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Abstract 
Modeling dynamic scenes is a challenging 

problem faced by applications such as digital content 
generation and motion analysis. Fast single-frame 
methods obtain sparse depth samples while multiple-
frame methods often reply on the rigidity of the object 
to correspond a small number of consecutive shots for 
decoding the pattern by feature tracking. We present a 
novel structured-light acquisition method which can 
obtain dense depth and color samples for moving and 
deformable surfaces undergoing repetitive motions. 
Our key observation is that for repetitive motion, 
different views of the same motion state under different 
structured-light patterns can be corresponded together 
by image matching. These images densely encode an 
effectively “static” scene with time-multiplexed 
patterns that we can use for reconstruction of the time-
varying scene. At the same time, color samples are 
reconstructed by matching images illuminated using 
white light to those using structured-light patterns. We 
demonstrate our approach using several real-world 
scenes. 

 

1. Introduction 
Acquiring dense depth and color samples of 

dynamic scenes is a challenging problem faced by 
applications such as digital content generation and 
motion analysis. In some dynamic environments, a 
subset of motion states repeat over time and form 

repetitive (or quasi-periodic) motions, such as with 
some mechanical motions (e.g., toys, pendulum, etc.) 
and human activities (e.g., exercises, walking, etc.). In 
this paper, we present a robust method to densely 
capture both depth and color samples of such 
repetitively moving and deforming surfaces.  

Many approaches have been proposed for 
capturing the geometry and appearance of dynamic 
scenes. On the one hand, passive methods are 
unobtrusive and simultaneously obtain color and depth 
information per pixel (e.g. [29]). However, they 
depend on fragile correspondence computations, color 
consistency over a large baseline (e.g. [24]), and/or 
background subtraction (e.g. [2][16]). On the other 
hand, active methods add energy into the scene in 
order to significantly improve robustness. But, laser 
scanners would require an excessively fast update rate 
for dynamic scenes. A traditional structured-light 
approach might be able to project a few patterns in 
rapid succession and assume the scene is temporarily 
stationary, but obtaining dense depth, as well as color 
information, is hard. Incrementally building a model 
might be possible but it usually assumes rigid motions 
and cooperation between scene and capture operator. 

The main challenges in robustly acquiring 
dynamic scenes are three-fold. First, the method should 
obtain dense information, as expected with active 
methods, despite constant scene motion. Second, the 
approach should obtain both depth and color for each 

a) b) c) d) e) 
Figure 1. Acquiring repetitive motions. a) Example input video frames observing repetitive motions. b-c) 
Images showing two motion states under two projected patterns. d-e) After reconstruction, renderings for novel 
viewpoints can be generated at any sampled time instance of the motion. 



  

sample. Third, capture should be able to sample 
moving and perhaps deforming objects. 

Our key insight is that for scenes with repetitive 
motions temporally disjoint images capturing the same 
motion state but under different illumination patterns 
can be corresponded together. This allows using time-
multiplexed codes to capture each motion state without 
the need to track pattern boundaries, without assuming 
a static scene during several contiguous frames, and 
without being limited to rigid scene motion. In this 
way, the dynamic scene acquisition problem is 
converted to a series of more robust static scene 
reconstructions. Furthermore, since the state of the 
moving scene can also be matched against fully-
illuminated images, the color and texture of the 
moving scene can be recovered as well. 

Our approach uses a geometrically and spectrally 
calibrated camera-projector pair to capture a scene 
containing repetitive motions (Figure 1). For 
acquisition, an all white image and a set of two-color 
Gray-code patterns are sequentially projected onto the 
scene. Each pattern lasts for a while. Image analysis is 
performed to find a set of motion-state images under 
white illumination that generate a smoothly changing 
and repeating image sequence and that can be well-
matched against the images captured under the 
illumination of the two-color patterns. Matching is 
done using an image differencing operator that is 
calibrated to work with different colored light sources. 
Since the observed motion tends to repeat, eventually 
many motion states are sampled by all patterns, 
yielding the ability to reconstruct each motion state 
individually. The collection of reconstructed motion 
states can then be used to re-create a scene similar to 
the original or to produce new motion sequences. We 
demonstrate our approach using several real-world 
scenes rendered as colored points or as texture-mapped 
triangles. 

