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Abstract 

Obtaining a digital model of a real-world 3D scene is a 
challenging task pursued by computer vision and 
computer graphics. Given an initial approximate 3D 
model, a popular refinement process is to perform a 
bundle adjustment of the estimated camera position, 
camera orientation, and scene points. Unfortunately, 
simultaneously solving for both camera position and 
camera orientation is an ill-conditioned problem. To 
address this issue, we propose an improved, camera-
orientation independent cost function that can be used 
instead of the standard bundle adjustment cost function. 
This yields a new bundle adjustment formulation which 
exhibits noticeably better numerical behavior, but at the 
expense of an increased computational cost. We alleviate 
the additional cost by automatically partitioning the 
dataset into smaller subsets. Minimizing our cost function 
for these subsets still achieves significant error reduction 
over standard bundle adjustment. We empirically 
demonstrate our formulation using several different size 
models and image sequences.  

1. Introduction 
The reconstruction of real-world environments is a 

challenging objective for image processing, computer 
vision, and virtual simulations. The ultimate goal is to 
obtain a digital 3D model so that, for example, students 
can visit famous historical sites; archeologists can capture 
excavation sites as they evolve over time; soldiers and fire 
fighters can train in simulated environments; and, people 
all over the world can enjoy virtual travel.  

Recovering the geometry of a 3D scene is a difficult 
task. Several approaches, such as structure from motion 
(SFM) methods, attempt to extract the scene geometry 
from photographs acquired by a moving camera (e.g., 
[1][2][3]). In these situations, bundle adjustment (BA) is 
often used as a final refinement step.  BA performs a 
global optimization so as to improve the coherence 
between the observed environment features and the 
reconstructed model. By exploiting the redundancy within 

the captured information, it has the advantage of being 
tolerant to missing samples and of being able to recognize 
and compensate for outliers in the dataset. Consequently, 
BA methods are able to improve the reconstruction of a 
3D scene. 

Bundle adjustment must, however, compensate for 
inconsistencies in both structure and motion (e.g., camera 
pose) – even if ultimately only the structure of the 
environment is desired. Differentiating between changes 
in camera position and camera orientation is unfortunately 
an ill-conditioned problem [4], which negatively affects 
the reconstruction of the geometry. Using traditional BA, 
the hope is that by using a batch approach, which over-
constrains the problem, a reasonable solution can be 
obtained given a sufficiently accurate initial guess.  

In this paper, we improve the robustness and 
convergence of BA by proposing a cost function that is 
independent of the camera angles. This alleviates the ill-
posed aspect of bundle adjustment and results in a better 
solution. Our formulation uses a computational technique 
from invariant theory [5][6] to eliminate variables from a 
set of equations. Although minimizing our cost function is 
more computationally expensive than standard BA for a 
given batch of images, the improvement in accuracy 
allows us to subdivide the problem into smaller batches 
which can be computed more efficiently. The total 
computational time of our method can thus be kept similar 
to standard BA while still obtaining more accurate results. 
In numerical experiments, our method yields improved 
numerical performance that is both visibly and 
quantitatively better than standard bundle adjustment. We 
demonstrate comparisons using several objects and scenes 
ranging from a hundred to over 32000 scene points 
observed over 48 to 2644 images.  

The major contributions of our work include 
• a bundle adjustment method that is robust to 

variations in the initial model estimate, 
• a degree-two polynomial formulation of the 

reconstruction problem that is free of any camera 
angles, and 



• an automatic algorithm for subdividing the 
optimization into smaller sub-problems yielding an 
efficient refinement process for 3D reconstruction. 

2. Related Work 
Bundle adjustment has become popular in the 

computer vision community and is frequently used to 
improve upon structure-from-motion solutions [7]. 
Briefly, BA is the problem of improving a visual 
reconstruction to produce both optimal structure and 
optimal viewing parameter estimates. Assuming a 
Gaussian noise model, BA can be equated with a 
maximum likelihood estimator. An error minimization is 
performed numerically typically using a non-linear least 
squares method, such as Levenberg-Marquardt 
minimization [8]. On paper, BA may seem like an ideal 
algorithm.  

