2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

Women in Computer Vision (WiCV) Workshop
Las Vegas, Nevada, USA, 26 June - 1 July, 2016

Procedural Editing of 3D Building Point Clouds (ICCV 2015)

Ilke Demir
Purdue University

idemir@purdue.edu

Daniel G. Aliaga
Purdue University

aliaga@purdue.edu

Bedrich Benes
Purdue University

bbenes@purdue.edu

Figure 1: Pipeline. An input point cloud (a) is semi-automatically segmented (b), the segments are used for completion with
consensus models (c), and placed in a tree. Then, the tree is parsed and rules are discovered to enable procedural editing (d).

1. Introduction

Thanks to the recent advances in computational photog-
raphy and remote sensing, point clouds of buildings are be-
coming increasingly available, yet their processing poses
various challenges. In our work, we tackle the problem of
point cloud completion and editing and we approach it via
inverse procedural modeling. Our approach consists of 1)
semi-automatic segmentation of the input point cloud with
segment comparison and template matching to detect re-
peating structures, 2) a consensus-based voting schema and
a pattern extraction algorithm to discover completed termi-
nal geometry, all encoded into a context-free grammar, and
3) an interactive editing tool where the user can create new
point clouds by using procedural copy and paste operations,
and smart resizing. We demonstrate our approach on editing
of building models with up to 1.8M points.

2. Previous Work

Recently, there has been a significant increase in the
availability of 3D point cloud datasets of buildings and other
urban structures. This data representation often lacks high-
level grouping or segmentation information. This lack hin-
ders (i) directly and intuitively editing such point cloud
building models, (ii) creating novel polygonal/point-based
models preserving style, and (iii) obtaining complete build-
ing models. Some methods have centered on segmenting
the point cloud into components (e.g., [5]). Others provided
3D polygonal urban reconstructions from point data (e.g.,
[3]), explored point editing tools (e.g., [, 4]), or addressed
model completion.

In contrast, our key motivation is to directly inspect

the point cloud in order to segment and organize repeating
structures into a hierarchical representation and then to en-
able directly performing a set of “what if”” urban design and
planning operations. Our method discovers (and organizes)
repetition improving both completeness and quality of sam-
pled structures. Further, the improvements are carried for-
ward during editing, hence improving subsequent surface
triangulations of novel structures as well as preserving the
original structure.

3. Segmentation

The first stage of our approach is to segment the model
by discovering dominant planes, extracting distance-based
clusters, and finding additional repetition within each plane
or cluster. Moreover, the user may interactively select a re-
gion of interest and generate additional segmentation.

Given a region of interest, we use a multi-pass partition
algorithm to automatically segment the model into a set of
planes and (non-planar) clusters. During each planar seg-
mentation pass, the most dominant planes are found using a
RANSAC-based plane-fitting method based on PCL. When
the planes are thrown out, the remaining non-planar struc-
tures are mostly disjoint groups which can be clustered by
using Euclidean distance-based clustering. We further de-
compose a planar or an Euclidian segment into a connected
set of repeating point clouds.

4. Proceduralization

The second preprocessing stage of our algorithm con-
verts the segments into a procedural representation. All
segments with the same labels create a single representa-



tive consensus model (CM). The CM has the advantage of
producing a result that is complete in the sense of joining
multiple partial samples of the same underlying geometry.
Figure 2 shows an example of a building before and after
using consensus models. We refer to our paper for the de-
tails of CM computation.

After a CM is found, the segments are used in a top-down
construction process of a tree containing all segments and
their repetitions (Figure 3). The subtrees are checked for
patterns and their applications. The spacing between each
instance of a segment within a repeated application is found
by an analysis of the minimum repeating distance and the
frequency of application.

Figure 2: Consensus Model. Segments are ICPed for CM.
Poisson reconstruction is improved original (a,b) to (c,d).

=P1(N12)
N5 (Side
roof plane) =P1(N17)
N6 (Front

roof plane)
N18
(Window)
=P2(subdivide
N8 (Front N27 (10,1,1).N8)
fagade) (Window)

N11 (Floor)

Figure 3: Tree and patterns. Building segments (left) are
put into the tree (right). Nodes can be invisible (N1, N2,
N3) or visible (colored). If a regular spacing of a pattern
is found (e.g., the pink windows), the subdivide directive
applies (P2). Otherwise it is expressed as a different appli-
cation (e.g., roof windows, P1).

5. Editing

At runtime, our interactive tool allows directly altering
the generated split grammar and supports interactive edit-
ing, based on the parse tree constructed in the previous sec-
tion. Editing begins by selecting a region of interest; initial

attachments are automatically computed and represented as
a large sparse linear system of equations. There are six
types of attachment constraints computed based on the ad-
jacency graph of the nodes for a resize operation, and are
solved using sparse linear least squares. Further, we explic-
itly address resampling at the boundary between two nodes
just placed next to each other. We define a thin neighbor-
hood region enclosing the seam. Then, points within the
seam are re-sampled using EAR [2] so as to match the
density of the surrounding region. This tool also enables
copying and then inserting or replacing an existing rule or
terminal of the model.

6. Results and Discussion

We present results and comparisons of our method ap-
plied to point clouds. Our software is written in C/C++ us-
ing Qt, OpenCV, Point Cloud Library (PCL), and EAR [2].
We show various completion, robustness, editing, compar-
ison, and user interaction examples and evaluation in our
paper. We have used our approach to edit building models
with up to 1.8M points requiring a few minutes preprocess-
ing time and supporting interactive editing.

(@

Figure 4: Reconstruction. Original points (a,e) recon-
structed with Poisson (c,g), and edited points (b,f) recon-
structed with Poisson (d,h).

References

[1] M. Arikan, M. Schwirzler, S. Fléry, M. Wimmer, and
S. Maierhofer. O-snap: Optimization-based snapping for
modeling architecture. ACM Trans. Graph., 32:6:1-6:15,
2013. 1

[2] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and
H. R. Zhang. Edge-aware point set resampling. ACM Trans.
Graph., 32(1):9:1-9:12, Feb. 2013. 2

[3] H. Lin, J. Gao, Y. Zhou, G. Lu, M. Ye, C. Zhang, L. Liu,
and R. Yang. Semantic decomposition and reconstruction of
residential scenes from lidar data. ACM Trans. Graph.,, 32(4),
2013. 1

[4] L. Nan, A. Sharf, H. Zhang, D. Cohen-Or, and B. Chen.
Smartboxes for interactive urban reconstruction. ACM Trans.
Graph.,, 29(4):Article 93, 2010. 1

[5] A. Toshev, P. Mordohai, and B. Taskar. Detecting and parsing
architecture at city scale from range data. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 398—405, June 2010. 1





