1

Integration of High-Level Animation
Controls, Simulation Methods, and
Gestural Specification

Brook Conner Henry Kaufman Matthias Wloka
Bob Zeleznik Daniel G. Aliaga Wm. Scott Draves
Philip M. Hubbard Brian Knep Michael J. Natkin
Paul S. Strauss John F. Hughes Andries van Dam *

September 9, 1990

Abstract

We present an interactive modeling and animation system that
enables the close integration of a variety of simulation and animation
paradigms. The system models diverse objects undergoing a wide va-
riety of changes over time. These changes can be specified by different
methods of control. Real-time update speeds are facilitated through
maintenance of data dependency networks combined with a detailed
caching and data invalidation scheme. The system is an extensible
testbed, enabling research in the interaction of disparate controller

types.

Introduction

The field of computer graphics has produced many useful methods of mod-
eling objects and modeling changes over time. Modeling methods have been

*This work was sponsored in part by grants from IBM, Sun Microsystems, NCR, and

Digital Equipment Corporation

devised for many kinds of objects, using techniques such as implicit surfaces,
procedural models, and traditional solids modeling. Methods of modeling
changes over time are equally diverse, encompasing traditional animation
styles such as keyframing, inverse kinematics, constraint methods, and in-
verse dynamics.

What has been lacking is a consistent paradigm within which such mod-
eling and animating methods can work together. General tools, such as
traditional NURBS or solids based CAD/CAM systems, are typically very
low-level, producing models that are a set of simple objects with little se-
mantic meaning to the model. However, higher-level, procedural systems,
such as grammar-based tree-modeling systems, are too specialized to handle
arbitrary modeling and animation tasks.

BAGS, the Brown Animation Generation System, addresses this prob-
lem by enabling sophisticated objects to interact with complex methods of
controlling changes over time in a flexible and extensible manner. We begin
by describing the problems that BAGS was designed to solve, followed by a
detailed description of the design and implementation of the system.

1.1 Electronic Books — The Goal of BAGS

The Brown Animation Generation System[Str88] was conceived as part of our
ongoing research to develop the technologies necessary for interactive elec-
tronic books. We believe that electronic books used for teaching, research,
and general instruction! will commonly involve “illustrations” that are ani-
mations of scientific, mathematical, and engineering visualizations[Y MvD85].
BAGS is designed to create and allow interaction with this kind of illustra-
tion.

Many current media for animations in electronic books, like CD ROM
and video disks, are limited, in that they present the user with a predefined
sequence of frames, a canned movie. A book utilizing such an animation
is inherently limited to presenting the information as the author thought it
should be presented. But the author cannot and should not be expected to
anticipate all possible situations in which the book might be used.

!'We restrict ourselves somewhat, here, as there is no real reason “electronic books”
cannot serve in every capacity that standard books do. We come from a background of
technical and scientific illustration, but the system is not limited to such work.

An “illustration” in an electronic book must therefore be richly interac-
tive. If it is not a canned animation, it allows the user to direct the animation,
tailoring it to her needs. An abstract model of the phenomena being illus-
trated can be such an illustration. The model itself must be independent of
any tools used to interact with it.

We characterize such a paradigm as four-dimensional modeling, since it
specifically includes the specification of user-controlled, time-varying struc-
ture or behavior as an integral part of representing the model.

1.2 What is Four-Dimensional Modeling?

A system with separate modeling and animation phases makes it difficult to
create animations that go beyond the application of linear transformations
to rigid bodies. Rather than building a model, then allowing a small set
of parameters to vary over time, a four-dimensional modeling system allows
any part of the model to change at any point in time. Anything that can be
modeled, can be modeled over time.

A full-blown four-dimensional modeling system is a highly flexible system
to create a variety of non-trivial animations. But its very power presents
problems in specification, especially when the system is used for electronic
books. Interactive illustrations can be very useful and flexible tools. Cur-
rent systems tend, however, to be difficult to use, having long and steep
learning curves before the author becomes truly capable. We must recon-
cile this difference in the skill of the user with the complexity of the system
by allowing the four-dimensional modeler to build animations using a wide
variety of control methods[Zel89]. We must seek to minimize the necessary
prerequisites. BAGS seeks to maintain a flexibility of specification, although
our initial emphasis has been on designing the framework of the system and
implementing track-based animation controls.