Our main contributions include 
• a dense depth and color acquisition system for 

scenes containing rigid and non-rigid objects 
undergoing repetitive motions, 

• an algorithm for finding smoothly varying motion 
states spanning all illumination patterns, and 

• a two-color structured-light method combined 
with a color-calibrated image matching operation 
to uniquely match images of a scene under 
different structured-light patterns. 

2. Related work 
Our approach relates to both active ranging of 

dynamic scenes and repetitive motion analysis. In the 
following, we summarize related work in these areas. 

2.1 Dynamic scene acquisition 
Active ranging techniques project patterns onto 

the scene and capture their projection to obtain range. 
Methods that only require “one-frame” are suitable for 
dynamic scenes. However, the pattern must encode as 
much information as possible to facilitate camera-
camera (camera-projector) correspondences. Davies 
and Nixon [5] use windows of neighboring dots with 
unique color configurations. Chen et al. [4] use 
projected color stripes and stereo matching to 
correspond features. Zhang et al. [27] use de Bruijn 
illumination patterns and multi-pass dynamic 
programming. Fong and Buron [8] use a fixed pattern 
that combines color stripes and sinusoidal intensity 
changes. Koninckx et al. [13][14] improves 
performance by adjusting  geometric and color-coded 
patterns to the scene. As opposed to our dense 
acquisitions, one-frame methods obtain reconstructions 
of limited density. Furthermore, while our method uses 
colored patterns, we only require two colors and two 
transitions; this makes color decoding much easier. 

Some one-frame methods have partially remedied 
simultaneously projecting structured-light patterns and 
acquiring scene color. Frueh and Zakhor [9] use two 
cameras to capture color and low-resolution infra-red 
structured-light patterns. The Z-Cam [11] captures 
both color and low-resolution depth using a single 
infra-red “light pulse”. Waschbüsch et al. [25] use at 
least three cameras and a rapidly-alternating 
structured-light pattern and its inverse to acquire color 
and to enhance the scene with features for stereo 
matching. In contrast, in our setting we acquire color 
and structured-light patterns separately without having 
to quickly change patterns or use infra-red. 

For slowly moving objects, multi-frame methods 
can be used. For example, Rusinkiewicz et al. [10][18] 
sample rigid and colorless objects by projecting and 
tracking at high frame-rate a small number of patterns 
where each stripe boundary has a unique code over 
four consecutive frames. The space-time stereo 
framework [28] can be extended to use projected 
patterns but dense correspondence is ultimately limited 
by feature-matching performance. In our method, 
temporally disjoint frames can be corresponded and no 
limit is placed on the code length. Moreover, we are 
not limited to rigid objects. 

2.2 Repetitive motion analysis & acquisition 
Analyzing and capturing repetitive motions in 2D 

and in 3D settings has gained significant interest from 
the computer graphics community and related fields in 
past years. Several research efforts have focused on 
detecting and measuring repetitive motions usually 
from image sequences (e.g., [6][15][22]). More 



  

recently, Schödl et al. introduced the concept of a 2D 
video texture [21], and Agarwala et al. presented its 
panoramic video extension [1]. Both produce an 
infinitely-long varying video sequence. However, 
these efforts focus on analyzing 2D images and/or do 
not obtain dense depth and color data.  

Several passive 3D methods have been proposed 
as well for repetitive motions. For example, Starck et 
al. [23] capture human motion from a multiple 
viewpoint video sequence and use a motion graph to 
generate transitions of different motions in order to 
synthesize novel animation sequences. Einarsson et al. 
[7] acquire a 7D time-varying reflectance field of 
constant-speed human locomotion on a treadmill, but 
no explicit geometry is reconstructed. In addition, our 
captured motion does not need to be of constant speed. 
Instead, we find a set of best matches for each motion 
state by comparing images. Our early work [26] 
acquires low-resolution volumetric representations of 
table-top objects undergoing repetitive motions by 
using two cameras. In that work, we use a static 
camera to determine the motion state and a constantly 
moving second camera at known position to capture 
the motion from multiple viewpoints. By assuming 
constant illumination, motion state can be determined 
by simple image matching. In this paper, the scene is 
illuminated by varying structured-light patterns, 
producing robust correspondences, and requiring a 
robust color-calibrated image difference operation. 