Unfortunately, the extremely large number of 
parameters involved in practical problems makes finding a 
good solution difficult. Several approaches have been 
followed to reduce the number of parameters and to take 
advantage of the sparse solution matrix in order to 
improve convergence and speed-up the algorithm. Triggs 
[9] highlights several methods to partition or resection the 
data as well as interleaving methods to change what 
parameter group is optimized. Yet, other methods exploit 
the sparse nature of the problem to obtain faster 
algorithms [10].  

But more importantly, BA attempts to solve for the 
camera pose, which is known to be an ill-conditioned 
problem [4]. This is an important issue since small errors 
in camera pose can lead to big errors in 3D reconstruction. 
Eliminating the pose, or at least the camera angles, from 
the cost function used in BA would thus be desirable, 
especially if this could be done without increasing the 
degree of the cost function.  

The idea of eliminating camera orientation parameters 
to improve robustness has been previously exploited in 
other contexts. Tomasi and Shi [11] proposed structure-
from-motion equations to compute the direction of 
heading of a camera -- their equations did not involve 
camera angles. Subsequently, they described image 
changes through the angles between the projection rays 
[12]. This approach was used to reconstruct a two-
dimensional world and could theoretically be applied to a 
three-dimensional world although at significant additional 
complexity and with high-sensitivity to accurate camera 
calibration.  

Removing camera parameters from the 3D 
reconstruction problem is a challenging task. This is 
mostly due to the complexity of variable elimination. 
Nevertheless, the approach of [5] describes a theoretical 

framework to algebraically remove camera orientation 
parameters. Their approach is suggested for use in several 
formulations of 3D reconstructions but few numerical 
reconstructions are performed and no comparison with 
other methods is provided. In this paper, we use this 
framework as a basis for deriving a new set of equations 
for bundle adjustment without dependence on camera 
angles. This leads to a more robust BA refinement. The 
downside of this new formulation is a higher 
computational cost, which can be alleviated by 
automatically partitioning the problem into smaller 
batches.  Still, partitioning the problem yields more 
accurate results than BA. 

In earlier work, we developed a related technique for 
improving bundle adjustment using a degree-four 
polynomial formulation [13]. In that method, while fewer 
unknowns need to be optimized, the expressions do not 
produce a single consistent set of both scene points and 
camera centers (as with typical bundle adjustment 
methods) and the computations are not automatically 
partitioned into sub-problems and thus cannot handle large 
datasets. 

3. Invariant-Based Bundle Adjustment 
We develop a new bundle adjustment formulation 

that is more robust to variations in the initial guess and is 
independent of the camera orientation. Our cost function 
is a polynomial of degree two in the projective coordinates 
of the 3D feature points and the camera centers. Note that 
standard BA also uses polynomials of degree two. But our 
cost function has significantly more terms than standard 
BA (i.e., O(JN2) versus O(JN) for J images and N 
features).  However, the improved resilience of our 
method allows us to optimize the data using disjoint 
subsets, rather than the whole batch of data, while still 
obtaining better numerical results than BA (Figure 1). 

The key idea used to obtain this new mathematical 
formulation follows a computational approach which 
rewrites the SFM equations in terms of the invariants of a 

Partition Optimize 
Centers
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Figure 1. Algorithm Pipeline. Given an initial estimate, our 
approach partitions the dataset and uses a novel angle-free 
formulation to efficiently refine the structure (points) and 
motion (centers) of a reconstructed model. 



group transformation. More precisely, we express all the 
possible reconstructions for the observed 3D scene points 
as the result of a group transformation parameterized by 
the variables to eliminate. The invariants of this group 
transformation are, by definition, functions whose values 
are unchanged by the group transformation and thus do 
not depend on the variables to eliminate. We know the 
projection of a 3D scene point onto the image plane is 
itself a possible 3D reconstruction. Therefore, this 
reconstruction can be mapped to the 3D scene point by the 
group transformation. This implies that the invariants have 
the same value when evaluated using the actual 3D scene 
points as when evaluated using the projections of the 3D 
points. By evaluating explicit expressions for the invariant 
functions using scene points on the image plane, we 
obtain a set of reconstruction equations. 