2 An Overview of BAGS

All models created with BAGS are expressed in the SCEFO (SCEne FOr-
mat) language. A SCEFO script is a human-readable text file which de-
scribes the set of objects that make up the four-dimensional model. Objects
supported by BAGS include solids (cube, sphere, torus), surfaces (objects

of revolution, spline patches, swept and extruded objects), and constructive
solid geometry objects.

Changes over time are specified by applying change operators to the
objects which modify some of their properties. Change operators include
standard linear transformations, as well as deformations, and operators that
specify visual properties and other object-specific parameters.

The values associated with the change operators are specified as time-
value pairs (i.e., control points), which are interpolated with a user-specified
interpolation method. Note that this script-based description is an editable
modeling history, since the model is specified as a set of changes rather than
an initial and final description (i.e., as sets of polygons, or as objects each
with a single final transformation).

BAGS maintains a database for a given model. The database is an
internal representation of the SCEFO script, consisting of a list of objects in
the scene. Each object is associated with a list of changes. Thus, the database
is a complete representation of a time-varying scene. The information can be
presented either serially, as a movie, or in a random-access form at specific
times.

The interface to this database is through a well-defined API (Application
Program Interface). This API allows the transparent distribution of the
model across multiple processors and even machines. The programmer /user
can inform the database of changes to objects, create new objects, or inquire
various relevant data about an object for a particular time. Flexible and
powerful user interfaces to this database can be built on top of the API.

BAGS is designed in an object-oriented fashion. Thus, the API commu-
nicates directly with the objects in the scene. Each object is aware of the
changes that are applied to it, and knows how to handle requests made by
the API. Using the API, a program can apply changes to objects, or request
information from objects, such as position, UV maps, or polygonal boundary
representations.

The API interface also allows multiple users to access and change the
database at the same time. Thus, several people can collaborate (possibly
remotely) on creating and interacting with one complex scene. This inter-
action is not limited to persons, as the database can easily be changed by
a program querying data through the API, making decisions based on that
data, and then making changes to the data through the API.

The various tasks in creating a four-dimensional SCEFO model, such

4

as building new objects, positioning them, and specifying their changes over
time, all involve the manipulation of a subset of the information that defines
the complete model. BAGS provides clients of the database specialized
to present and interact with some particular aspect of the model. Typical
clients include a modeling hierarchy view, a graph-based editor showing in-
terpolation methods for change operator values, and a hardware-based solids
modeler.

3 Objects as Structural Elements

Any scene must have displayable objects in it.? In BAGS, these objects
are instances of object classes. When an object is created, its class is a
default, generic class. An object can be explicitly assigned its class through
the use of a special-purpose change operator we call a chrep (for change
representation). Alternately, new instances can be told to inherit all the
changes made to a previously created instance, including any chreps made to
that object. This sort of inheritance can be compared to the object-oriented
programming concept of delegation[Weg87][HN8T7], where a new object is
created by extending a prototype object. Through extensions of prototypes,
BAGS supports the usual notion of object hierarchy.

BAGS supercedes this hierarchy, however, because objects, once created
from other objects, do not forget about their prototype objects. Changes
can be applied to the prototype, after the new object has been created, and
these changes will be reflected in the new object. This is enabled by BAGS’s
manner of storing the changes applied to the object, and not simply the object
itself. This provides BAGS with some very powerful features.

For example, consider a set of rivets (shown in figure 2), each created
from a single prototype rivet. Then each rivet is transformed independently,
spun around, scaled, bent, etc. We can now translate every rivet in the
scene by translating the prototype rivet. This change will occur in world
space if we apply it after the changes to the new rivets. A system like

?We will see examples of useful, non-displayable objects in section 4. Also, while it is
possible to consider auditory models, or tactile models, or perhaps yet more esoteric meth-
ods of presenting data, we restrict ourselves to primarily visual data. It 1s worth noting
that the methods presented here apply equally well to any method of data presentation,
as the model is abstract.

PHIGS normally requires such changes to occur before the changes to the
new rivets. We could perform such a change by switching the order of matrix
concatenation, but then we could not apply changes to all the rivets before
they were otherwise changed. We call such changes out of order, to reflect
the flexibility in specification found in BAGS.

3.1 Changes to Objects

We refer to the list of changes applied to an object as its state. These changes
completely determine every aspect of the object. The state tells the object
both how to behave and how to appear at any point in time. Since the state
completely describes the object, an object does not need any sort of “private
data” internal to itself.