3. Acquisition 
Our method captures a single video sequence and 

sequentially projects white light, a set of colored Gray-
code patterns [12], and their inverses. We choose to 
use time-multiplexed patterns due to high accuracy in 
the encoding/decoding process. A repeating motion 
sequence from the video captured under white-light is 
found via image analysis. Images capturing the same 
motion state under different structured-light patterns 
are grouped together enabling the reconstruction of the 
dynamic scene. Figure 2 contains our system pipeline. 

3.1 Image-based motion states 
Our system chooses from among the images under 

white-light illumination a compact subset of image-
based motion states. We desire images that form a 
smoothly varying repetitive motion (in similar spirit to 
[21]), and represent motion states that repeat while the 
structured-light patterns are projected in the rest of the 

video. Our method is based on the following two 
assumptions: (1) scene motion can be decomposed into 
states that repeat over time and (2) each motion state 
can be uniquely identified by its projection onto the 
camera’s image plane. The observed motion does not 
need to be periodic and does not need to be of constant 
speed. Rather, our approach automatically extracts the 
motion states that can be assembled to form a smoothly 
repeating sequence and can be used for scene 
reconstruction. The resulting motion sequence will be 
similar to the original but not necessarily the same. 

Our method uses a two-step algorithm. The input 
video has a total of (N+2PN) images where P equals 
the number of patterns and N is the number of images 
captured under the illumination of each pattern. More 
precisely, the video contains N white-light images and, 
for each of P patterns, the video has N images for the 
pattern and N images for its inverse. Although we 
capture equal-length pattern segments, they are not 
synchronized with the motion in anyway. In a first 
step, our method computes a ranking of the N white-
light images based on their similarity to images in the 
subsequent pattern segments. The ranking will give 
preference to motion states that tend to repeat and will 
downplay spurious motions. A complete ranking of 
white-light images is computed by comparing each 
white-light image to each pattern image. As shown in 
Figure 3, the comparison for each white-light image 
produces an array of length P where each entry 
contains the index of the most similar image from each 
pattern segment. The list of arrays is sorted based on 
the average similarity between the grouped white-light 
images and pattern images. 

In a second step, our method matches the highest-
ranked white-light images to a chosen white-light 
video segment for reconstruction. Our method allows 
the user either to choose an automatically computed 
looping segment of the input video or to manually 
specify a (new) desired image/motion sequence. To 
automatically compute a best looping segment, our 
system computes a 2D image similarity matrix. The 
entries along the diagonal correspond to image self-
similarity while the typically sparse off-diagonal 
entries correspond to strong similarities between 
distinct images at the beginning/end of a looping 
segment. The algorithm compares the matrix against a 
user-specified minimum similarity threshold which 
results in only a few possible repeating motion 

States 
All patterns 
 per-state Image-Based Motion  

     State Analysis 
Motion-State 

Matching 
Scene 

Reconstruction Video Time-
varying model 

Figure 2. System pipeline. 



  

sequences with small transitions errors. The system or 
the user chooses the best or any one for reconstruction. 

Once the looping white-light segment is selected, 
our system maps all other white-light images, within a 
threshold of image similarity, to these selected images. 
This clustering process has the effect of grouping 
together white-light images observing the same motion 
state (as well as their associated pattern images) and 
thereby increasing the chance of finding a good set of 
pattern images to reconstruct the motion state. The 
improvement of reconstruction quality comes at the 
price of less faithfully reproducing the specified 
looping segment. From the multiple images per cluster, 
the one with the smallest difference between pattern 
images and corresponding white-light image is chosen; 
thus, the reconstruction quality is maximized. The 
resulting (image-based) motion states are the ones used 
for reconstruction and are stored as the time-varying 
model. In the next two sections, we describe how the 
pattern images are best matched to the white-light 
images. 