3.1. Formulation 
Our goal is to determine the 3D positions of some 

tracked features from their observed positions in an image 
stream. The equations relating the tracked features and 
their projections can be written as follows:  
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where pij represents the 2D coordinates of the 3D feature 
point Pi observed on picture j, cij is a constant, and Fj is a 
3-by-4 matrix containing the camera parameters 
corresponding to picture j. The index i is assumed to take 
values from 1 to N, where N is the number of tracked 
features, and the index j, values from 1 to J, where J is the 
number of pictures taken. When the camera is internally 
calibrated, one can assume that the matrix Fj takes the 
form 

( ),tRF jjj =  

where Rj is a 3D rotation matrix and tj is a 3D translation 
vector. When N and J are big enough, Equations (1) form 
an over-determined system. In practice, this system has 
only approximate solutions, because the tracked features 
are not measured exactly. To find an approximate 
solution, one attempts to make the right-hand-side of these 
equations close to zero. In BA, this is formulated as a 
least-squares problem: one demands that the sum of the 
squares of the left-hand side expressions (the cost 
function) be as close as possible to zero. The camera pose 
is part of the cost function through the matrices Fj. In 
order to formulate a better cost function, we propose to 
eliminate the rotation matrices from Equations (1).  

Eliminating parameters from Equations (1) is not 
straightforward, even though they can be viewed as 

polynomial equations.  Indeed, one could think that the 
symbolic elimination tools developed for the case of 
polynomial equations (e.g., Singular [14] and Macaulay 
[15]) would be well suited for eliminating the rotation 
parameters. Unfortunately, the set of equations we are 
dealing with is so big and involves so many variables that 
these programs cannot handle the size of the problem. In 
contrast, the moving frame elimination method [5] can be 
used in a more or less straightforward manner. Using this 
method, we can obtain a set of equations which is 
equivalent to Equations (1) but does not involve any 
angle. This set of equations forms a “basis” for all SFM 
equations that do not involve the camera orientation. By 
“basis”, we mean that any other camera orientation-free 
SFM equation can be written (locally) as a function of 
these equations.  

In order to follow this approach, we first need to 
express the SFM problem as a group transformation where 
the group parameters contain the variables to be 
eliminated, i.e. the camera angles. Equations (1) do not 
represent a group transformation. However, the following 
equivalent set of equations does represent a group 
transformation:  
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Equation (2) describes a mapping from a canonical 
camera center at (0, 0, -1) looking down the +z axis to the 
true camera center: for every image j, there exists a 3D 
rotation matrix Rj and a 3D translation vector Tj  such that 
(2) holds. Equation (3) describes a mapping from a 
canonical scene point projection to an actual scene point. 
We assume, for simplicity, that the distance from the 
camera center to the image plane is constant with focal 
length f=1 and that the images have been undistorted by 
internal camera parameters such that there is no radial 
distortion, no skew, and the aspect ratio is one. For 
i=1…N and j=1…J, we write pij = (xij, yij). Then, there 
exists a number λij (related to scene point depth) such that 
(3) holds. The parameters of the group action are Rj, Tj, 
and λij for i=1…N and j=1…J. The projective space 
equivalent of Equations (2) and (3) is (where W’s and w’s 
are the variables for the fourth coordinate in projective 
space): 
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By working in projective space rather than Euclidean 
space, the invariants of the corresponding group action 
turn out to be polynomial functions, as opposed to rational 
in the Euclidean case. This greatly simplifies the 
numerical solution process. 

A generating set of invariants Ii, Ji, and Hi, for i=1…N, 
of the group transformation corresponding to equations 
(4) and (5) was obtained using the moving frame 
elimination method: 
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By construction, the invariants take constant values for all 
possible 3D scene points of image j, including the 
canonical scene point projections (because they are 
invariant under a group transformation and because the 
projections and the possible 3D scene points are related by 
a group transformation.) Thus, we obtain the equations  
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for every i=1…N and j=1…J, where σj represents 
projective coordinates of the canonical scene points and 
camera centers while sj represents the actual scene points 
and camera centers. More precisely, σj and sj are defined 
as 
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We can arbitrarily fix Wi=1 for all i=1…N and 
w0j=W0j=2  for all j=1…J .  Then Equations (7) become  
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and the γ ’s are unknown variables whose general form 
corresponds to  
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This new set of SFM equations is a basis that generates 
all other angle-free SFM equations. In a generic case and 
with a large enough number of points and images, this 
whole system of equations contains more equations than 
unknowns and thus we can attempt to solve for the scene 
points. The system of equations contains 3NJ-3J non-
trivial equations (because both the left-hand-side and 
right-hand-side of the first equation of (7) are zero when i 
is 1 or 2 and similarly for the third equation of (7) when i 
is 1) that are functionally independent. The number of 
unknowns is only 3N+3J. Thus for large enough N and J, 
the system is over-determined. 