A chrep is a special change that associates a set of functions to the object.
These functions have a one-to-one correspondance with functions supported
by the database API. A general API call simply maps to the appropriate
object-specific function. The set of functions also contains a function for
each kind of change operator, providing a technique to evaluate it. Notice
that a chrep is an example of delayed binding. The sets of functions are
associated with the object at the last possible moment. We will return to
this concept of sets of functions and their association to the object’s class
and state in section 3.2.

3.1.1 Change Operators

Change operators are ways of communicating arbitrary information to ob-
jects. They can also be used to store arbitrary data in the state, which
proves useful in dependencies and hierarchies, when several objects might
wish to obtain the same data from one object. Uses of this stored data will
be discussed further in section 5.

Changes include standard linear transformations (scale, translate, ro-
tate, shear, mirror, or an arbitrary transform specified by a matrix), non-
linear changes (twists, bends, waves, tapers, and free-form (Bernstein-Bézier)
deformations[Far90]), and changes to affect surface attributes (color, re-
flectance, transparency, bumpiness, and others dependent on the lighting

model).

Additionally, changes can specify parameters to objects. These parame-
ters give data, in the form of name-value pairs, to an object that is relevant
only to very specific classes. As an example, a super-quadric takes three
parameters, giving toroidal radius and the two exponents.[Bar81] Objects
that had been chreped to a super-quadric would see this named data and
understand how to interpret it. Objects that had been chreped to another
type of object would see the data, not recognize it, and thus ignore it.

3.1.2 Passing Information Between Objects

A direct extension to parameters is simple message-passing. By allowing
objects to export data, we enable communication between objects. We have
implemented an efficient message-passing system that allows arbitrary named
values to be sent to instances of object classes, as well as exported from them.
These values can be either atomic values, or lists of values (i.e., essentially a
Lisp expression). Atomic values supported include numbers, strings, various
functions, pointers to data structures, and object identitiers.

An example of exportable information is an object’s current position. One
object can ask another object to export its position. The receiving object can
then use this value to perhaps set its own position, or set its orientation so
that it “looks at” the second object, or it can use the exported value as part
of a more complicated expression. In short, an object can export data about
itself, and receive such data from other objects, which can then be used to
set or alter any portion of the object’s data. This provides a medium-level
motion control technique, which can provide simple constraints.?

These messages are specified explicitly in the SCEFO script and are
therefore stored as part of the model. The recipient object receives a new
change operator, corresponding to the message. The sending object (pre-
suming the message does not come from a database client) creates a new
change operator for itself, so that it can remember who it sent the message
to, and what it was. Thus, when an instance in a model is exporting some
data, the database can make sure to notify any dependent instances (that is,
an instance using the data) when the data changes. This data dependency
network is discussed further in section 5.

3These constraints are typically geometric, but there is no reason the cannot be oth-
erwise. As an example, consider an object that changes color as a function of another
object’s position.

3.2 Object Classes

BAGS supports a variety of object classes. By definition, each object class
is determined by a set of methods. Methods determine how to handle change
operators, as well as how to handle requests by the database API.

The class can be initially determined in one of two ways. If the first
change to an object is a chrep operation, the class is determined explicitly.
A chrep is an assignment of class. Alternately, an object can be used as a
prototype of another object. The second object is an extension of the first.
An object that is an extension of another object receives the entire state of
the prototype object.?

By knowing its class, an object knows which set of methods it should
apply to its data. We have discussed this before in reference to a set of
functions that correspond to the database API. Setting an object’s class
thus determines how the object will respond to requests from the API.

The methods of a class can be viewed as operations on its state. A method
takes the state as input and produces a value. This value could be a vector
representing position, a matrix representing the current transformation ap-
plied to the object, or a set of polygons representing the shape of the object.
The object is little more than a handle to the complete description found in
the state.

3.2.1 Basic Objects

Object classes can be divided into two broad categories, basic and aggregate.
Basic objects need no changes, other than the initial one telling them what
class to act like. The class indicator is a complete definition for a basic object.

This definition does not rule out the possibility of object-specific param-
eters. It simply requires the object to behave in a reasonable fashion if the
parameter is not specified. These defaults are coded into the methods of
the class. Such an example is a super-quadric, which can take parameters
indicating the squareness of the corners. If these are not specified, then the
super-quadric should pick a reasonable default.

Other examples of basic objects supported by BAGS include spheres,
cubes, cones, cylinders, torii, and points.