3.2 Two-color structured light 
Our system matches pattern images to the white-

light images of the motion states. Our assumption that 
motion states eventually repeat enables projecting each 
structured-light pattern for a relatively long amount of 
time (namely, until all states have been observed at 
least once). This prevents having to rapidly change 
illumination patterns and omits needing camera-
projector synchronization. However, it necessitates 
robustly matching the motion-state images (under 
white-light) to the pattern images that are illuminated 
by structured-light patterns. As opposed to methods 
which use multiple colors to reduce the total number of 
patterns [3] or to improve robustness [17], our 
approach uses two-color patterns to enable accurately 
matching pattern images to white-light images. It is 
worth noting that in many structured-light methods for 
dynamic scenes only the images illuminated by the 
patterns can be used to obtain color information. In our 
case, we extract color from the white-light motion-
state images and thus the coloring of the patterns does 
not affect the color quality of the final reconstruction. 

Conventional Gray-code binary stripe patterns rely 
on large illumination variance between stripes. 
However, this is precisely the opposite of what is 
needed for matching to homogeneously-illuminated 
white-light images. In particular, binary stripe patterns 
typically consist of white and black stripes. Any 
motion in the non-illuminated (black) areas would be 
invisible to the camera or appear too dark for robust 
processing (Figure 4a-c). The problem is worse during 
the initial stripe patterns of Gray codes because of the 
large contiguous regions and, unfortunately, these are 
exactly the patterns corresponding to the most-
significant bits of the Gray code sequence. The total 
amount of ambiguity is, however, scene and motion 
dependent. 

For our objectives, this ambiguity affects both 
motion-state matching and decoding process for scene 
reconstruction (i.e., determining if a pixel is red or 
blue). Having less illuminated pixels clearly places 
more burden on the image comparison metric to 

Figure 3. Motion states. For each white-light image, 
we find an array of the best-matched pattern images. 
White-light images are ranked based on the average 
similarity to their corresponding best pattern images. 
Then, the highest-ranked white-light images and their 
matched pattern images are used to reconstruct a 
chosen video segment. 
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N 
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a) b) c) d) e) 
Figure 4. Two-color structured light. a-b) Two example motion states. c) Using conventional white-black stripes, 
both states seem identical. d-e) Our calibrated two-color structured light discerns between the two states. 



  

correctly identify the motion state. Moreover, even if a 
best match is found it does not guarantee the correct 
motion state has been identified. Thus, when the 
decoding process is performed to reconstruct a 
particular motion state, the assumption of all patterns 
observing the same motion state (i.e., a static scene) 
would be violated. This might even occur between the 
projection of a pattern and its inverse (a commonly 
used method to improve robustness against unknown 
surface albedo and global illumination effects [20]). In 
general, this leads to pixels being inconsistently 
labeled amongst the pattern images and thus producing 
fewer correctly decoded pixels. 

In our system, we use two visible colors (i.e., not 
black) to represent the equivalent of a binary stripe 
pattern (Figure 4d-e). The colored pattern pixels are 
compared to the pixels in the corresponding channel of 
the white-light motion-state image. However, the 
spectral performance of the camera/projector is not the 
same under color-stripe illumination and white-light 
illumination which leads us to the following section. 

3.3 Color-calibrated image matching 
To compare color-pattern images to white-light 

images, we use a color-calibrated image matching 
procedure (Figure 5). Based on the standard color 
spectrum, we expect the red and blue color channels to 
offer little or no overlap and thus we use red and blue 
color stripes. We fix the shutter speed, white balance, 
and adjust gain to prevent overflow. A smaller gain is 
used for capturing white-light images. The white-light 
illuminated motion-state images encode the response 
of the scene to red and blue light. However, in general 

the response is not the same as red-only or blue-only 
light. This is due to the various projector and camera 
technologies which use different strategies to project 
or capture color. 

We estimate the spectral response of the camera to 
projector light using a triple of calibration images. We 
capture a scene (either the actual scene with no motion 
or a similar one-time calibration scene) with red-only, 
blue-only, and white projector light.  Then, we 
compute scale factors for the red channel and for the 
blue channel of the white-light image that minimize the 
difference between the single-channel images and the 
multi-channel image. The scale values depend on the 
scene and on the actual hardware used.  