Observe that the second and third equations of (8) are 
of degree four and three, respectively. Ideally, we would 
like to use polynomial equations of the same degree as in 
BA. We thus should restrict ourselves to combinations of 
the Equations of (8) which lead to equations of degree two 
only. For example, we could use the superset of equations  

 ( ) ( ) 0CPCP jiijijijiji 212121
=−−⋅− Κγγ   (9) 

where  )1,y,x()1,y,x((j2i1i
K jijijiji 2211
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for all i1, i2=1,...,N (not necessarily distinct) and all 
j=1,...,J. Intuitively, we seek for a solution to the 3D 
points and camera centers so that the angles between the 
vectors from the camera centers to the scene points is the 
same as the angles between the vectors from the camera 
centers to the points on the image plane. 

It turns out that the above set of equations is almost 
equivalent to (8).  The only information from (8) which is 
not contained in (9) is the sign of the left-hand-side of the 
second equation of (8). This has the consequence that 
there may be slightly more solutions to (9) than to the 
standard SFM equations. However, since a high number 
of pictures and features are used in practice, this is not an 
issue. Indeed, in most cases, we end up with an over-
constrained system of equations for which the solutions 
will typically be the same as for (8).  



We formulate a cost function by adding the squares of 
the left-hand-side of (9) for all images and features: 
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As promised, this cost function is of minimal degree and 
does not involve any camera angle, so we bypass the 
problem of ill-condition in determining the camera 
motion. 

To solve this equation, we use initial guesses for the 
camera centers Cj, 3D points Pi, and γ ’s (the K’s are 
computed from the projections pij) and employ a 
Conjugate Gradient method. While initial guesses for 
the γ ’s are obtained using the expressions in equations (8) 
and we solve for them, we disregard them at the end of the 
optimization. 

3.2. Image Sequence Partitioning 
The cost function described by Equation (10) contains 

at most O(JN2) terms (as opposed to O(JN) with standard 
BA). The actual number of terms varies depending on 
how many images each feature is tracked on. To 
compensate for the additional computational cost, we 
optionally partition the image sequence into disjoint 
subsets (i.e. each point and camera center is solved for 
only once). These subsets can be processed individually 
(and in parallel) yielding an overall reduction in 
computation time. 

We use two strategies to subdivide the images and 
features depending on the acquisition style. For an inside-
looking-out sequence through a large environment (e.g., a 
video recorded during a walkthrough), a convenient 
partitioning is to create disjoint but contiguous image 
sequences through the model. For a typical outside-
looking-in sequence around an object (e.g., a video 
capturing a single object), a suitable partitioning is to 
create interleaved and disjoint sets of images observing 
the same portion of the scene.  

4. Results and Discussion 
In this section, we present results and comparisons of 

applying our novel formulation for bundle adjustment to 
several example scenes. Table 1 provides a summary of 

our three test datasets. Our datasets range from 96 to 
32688 reconstructed points and from 48 to 2644 images. 
The board dataset consists of features tracked along an 
image sequence observing a chessboard of known 
dimensions. The images were acquired by a camera 
attached to a mechanically tracked arm [16]. This dataset 
provides us with ground truth information for both camera 
centers and scene points. Giraffe was captured using our 
in-house real-time acquisition system: a handheld camera 
acquires images and initial pose estimates are provided by 
tracking four landmarks (e.g., small light boxes) and 
triangulating position and orientation from them. Floor is 
a synthetic dataset consisting of several rooms of a 
radiosity-illuminated model of the single floor of a house.  

