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ABSTRACT 

An inverse modeling framework is presented for 

converting existing urban models into compact procedural 

representations that enable synthesis, querying, and 

simplification. During the de-instancing phase, 

dissimilarity clustering is performed to obtain the building 

components. During the proceduralization phase, the 

components are arranged into a context-free grammar, 

which can be edited text-based or interactively. Our 

approach proceduralizes several cities, up to 19,000 

components over1802𝑘𝑚, into compact city grammars. 

AUDIENCE: [Computer Graphics/Computer Vision], 

[Procedural Modeling], [Urban Synthesis], [Interactive 

Editing Techniques] 

[Intermediate Technical Talk]  

 

INTRODUCTION 
The demand for city-scale 3D urban models has 

significantly increased due to the proliferation of urban 

planning, city navigation, and interactive applications [6].   

Manual and reconstructed models are detailed and 

realistic; but lack of structure causes inefficient editing, 

storage and rendering [3, 5]. While procedural models are 

known to be a powerful and compact parameterized 

representation, it requires significant manual expertise to 

procedurally code a city [1, 8, 9].  

We present a framework for finding geometric 

components, repetition, and a high-level structural 

organization of a large collection of buildings and for 

creating a compact procedural representation that enables 

their synthesis, querying, and efficient rendering (Figure 

1). Our input is an existing 3D city model represented as 

an unorganized but renderable collection of 3D buildings. 

Our automatic pipeline has two phases. 

1) De-Instancing: A similarity-based clustering of 

instances of building components is performed to 

obtain a set of components and component types. 

2) Proceduralization: Repetitive spatial patterns are 

discovered amongst the components and result in a 

compact context-free grammar applicable to synthesis, 

querying, and other procedural applications. 

We have used our approach to convert parts of several 

large cities (e.g., New York, Chicago, and San Francisco) 

into procedural models, containing 10,000 to 19,000 

building components. The resulting grammars can be 

directly edited (e.g., as a text file), interactively 

manipulated, and several types of information queries can 

be performed. Moreover, proceduralized models have been 

demonstrated to be friendly to very efficient GPU-based 

rendering [4, 7]. 

 

 

 

 

Figure 1. City-Scale Building Proceduralization. Our approach uses a) an unorganized 3D model as input, b) computes a hierarchical 

clustering of building components, and c) extracts a context-free grammar of the urban area. We can procedurally generate (d-e) 

structurally-similar cities, at a chosen de-instancing level. 

c) Grammar 
   (𝛼, 𝜏, 𝜂,𝜌) 

b) Parse Tree 

e) Synthesized and Simplified Procedural Model 

  

 

 

A B 

C 

a) Input Model 

S 
d) Color-Coded  Building  
    Components 

Grace Hopper Celebration of Women in Computing (GHC)
GFX Track - Research Presentation
Houston, Texas, USA, 14 - 16 October, 2015



Our main contributions include: 

 a framework to convert an existing collection of 3D 

building models into a procedural representation, 

 a feature-based de-instancing algorithm to determine 

building components and component types, 

 a hierarchical clustering algorithm that finds repetition 

and spatial patterns of building components and 

enables extracting a compact context-free grammar. 

 

METHOD 

Our framework consists of two main parts: 

 

1. De-instancing 

This phase finds the terminal and non-terminal symbols of 

the grammar. First, a cut-plane estimation is employed to 

initialize the components by rendering a building and 

“cutting” it whenever a change is observed. Then, from 

each component, their geometric and visual properties are 

extracted into an eleven element feature vector. Finally, 

component types are determined by performing a 

dissimilarity-based k-means clustering of those feature 

vectors (Figure 2). The simplification level of the city 

depends on the de-instancing threshold level in the tree.  

 

2. Proceduralization 

Proceduralization phase starts with defining a distance 

metric between a pair of component types, based on their 

repetition, closeness, and consistency of instances. That 

distance metric is used  as edge weights on the terminal 

types graph (Figure 3), which is then partitioned using 

Girvan-Newman clustering [2] iteratively to compute the 

hierarchical parse tree. After a pre-order traversal of the 

parse tree, current instantiation of grammar G is exported 

by exporting rules and placing a relative transformation 

matrix before each non-terminal/terminal.  
 
RESULTS and DISCUSSION 

Our approach enables a variety of applications, as well as 

compaction of models. Our framework reduces geometry 

and texture sizes by 2 to 21 times, producing grammars 

with 177 to a few thousand terminals and 5 to 

approximately 100 non-terminals. Preprocessing takes 2-4 

hours for a city of 3,000 to 6,000 buildings.  

 

The graph in Figure 4a shows two cost/benefit curves for 

each or our models. The cost is the average standard 

deviation of all clusters (i.e., feature vector error) and the 

benefit is the number of polygons eliminated while de-

instancing for various threshold values td. For the curve 

labels ending in “-poly”, the representative component (per 

cluster) is chosen as the one with the least number of 

polygons for the other curves the representative component 

is the component closest to the mean of the cluster. The 

cost/benefit curves imply that a good trade off occurs near 

the bottom of the “u” shape.  Moreover, the selection of 

the least cost representative components does yield an 

overall benefit (i.e., 10x fewer polygons at about same 

clustering error). Figures 4b-e demonstrate the model at 

various locations along the de-instancing progression. 

Figure 2. Building Clusters. Four building clusters computed 

automatically based on feature vector similarity. Inset: if the 

feature weights are adjusted such that building height is 

emphasized, the first cluster is divided into two separate 

categories. 

Figure 3. Proceduralization. a) The initial terminals in a city. b) The initial component type graph for Girvan-Newman clustering. For 

edge values 𝑤𝑚 = 1 and 𝑤𝑠  =  0 and for edges of buildings within “d” distance; we also do not show unique edges. Dashed ovals are 

the first clusters (i.e., nonterminals A and B). c) Another level producing nonterminal C. d) Final clustering producing the axiom S. e) 
The parse tree of the small city. 



 

Figure 5 shows original versus proceduralized versions of 

Chicago and San Francisco, where the component types 

are reduces to ½ to ¼ times. Our framework also enables 

interactive synthesis of new cities, with the style of the 

original. Given a starting symbol (as “GHC” in Figure 6), 

our method best fills it with the grammar of New York and 

generates new content, while keeping the style and 

neighborhoods. 
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Figure 5. City Views. We show a-c) original Chicago and San 

Francisco, and b-d) de-instanced and proceduralized versions. 

Figure 6. User-Controlled Synthesis. The user specifies a starting symbol (“GHC”) and 
our method best fills it with the grammar and generates new cities. 