4Circularities, such as A extension of B, B extension of C, C extension of A, are not
permitted

3.2.2 Aggregate Objects

Aggregate objects are sets of objects combined and treated as a single new
object. The simplest aggregate is a group, several objects being treated as
a single object. Another familiar aggregate is a CSG (constructive solid
geometry) object. Other aggregates supported by BAGS include spline
paths (composed of groups of points), prisms, objects of revolution (both
small groups of spline paths), ducts (multiple cross-sections interpolated
and extruded along an arbitrary path), bicubic patch meshes, and blobby
surfaces] WMWS86] (blending the surfaces of the objects of which it is aggre-
gate).

Aggregates and their subparts maintain knowledge about the relation-
ships between each other, in a fashion similar to the aforementioned pro-
totype hierarchy. Consider a spline path. It is made up of several point
objects, used as control points for the spline. Translating a point, after the
path has been made, will change the shape of the path. If, in turn, an object
of revolution has been created from this spline path, it too will change shape
to reflect the change in the point. Had a CSG been created with this object
of revolution, it too would change. The extreme example of this dependency
is when every object in a scene is derived from a single root object.

3.3 Reinheritance

Recall that objects inherit their methods in one of two ways. First, it can
be directly told what its methods are through the use of a chrep statement.
Second, an object derived from another object through extension has as an
implicit chrep, the chrep applied to its parent. This sort of inheritance is
similar to inheritance in traditional object-oriented programming.

Certain changes, however, can modify this inheritance. A sphere that
has been bent and twisted by deformation operators may not have the same
properties it once had. Its center of mass, or its position, may have shifted.
It probably cannot be rendered the same way it was before (for example, it
can no longer be ray-traced by the same code). In short, its methods must
deal with a new set of problems. This can be solved in two ways. Firstly, the
methods can be arbitrarily general. This is not efficient, since the simplest
method becomes burdened with a series of special cases. When changes are
compounded, the number of special cases can become prohibitively high.

Instead, certain changes alter the set of methods associated with the
object. In short, the objects change their inheritance in response to the
changes applied to them. Note that the previous inheritance is not lost, as
it can be derived from subsets of the state of the object. The correct set of
methods to use can be determined by starting at the beginning of the state of
an object and accumulating all chreps and all changes that otherwise change
the set of methods. The sum total produces the correct set of methods to
use when evaluating any change at any point in the object’s state.

This scheme means that we are dynamically creating new object classes
to fit the needs of the environment. Note that the user of a model does not
see this creation. As far as the user is concerned, the object is still of the
type specified by an earlier chrep. These new classes are the object’s ways
of performing more efficiently. A simple analogy is a trench digger digging
trenches in soft dirt. The digger will use a shovel. However, when rocky soil is
reached, the trench digger will probably switch to a pickaxe. Compare this to
a sphere performing ray intersections with itself. At first, it will directly solve
the ray intersections. When it is bent by a non-linear change, it will realize
that the method (or tool, to maintain the analogy) it was using is no longer
effective. It will use a new method, perhaps polygonizing itself, applying the
deformation to the polygonal object, and using the ray intersection with that
polygonal object as its own ray intersection.

The methods used in building object classes come from a common set of
building block methods. The methods include functions such as polygoniza-
tion routines, ray-object intersection routines, and transformation matrix
accumulation routines for a variety of situations. Rather than organizing the
methods as a structureless function pool, we have found that it makes more
sense to provide them with a software hierarchy of their own. The structure
we have provided is a traditional delegation structure, that is, the interface
to the object does not change, only the set of methods that implement the
interface at a particular instant may change.

Fach initial class that an object can have (each class specified by a chrep
statement) has a corresponding set of functions in the larger set of all building
block functions. FEach of these sets has other, smaller sets of overriding
functions associated with it, corresponding to the modifications made in an
object class in response to a particular change. For instance, the sphere has
a direct ray intersection method, but it may also use the general polygon
intersection method if the sphere is deformed. This structuring simplifies

10

the addition of new initial object classes®. It also allows the set of change

operators to be able to act on all available object classes in a reasonable way.
Note that this structuring does not prevent us from gathering functions for
a new class from any part of the source area, but this structure corresponds
to the way the user conceptualizes what the different classes of objects are.

4 Objects as Controllers

As noted, SCEFO supports a number of intrinsic operations which may be
used to change objects over time. A complete four-dimensional modeling
system, however, should provide other, higher-level control methods.