For motion state matching, our method computes a 
normalized image difference. The stronger color 
channel (r or b) of each pixel p of a pattern image is 
subtracted from the corresponded and scaled pixel q of 
the white-light image. Thus, given a predefined 
threshold t, per-pixel image difference is defined to be 
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4. Reconstruction 
Scene reconstruction is performed only on 

selected states, each of which has a complete set of 
pattern images. The two-color patterns are used in a 
similar fashion to standard binary structured-light 
methods. To better account for global illumination 
effects and unknown surface albedo, we project Gray 
code patterns and their inverses. Same-code pixel 
clusters that span too much image area are culled. 
Corresponded points whose camera and projector rays 
do not pass close enough are culled. Points floating in 
space without nearby points are removed as well. 

5. Implementation details 
We implemented our system in C/C++ using a PC 

with a 3.6GHz CPU and 2GB memory. Our camera is 
a Point Grey Dragonfly Express camera capturing 
640x480 resolution color images at up to 200Hz. The 
fast shutter speed of the camera helps reduce motion 
blur. However, our system only stores images to disk 
at a rate of 30Hz. To project patterns, we use a Canon 
Realis SX6 LCOS projector with a resolution of 
1280x1024 and three explicit LCD panels so as 
minimize spectral overlap. Color calibration computed 
that the camera’s average scale values to make white-
light images match separately-illuminated images are 
1.398 and 1.043 for red and blue, respectively. The 
projector and camera are geometrically calibrated by 
the method of Sadlo et al. [19]. Our system projects a 
total of 32 stripe patterns (8 horizontal, 8 vertical, and 

b) d) 
Blue channel 

Red channel 

a) 

c) e) 

Figure 5. Color calibration for image matching. a) 
Image of scene under white light after white 
balancing. b-c) Channels of the original white-light 
image. d-e) Observed channels under red/blue light 
only. After calibration, images in (b-c) become 
virtually identical to (d-e). 



  

their inverses). All image comparisons are done on the 
CPU at full-resolution. 

6. Experimental results 
We have captured three different scenes to test our 

method: Bicycle, Cruiser, and Exerciser. Details and 
statistics are in Table 1. For all datasets, we reconstruct 
the best repeating sequence obtained via the 
thresholded similarity matrix of the white-light images. 
As an example, Figure 6 shows part of the original 
similarity matrix, thresholded matrix, and several 
motion states of the Cruiser dataset.  

Given the desired sequence for reconstruction, our 
method clusters the white-light images as described in 
Section 3.1. Figure 7 illustrates the tradeoff that results 
from different clustering thresholds. The horizontal 
axis represents the amount of clustering performed 
between white-light images. The vertical axis 
represents the matching error between pattern images 
and white-light images. The units of both axes are 
normalized per-pixel error. Ideally, we desire a 
solution at y=0 (i.e., zero motion difference between 
the pattern images and the white-light images) and x=0 
(i.e., no clustering, thus exactly each frame of the 
desired looping segment is reconstructed). However, 
except for perfectly periodic motion (which results in a 
horizontal line at y=0), this is impossible. Thus, we 
seek for a “sweet spot” that produces a balanced trade-
off of the two errors. In general, this occurs at the point 
on the graph closest to (x=0, y=0). For our datasets, 
this occurs in the clustering range [0.03, 0.06] and is 
the range we use.  

Figure 8 compares the results of using our red-
blue patterns for the Bicycle dataset to only using a 

single color for the subset of the image surrounding the 
motion (e.g., using “red” and assuming “blue” 
corresponds to black). The graph shows an advantage 
in our favor of about 10% – the benefit is of course 
motion and scene dependent. Pictorial examples of 
failures were previously shown in Figure 4. Once the 
motion states and patterns have been matched, scene 
reconstruction can proceed. Figure 9a shows a virtual 
viewer observing the Bicycle dataset using colored 
points. Figures 9b-c contain renderings from novel 
viewpoints of our other datasets using texture-mapped 
triangles with “skins” removed automatically. Figures 
9d-f contain the corresponding depth maps. Our 
acquisition provides freedom to change the viewpoint, 
to change the time instance, and to generate reordered 
motion sequences. Thus, Figures 10a-c show a 
temporal sequence from a novel but fixed viewpoint 
for the Cruiser dataset. Figures 10d-f show a moving 
viewpoint at a fixed time using our Bicycle dataset.  

