procedural

modeling, ACM Trans. on Graphics., 29(4), 2010.

[2] M. Girvan, And M. E. J. Newman. Community

structure in social and biological networks, Natl. Acad.

Sci. USA, 2002.

[3] B. Hohmann, U. Krispel, S. Havemann, And D.

Fellner, CityFit: High-quality urban reconstructions by

fitting shape grammars to images and derived textured

point clouds, ISPRS Workshop, 8 pages, 2009.

[4] Z. Kuang, B. Chan, Y. Yu, And W. Wang. A Compact

Random-Access Representation for Urban Modeling and

Rendering, ACM Trans. on Graphics, 32(6), 172, 2013.

[5] F. Lafarge, And C. Mallet. Building large scale urban

environments from unstructured point data, IEEE Intl

Conference on Computer Vision, 1068-1075, 2011.
[6] R. M. Smelik, T. Tutenel, R. Bidarra, And B. Benes. A

Survey on Procedural Modeling for Virtual Worlds,

Computer Graphics Forum, 2014.

[7] M. Steinberger, M. Kenzel, B.

Kainz, P. Wonka, and D. Schmalstieg.

Combined Derivation and Rendering

of Shape-Grammars on the GPU,

Computer Graphics Forum

(Eurographics), 10 pages, 2014b.

[8] J. O. Talton, Y. Lou, S. Lesser, J.

Duke, R. Mech, And V. Koltun.

Metropolis procedural modeling.

ACM Trans. on Graphics, 30(2), 11,

2010.

[9] C. Vanegas, D. Aliaga, P. Mueller,

P. Waddell, B. Watson, And P.

Wonka. Modeling the Appearance and

Behavior of Urban Spaces,

Eurographics, STAR 17 pages, 2009.

Figure 5. City Views. We show a-c) original Chicago and San

Francisco, and b-d) de-instanced and proceduralized versions.

Figure 6. User-Controlled Synthesis. The user specifies a starting symbol (“GHC”) and
our method best fills it with the grammar and generates new cities.