We can implement control methods as new object classes, or as clients of
the database. By using objects as controllers, we make the control method
inherent in the model. The controller becomes part of the semantics of the
model. By using clients as controllers, the semantics are missing from the
model. Changes added or modified by a client have no identifying features
to indicate the semantics of the client. The changes are normal change oper-
ators. A control object, however, encodes sematic meaning into the model,
by being stated explicitly in the SCEFO script. Note that this concep-
tual distinction is not as distinct in the implementation of BAGS. Both
implementations use the same message-passing techniques first described in
section 3.1.2. They are just on opposite sides of the API. The choice of which
to use becomes a decision based on the desired semantics of the model.

To dynamically simulate the interaction of the visual objects representing
a ball and a wall, for example, we could create an instance of a dynamic
simulator object and use the general message-passing system supported by
object classes to pass the ball and the wall to the simulator object. The
simulator object would then compute the interaction between the ball and
the wall and update their positions accordingly. Other relevant information,
such as the force of gravity to use, can also be passed to the simulator object
using the message-passing abilities of BAGS. This simulator object could be
as simple as a specialized ball-wall handler that could do nothing more, or a
vastly more complicated arbitrary Newtonian dynamics system, or anywhere
in between.

®Despite BAGS’s rich set of initial classes, we may wish to do this frequently. We
discuss some reasonable new classes in section 4

11

We could also implement the same dynamics simulator as a client. It
would be told by a user (or perhaps a program) what objects to consider.
It would use the API to query information about the states of the relevant
objects. When it had computed a solution, it would send information to
the objects, telling them how to alter their states. Because objects in the
database and clients all use the same message-passing protocol, integration
of object-based behavior and client-based behavior is relatively easy.

4.1 When To Use Different Control Methods

Control objects lend themselves to automatic parts of a model, while control
clients lend themselves to interactive parts of the model. A flag flying in
the breeze can be easily implemented as a “cloth” object. The cloth would
tell another object (most likely a spline patch) how to behave. Thus, the
“cloth-ness” of the flag is inherent in the model. Alternately, constrained
kinematic motion of objects, since it is more likely to be an interaction tool,
(such as snap-dragging[Bie90]) is more logically implemented as a client of
the database. In practice, how a controller is implemented is more a matter
of convenience than anything else. By the nature of object communication
and message passing, it makes little difference to the other objects in the
scene whether they are talking to an object or to some external process. The
objects simply receive messages and process them.

Control methods, whether clients or objects, can be used as either mod-
eling tools or animation tools. When used as modeling tools, the methods
continuously update the values of a single control point in a change to an
object. If the model is being displayed at a single instant in time, this is
visible to a user as continuous change in the scene. A simple example is a
hardware dial controlling the translation of an object. When used as anima-
tion tools, controllers set the values of a series of control points. A simple
example of this is a key-frame system, which sets values at a series of times
entered by the user. Another example is a controller simulating gravity. Such
a controller would set positions for the object at various times, according to
the rules of gravity.

Since a controller is explicitly passed the objects it is to control, the
scope of high-level motion-control methods can be restricted to the specific
objects for which this motion control is desired. Consider a detailed room.
We might wish to model a ball dropping in this room using dynamics. The

12

simulation will be much more efficient if it only considers the ball and the
floor, and ignores the walls and ceiling. The user or a heuristic program can
determine that the ball will not interact with the walls and ceiling, and inform
the simulator that it can safely ignore them. Such restriction improves the
system performance perceived by the user when computationally expensive
methods, like dynamic simulation®, are used.

4.2 Controlling Controllers

The message-passing system also permits control objects to be passed to
other control objects, allowing nesting of motion-control objects that can
then work in unison. As an example of how this might be useful, let us con-
sider a sailboat model. We wish to model the sails with a cloth simulator,
and the motion of the boat through the water with a fluid dynamics simu-
lator. These two simulators should, of course, affect each other’s results, as
the sail pulls on the boat, and the boat serves as the anchor points for the
corners of the sail. A “master coordinator” control object could be passed
the two simulator control objects, which have already been passed the visual
objects comprising the sailboat and sail. The master coordinator could then
interleave the execution of the simulators during their iterative processes, as
a means of relaxing the system. We refer to such master coordinators as
controller-controllers.