Regarding limitations, our system cannot 
faithfully recover dark or green-only surfaces. 
However, in a typical scene most surfaces are a 
mixture of colors and are rarely pure green. Our 
approach is also limited to in-place repetitive motions. 
We look to feature tracking and image warping as a 
means to re-center translating objects. Finally, motion 
capture research focuses on capturing moving humans. 

a) 

Figure 6. Image-based motion states. a) Partial motion-state inter-similarity matrix (left) and the thresholded 
one (right). b-d) Example motion states of the Cruiser dataset. 

b) c) d) 

Dataset No. 
Points 

Time/No. 
Images 

No. 
States 

Compute 
Time 

Bicycle 33000 5.5 mins/9900 34 3.5 hrs 
Cruiser 33200 4.6 mins/8250 53 3.2 hrs 
Exerciser 34000 2.7 mins/4900 20 0.6 hrs 

Table 1. Dataset statistics. Time refers to length of 
recorded video, number of states refers to number of 
unique images in the best repeating sequence. 

Figure 7. Clustering trade-off. We show the 
tradeoff between clustering and matching error. 
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But, such approaches often require a priori models of 
the human body and do not actually recover a 3D 
model but rather parameters of the joints of an existing 
model. While we do demonstrate our method with 
humans, we make no special assumptions. In fact the 
deformations that occur (e.g., bending of clothing) 
actually make the problem more difficult because we 
cannot assume rigid motions. 

7. Conclusions and future work 
We have presented a robust method to densely 

capture both depth and color samples of dynamic 
scenes containing repetitively moving and deforming 
surfaces. Our demonstrations indicate that with video 
sequences of only a few minutes in length and by 
automated processing, high quality reconstructions of a 
time-varying model can be obtained. By converting a 
dynamic scene problem into a series of more robust 
static scene reconstructions, our method achieves high 
density by using the more accurate time-multiplexed 

codes (as opposed to single-frame codes).  
There are several avenues of future work. In 

particular, we would like to use graphics hardware to 
accelerate our image processing, thus reducing 
processing time, to extend our method to a multi-
viewpoint capture, and to pursue automatic adaptation. 
Thus, as capture proceeds the system should advance 
to the next pattern as soon as possible.  

Acknowledgement 
The authors would like to thank the reviewers for their 
comments and Haiqiong Li for performing the motion. 
This work was supported by NSF CCF 0434398 and 
by a Purdue Research Foundation grant. 

References 
[1] A. Agarwala, K.C. Zheng, C. Pal, M. Agrawala, M. Cohen, B. 

Curless, D. Salesin, and R. Szeliski, “Panoramic Video 
Textures”, ACM Trans. on Graphics, 24, 3, 2005, pp. 821-827. 

[2] J. Carranza, C. Theobalt, M.A. Magnor, and H.-P. Seidel, 
“Free-Viewpoint Video of Human Actors”, ACM Trans. on 
Graphics, 22, 3, 2003, pp. 569 - 577. 

[3] D. Caspi, N. Kiryati, J. Shamir, "Range Imaging with Adaptive 
Color Structured Light", IEEE PAMI, 20, 5, 1998, pp. 470 - 
480. 

[4] C.-S. Chen, Y.-P. Hung, C.-C. Chiang, and J.-L. Wu, “Range 
Data Acquisition using Color Structured Lighting and Stereo 
Vision”, Image and Vision Comp., 15, 6, 1997, pp. 445-456. 

[5] C.J. Davies, and M.S. Nixon, “A Hough Transform for 
Detecting the Location and Orientation of Three-Dimensional 
Surfaces via Color Encoded Spots”, IEEE Trans. on Systems, 
Man and Cybernetics, 28, 1, 1998, pp. 90 - 95. 

[6] R. Cutler and L. Davis, “Robust Real-Time Periodic Motion 
Detection, Analysis, and Applications”, IEEE Trans. on PAM., 
22, 8, 2000, pp. 781-796. 

[7] P. Einarsson, C.-F. Chabert, A. Jones, W.-C. Ma, B. Lamond, 
T. Hawkins, M. Bolas, S. Sylwan, and P. Debevec, “Relighting 

Figure 8. Comparison of decoded pixels. 
Because of better state matching, our two-color 
structured light patterns decode more pixels. 