We have implemented our system on a Pentium IV 
PC using C/C++. Feature tracking is performed using an 
automatic algorithm based on the Kanade-Lucas-Tomasi 
tracking software package. Our method requires at least 6 
features tracked over 3 frames. To perform all standard 
BA computations, we use an efficient sparse bundle 
adjustment package [10].  

Using our novel formulation, we are able to converge 
to a more accurate solution than standard BA even under 
the presence of significant noise (or inaccuracy) in the 
initial solution. Figure 2 uses the board dataset to show 
this comparison. The horizontal axis corresponds to the 
amount (standard deviation) of random Gaussian noise 
added to the initial guess for camera pose (position and 
orientation) and scene points. Since we have the ground 
truth for this dataset, we start with zero error and progress 
until approximately 40% of the model diagonal in 
positional error and 12 degrees of rotational error. For 

Dataset Board Giraffe Floor 
Images 48 360 2644 
Points 96 480 32688 

Table 1. Datasets. We applied our reconstruction algorithm 
to four datasets. “Images” is the number of captured images 
and “points” is the number of reconstructed 3D points. 
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Figure 2. Angle-Independent Bundle Adjustment Refinement. 
Our method (AIBAR) converges to lower error solutions than 
an efficient sparse bundle adjustment solution (SBA). To 
compensate for the additional computational time of our 
method, we can partition the dataset in order to obtain 
comparable solutions times to standard BA but with only a 
small increase in the amount of error. 



each data point of this graph (and all graphs in the paper), 
the vertical axis shows the average scene point 
reconstruction error over four reconstruction attempts, 
expressed as a percentage of the model diagonal. For the 
board dataset, the reconstruction errors produced by our 
formulation are, on average, about 3.3 times less than 
using standard BA.  

Our formulation does have an additional 
computational cost which we can effectively combat with 
partitioning. On average for the board dataset, using our 
computing platform and formulation applied to the entire 
image sequence takes 838 seconds to compute as opposed 
to standard bundle adjustment which takes only 12 
seconds to compute. Both of the methods essentially solve 
a nonlinear least squares problem. The increased cost is 
due to the additional terms that must be evaluated for our 
method. However, the improved numerical performance 

of our approach allows us to partition the problem into 
smaller subsets and still obtain approximately the same 
solution. The board sequence has 48 images which we 
divide into 8 interleaved datasets that are independently 
processed for our method. As seen in Figure 2, our 
partitioned solution demonstrates similar behavior to our 
whole solution but it only takes 14 seconds to compute, on 
average. Despite the partitioning, our solution is better 
than standard BA applied to the entire sequence. We 
experimented with partitioning standard BA but observed 
similar or larger reconstruction errors. 

Figure 3 demonstrates images for various 
reconstructions of the giraffe dataset, an example of 
outside-looking-in dataset. Figure 3a contains an original 
image from the giraffe dataset. In place of ground truth for 
this dataset, we use our best estimate (Figure 3b) which is 
similar to BA’s best estimate. Figures 3c and 3d show 

a) c) e) 

b) d) f) 

Figure 3. Reconstruction Examples. We show several reconstructions of the giraffe dataset using our method (bottom row) and 
using standard BA (top row). The error of the different reconstructions is shown by drawing lines between the reconstructed points 
and the highest quality reconstruction (e.g., ground truth). (a) Example input image from giraffe sequence. (b) High-quality 
reconstruction using our method. (c) Medium-quality solution using standard BA. (d) Medium-quality solution using our method. (e) 
Low-quality solution using standard BA. (f) Low-quality solution using our method. 



reconstructions for standard bundle adjustment and for our 
method using a medium amount of Gaussian noise in the 
initial estimates. Figures 3e and 3f illustrate the 
corresponding reconstructions using a larger amount of 
Gaussian noise. In Figure 3c, BA converged to a coherent 
solution but offset from correct. In Figure 3e, BA did not 
converge. At even larger errors, BA diverges even more 
severely. On the other hand, our technique consistently 
produces lower-error reconstructions as we decrease the 
accuracy of the initial guesses. 