Such an object can be viewed as a generalization of aggregate struc-
tural objects. Thus, different ways of combining controllers become different
classes of controller-controllers. One class might prioritize controllers, ex-
ecuting all time steps of higher priority objects first, while others might
interleave time steps, and others might use yet-unthought-of schemes for in-
terfacing controllers.

One particular area which we have yet to resolve is controllers so dis-
parate that their data is incompatible. As an example, consider Newtonian
dynamics (the usual F' = ma physics) versus Aristotelian physics (where
force is proportional to velocity, not acceleration, thus F' = mv). Newtonian
systems will wish to communicate accelerations, but Aristotelian systems
have no notion of acceleration, and thus would be unable to handle such

®Dynamic simulation is typically O(n?) in complexity, and simulation with dynamic
constraints is typically O(n®)

13

data. When controllers following such incompatible systems wish to control
the same object, the desired results become unclear. While interleaving time
steps might resolve some such differences, it remains to be seen whether it
can solve all such incompatibilities.

5 Efficiency Concerns

Realistic images, or even non-realistic images of interestingly complex scenes,
require prohibitively high bandwidths. Take for example something as ba-
sic as pattern-mapping. Perhaps we wish to paint on an object as part of
an animation, changing the pattern with each frame[HH90]. With a few
such objects in the scene, memory bandwidth requirements quickly exceed
the capabilites of anything outside of custom hardware. We require high
computational efficiency as well. As noted earlier, many desirable modeling
techniques (such as constraint satisfaction or dynamic simulation) require
large amounts of calculation.

We have implemented our system with a variety of mechanisms to speed
update of all relevant data while minimizing bandwidth requirements. We
cache data which we consider expensive to recompute on the fly. Additionally,
objects keep track of what other objects depend on their state. Thus, when an
object is changed in some fashion, it broadcasts this to all dependent objects,
producing the minimum effort to keep the entire model valid. Updating
the model is done with lazy evaluation, where data is tagged as simply out
of date. If no one ever wishes to see the invalid data, we will not waste
time computing it. Finally, the entire database system is constructed to be
transparently distributed across multiple machines.

5.1 Caching Data

Objects create cache data whenever the memory expense of retaining data
is less than the processor expense required to compute it. A clear case of
when caching is useful is boundary representations of CSG objects, something
which can be slow to compute[LTH86]. Caching a transformation matrix
might not be as wise, unless the matrix was obtained by a laborious series of
calculations.

Cached data is kept in the state of the object itself. Each type of data

14

that might be cached is supported by a special change operator designed to
cache that particular type of data. These cache “changes” store the data and
a series of time intervals, indicating when the data is correct.

If an object is asked for the data in a cache for a time not covered by the
cache’s intervals, the object determines that it must compute the data. It
may then decide to cache this new data with a new interval. Data in a cache
can be invalidated for very specific portions of time by removing sub-intervals
of the intervals. Different operations on the cache intervals have other effects.
For example, the effects of a change can be scaled in time (slowed down, or
speeded up) by scaling the interval in the corresponding cache.

To speed propagation of changes throughout the model, an object that is
referenced (through templating, aggregation, or direct reference of exportable
information) maintains a list of the objects that depend on its data. Like
caches, these are stored as special change operators, containing the identity
of the object as well as the nature of the dependant data. Such a list, when
maintained throughout the entire system, is the functional equivalent of a
data dependency network.

Let us examine a brief example, illustrated in figure 3. A cube and a cam-
era exist in a scene. The camera asks the cube for its position, orienting itself
to look at that point in space. When we move the cube, it traverses its own
state, marking certain caches occuring after the move as invalid for the time
interval of the move. Not all caches will be affected by these changes. For
example, a boundary representation cache will not be invalidated, provided
a transformation matrix is applied as well.

When the cube reaches the point in its state where the reference by the
camera 1s noted, it will tell the camera that the data corresponding to the
reference has changed. The camera will then, in turn, traverse its state,
marking data rendered invalid by the change in the cube’s position.

It is clear that that altering data will update only those portions of the
database that need to be updated. When working with a large model, it is
crucial that time not be wasted on parts that have not changed. Caching
data is a method to exploit coherence in the model. Heuristics (hard-coded or
determined at runtime) can decide what to cache in order to balance memory
expenditures against compute expenditures.

15

5.2 Distribution Across a Network

We are often compute-bound when involving large simulations. Physically
based modeling techniques are often of a complexity that is a polynomial
in the number of objects involved in the simulation. We can increase our
computing resources by using additional machines.

The BAGS database is designed to be distributed across many machines
of different architectures using stream sockets. Any message-passing between
objects, or between the database and clients (that is, any message-passing at
all) has the capability to occur across machine boundaries. We perform this
by replicating the database on all machines. This is not as expensive as it
might first sound, as the replication is not a fully-detailed one.

When a new copy of the database is created on a machine, objects are
duplicated, but without their full state information. Rather, they store the
net address, indicating where the full details might be found. A client re-
quiring sporadic data from this new database would receive the data through
the same API, but the real source of the data is the remote machine. If the
client requests data persistently, then the state of the object will be copied
over to speed later requests.”

Data transmission is further improved by grouping related requests going
across the network into transactions. Each transaction is a single data struc-
ture that is transmitted along the network. This saves overhead generated
by network events.

Note that, like the lazy evaluation scheme for general data maintenance,
the networking abilities balance memory efficiency with processor efficiency.
Sporadic requests are handled across the network to conserve memory on the
local machine. Persistent requests choose to optimize speed, since they are
often indicative of a need for interactivity.

6 The Prototype Implementation

We currently have an interactive distributed modeling and animation system
running on the BAGS substrate[Bro90]. We have a variety of networked

"Currently, the client explicitly indicates whether its requests are sporadic or persis-
tent on an object by object basis. There is no reason that good application of heuristic
techniques cannot automate this procedure. The interface to the API remains the same.

16

clients to edit all aspects of the database, from time-varying parameters to
model hierarchy to three-dimensional gestural specification[Gol90][GGH*89].
Articulated bodies can be built and manipulated gesturally in real time using
an inverse kinematics algorithm[Bor90]. As a further example, we have im-
plemented a finite-element cloth simulator which can interact with other ob-
jects in the scene through attachment and nonpenetration constraints based
on [Wei88|. Currently we are integrating a rigid body dynamics simulator
into the system as wel[MWS8§]|[Hah88].

BAGS is implemented entirely in the C programming language. We con-
sider portability to be of high importance, and thus we regularly maintain
the BAGS code on many different architectures. We currently work on Sun
SPARCstations, Stardent GS1000’s, Hewlett-Packard 835 Turbo SRX’s, and
IBM RISC System/6000 POWERstations. This desire for portability is one
of the principle reasons we do not use the increasingly popular C4++ program-
ming language, as there are not yet suitable programming environments on
all the architectures we use.

Commercial systems, such as Alias and Softimage, emphasize batch ani-
mations. Research systems tend to emphasize procedural models and forward-
simulated, physically-based models|[BPZ87][Kal90]. BAGS attempts to inte-
grate simulations and animations into one coherent framework. This provides
facilities for complex animations highly suited for interactive illustrations.

Our system, while still in progress, already shows a variety of efficient
integration methods. The Brown Animation Generation System establishes
a powerful, extensible testbed for further research into the questions raised
by integration of disparate animation paradigms.

7 Future Work

We have presented the essential design of the BAGS kernel. Aside from
the continuous debugging and tuning inherent in a new, large system, we
consider the design structurally sound. It handles many useful classes of
problems, and supports a very rich animation-creation environment.

The support provided by the system enables experimentation, and allows
us to seek new methods of specifying complex models. We plan to search
for, in particular, better ways of enabling the user to exploit the full power
of the system. Complex dependencies, in particular, as well as subtleties of

17

time-dependent behavior, seem to be difficult to represent in a viable user-
interface.

Specifying the interrelationships between dissimilar modeling methods
is also an area ripe for further study. Currently, we have no method of
indicating complicated relations between modeling methods outside of the
programmatic method of typing in SCEFO source directly. While this will
always give the user the most power and flexibility, it is not the way users
wish to interact with their models at all times.

The BAGS system provides a rich environment for further research in
the interraction of dissimilar modeling methods. In the years to come, we
will be seeking to integrate wider and wider classes of modeling paradigms,
in progressively more useful ways.

Acknowledgements

BAGS is a large project, and we could not begin to thank all those who
have helped, and are helping, with its completion. However, we would like to
thank the entire Brown University Computer Graphics Group for their con-
tributions, both as implementors of BAGS, and as users. We would also like
to thank the technical support staff of the Brown University Computer Sci-
ence Department, for their help in maintaining the hardware and operating
system.

References

[Bar81] Alan H. Barr. Superquadrics and angle-preserving transforma-
tions. I[EEE Computer Graphics and Applications, 1(1), 1981.