Figures 4 and 5 contain the quantitative errors of our 
formulation using interleaved-partitioning vs. standard BA 
for the giraffe dataset. Figure 4a demonstrates that as 
compared to standard BA, our reconstructions are 
invariant to errors in initial camera orientation estimates. 
Figure 4b shows errors for the reconstructed 3D points in 
the presence of increasing error in the initial estimates for 
both camera centers and scene points. Similarly, Figure 5 

shows errors for the recovered camera centers for various 
amounts of error in the initial estimates. In all cases, our 
approach shows a clear improvement over standard bundle 
adjustment. 

We experimented with using various partitioning 
sizes. As seen in Figure 4b, our reconstruction errors are 
approximately similar albeit at very different 
computational costs (partitions into small, medium, and 
large subsets take on average 88, 253, and 961 seconds 
respectively). We performed similar experiments using 
standard bundle adjustment. While we do improve 
computational costs (partitions into small, medium, and 
large subsets take on average 7, 12, and 43 seconds 
respectively), the errors produced are less controlled. We 
believe the observed oscillations to be due to the inability 
of standard BA to find a truly overall improved solution 
because of the inherent confusion between camera 
position and camera orientation. As larger subsets are 
used, it simply latches on to one particular solution and 
converges to a local minimum (e.g., Figure 3c converged 
to a solution that is mostly translated away from the actual 
solution while Figure 3e did not converge well to any 
solution). 

Using the floor dataset, we demonstrate 
reconstructions using contiguous partitioning in a large 
inside-looking-out dataset. In this example, we have 
partitioned the dataset of 2644 images into 155 partitions 
of approximately equal number of images. In Figures 6a 
and 6b, we show a view of the floor dataset and a 
representative view of the reconstruction of the scene 
points using our method. Figure 6c shows the 
reconstruction error performance of our method vs. 
standard BA. Our approach consistently exhibits less 
reconstruction error.  
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Figure 4. Reconstructing Scene Points. (a) Our approach 
(AIBAR) is not sensitive to orientation errors in the initial 
estimates while standard bundle adjustment (SBA) is 
sensitive. (b) Partitioning accelerates our algorithm (as 
well as SBA) but we consistently obtain lower-error 
solutions.  
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Figure 5. Recovering Camera Centers. This graph shows 
how effectively our method recovers camera centers, using 
several partition sizes, as compared to standard bundle 
adjustment. 



5. Conclusions and Future Work 
We have presented a degree-two polynomial 

formulation of structure from motion as well as an 
associate cost function for bundle adjustment that allows 
us to refine a structure from motion solution 
independently of camera angle estimation. By omitting 
camera angles from the formulation, we are able to 
disambiguate the inherent confusion between camera 
centers and camera orientation and thus obtain a more 
numerically robust process. Our approach introduces more 
terms, as compared to standard BA, into the cost function. 
However, we have shown how to partition the dataset into 
disjoint sets achieving similar computational times as 
standard BA but with better convergence. We have 
applied our method to the bundle adjustment of several 
models, including outside-looking-in and inside-looking-
out models, and demonstrate the improved performance of 
our technique under varying amounts of Gaussian noise in 
the estimate. 

Looking forward, we are currently interested in 
several avenues of future work. First, we are pursuing 
how to exploit the sparseness of the feature space over all 
images in order to obtain a more compact set of equations 
and cost terms. Second, to further improve the partitioning 

of the dataset, we would like to explore its cost-benefit 
space. Our current partition sizes are hand picked to be 
reasonable guesses for the datasets. Automating this 
selection would allow us to find a (near) optimal balance 
of error reduction and computation time. Third, we are 
investigating how to specialize our equations to perform 
fast and accurate camera calibration, including optimizing 
internal camera parameters as well during optimization. 
Finally, we believe the work of this paper will lead to 
significant improvements in bundle adjustment and in 
structure from motion. In addition, we are seeking for a 
formulation that allows us to completely bypass having to 
estimate camera centers on the way to recovering the 
structure. This and future work will significantly change 
how we think about reconstructing 3D scenes. 
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Figure 6. Outside-looking-in Example. (a) A view of the 
synthetic floor dataset. (b) A reconstruction of the dataset 
using our method and small error Gaussian error. (c) Graph 
of the reconstruction error of our method vs. standard BA.  
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