[Bie90] Eric A. Bier. Snap-dragging in three dimensions. In Proceedings
of the ACM SIGGRAPH, pages 193-204, March 1990.

[Bor90] Lisa Kay Borden. Articulated objects in bags. Master’s thesis,
Brown University, 1990.

[BPZ87] CIliff Brett, Steve Pieper, and David Zeltzer. Putting it all
together: An integrated package for viewing and editing 3d

18

[Bro90]

[Far90]

[GGI*8Y]

[Gol90]

[Hah88]

[HHO0]

[HNS7]

[Kal90]

[LTHS6]

[MWSS]

microworlds. Technical report, The Media Laboratory, Mas-
sachusetts Institute of Technology, 1987.

Brown University Computer Graphics Group. Demo reel, May
1990. Undistributed video tape.

Gerald Farin. Curves and Surfaces for Computer Aided Geomet-
ric Design. Academic Press, second edition, 1990.

Tinsley Galyean, Melissa Gold, William Hsu, Henry Kaufman,
and Mark Stern. Manipulation of virtual three-dimensional ob-
jects using two-dimensional input devices. Technical report,
Brown University, 1989.

Melissa Gold. Multi-dimensional input devices and interaction
techniques for a modeler-animator. Master’s thesis, Brown Uni-
versity, 1990.

James K. Hahn. Realistic animation of rigid bodies. In Proceed-

ings of the ACM SIGGRAPH, pages 299-308, August 1988.

Pat Hanrahan and Paul Haeberli. Direct wysiwyg painting and
texturing on 3d shapes. In Proceedings of the ACM SIGGRAPH,
pages 215-223, August 1990.

Brent Halperin and Van Nguyen. A model for object-based inher-
itance. In Research Directions in Object-Oriented Programming.

The MIT Press, 1987.

Devendra Kalra. A Unified Framework for Constraint-Based
Modeling. PhD thesis, California Institue of Technology, 1990.

David H. Laidlaw, Willaim B. Trumbore, and John F. Hughes.
Constructive solid geometry for polyhedral objects. In Proceed-
ings of the ACM SIGGRAPH, pages 161-170, August 1986.

Matthew Moore and Jane Wilhelms. Collision detection and re-
sponse for computer animation. In Proceedings of the ACM SIG-
GRAPH, pages 289-298, August 1988.

19

[Str88]

[Weg87]

[Weis8]

[WMWS6]

[YMvD85]

[Ze189)]

Paul S. Strauss. Bags: The brown animation generation system.

Technical Report CSS-88-22, Brown University, 1988.

Peter Wegner. The object-oriented classification paradigm. In
Research Directions in Object-Oriented Programming. The MIT
Press, 1987.

Jerry Weil. A simplified approach to animating cloth objects.
written while at Optomystic, 1988.

Brian Wyvill, Craig McPheeters, and Geoff Wyvill. Data struc-
ture for soft objects. The Visual Computer, 2(4), 1986.

N. Yankelovich, N. Meyrowitz, and Andries van Dam. Reading
and writing the electronic book. IEEE Computer, 18(10), October
1985.

David Zeltzer. Physically-based modeling: Past, present, and
future. In Proceedings of the ACM SIGGRAPH, pages 201-203,
December 1989.

20

read ("sphere.off") sphere; /* reading default objects from files
read ("cube.off") cube;

read ("light.off") light;

read ("camera.off'") camera;

template (egg) sphere; /* making an object from another one */

/* values to change operators are of the form: < time, value > */
/* values can be atomic values or lists {enclosed in braces} */
change (egg) translate <0, {1,1,1}>;
change (cube) translate <0, {-2,1,0}>,

rotate <0, {{-2,1,0},{0,0,1},45}>;
change (camera) translate <0, {0,0,-4}>;

change (sphere) shade_val <0, {LASH_SURF_COLOR, {1,0,1}}>;

change (light) shade_val <0, {LASH_SRC_INT, {.9,1.9}}>,
set_parameter <0, {"light_type", "directional"}>,
rotate <0, {{0,0,0}, {1,0,0}, 60}>;

Figure 1: A simple SCEFO script, showing object creation, and application
of changes

21

Figure 2: Light arrows are performed before extending the prototype, and
dark ones are performed after. Note the difference in size and direction of
the light arrows.

Figure 3: A simple data dependency relation between a cube and a camera

22