Decoded Pixels

12000

12500

13000

13500

14000

14500

15000

15500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

State Number

No
. P

oi
nt

s

Red-blue stripes
White-black stripes

Figure 9. Reconstructions.  
a) Colored point rendering of 
Bicycle dataset b-c) Texture-
mapped triangle rendering of 
Cruiser and Exerciser data-
sets. d-f) Depth maps 
corresponding to the images 
in a-c) computed by 
interpolating the depth 
samples.  

a) b) c) 

d) e) f) 



  

Human Locomotion with Flowed Reflectance Fields”,  Proc. of 
EGSR, 2006, pp. 183-194. 

[8] P. Fong, F. Buron, “High-resolution 3-dimensional Sensing of 
Fast Deforming Objects”, Proc. IROS, 2005, pp. 1606- 1611. 

[9] C. Frueh, A. Zakhor, “Capturing 2½D Depth and Texture of 
Time-varying Scenes using Structured Infrared Light”, Proc. of 
3DIM, 2005, pp. 318 - 325. 

[10] O. Hall-Holt, S. Rusinkiewicz, “Stripe Boundary Codes for 
Real-time Structured-light Range Scanning of Moving 
Objects”, Proc. of ICCV, 2001, pp. 359-366. 

[11] G.J. Iddan, and G. Yahav, “Three-dimensional Imaging in the 
Studio and Elsewhere”, Proc. SPIE Vol. 4298, 2001, pp. 48-55.   

[12] S. Inokuchi, K. Sato, and F. Matsuda, “Range imaging system 
for 3-D object recognition”, Proc. ICPR, 1984, pp. 806-808. 

[13] T.P. Koninckx, I. Geys, T. Jaeggli, and L. Van Gool, “A Graph 
Cut based Adaptive Structured Light Approach for Real-time 
Range Acquisition”, Proc. of 3DPVT, 2004, pp.413 - 421. 

[14] T.P. Koninckx, A. Griesser, L. Van Gool, “Real-time Range 
Scanning of Deformable Surfaces by Adaptively Coded 
Structured Light”, Proc. of 3DIM, 2003, pp. 293 - 300. 

[15] I. Laptev, S. Belongie, P. Perez, and J. Wills, “Periodic Motion 
Detection and Segmentation via Approximate Sequence 
Alignment”, Proc. ICCV, 2005, pp. 816-823. 

[16] W. Matusik, C. Buehler, R. Raskar, S.J. Gortler, and L. 
McMillan, “Image-based Visual Hulls”, Proc. of ACM 
SIGGRAPH, 2000, pp. 369-374. 

[17] C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. 
Scopigno, “A Low Cost 3D Scanner Based on Structured 
Light,” Computer Graphics Forum, 20, 3, 2001, pp. 299-308. 

[18] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D 
Model Acquisition”, ACM Trans. Graphics, 21, 3, 2002, pp. 
438 - 446. 

[19] F. Sadlo, T. Weyrich, R. Peikert, and M. Gross, “A Practical 
Structured Light Acquisition System for Point-based Geometry 
and Texture”, Proc. of PBG, 2005, pp. 89-98. 

[20] D. Scharstein and R. Szeliski, “High-Accuracy Stereo Depth 
Maps Using Structured Light”, Proc. of CVPR 2003, pp. 195-
202. 

[21] A. Schödl, R. Szeliski, D.H. Salesin, and I. ESSA, “Video 
Textures”, Proc. of ACM SIGGRAPH, 2000, pp. 489-498. 

[22] S. Seitz and C. Dyer, “View-Invariant Analysis of Cyclic 
Motion”, Int’l Journal of Computer Vision, 3, 1997, pp. 231-
251. 

[23] J. Starck, G. Miller, and A. Hilton, “Video-based Character 
Animation”, Proc. of SCA, 2005, pp. 49-58. 

[24] S. Vedula, S. Baker, S. Seitz, and T. Kanade, “Shape and 
Motion Carving in 6D”, Proc. of CVPR, 2000, pp. 592 – 598. 

[25] M. Waschbüsch, S. Würmlin, D. Cotting, F. Sadlo and M. 
Gross, “Scalable 3D Video of Dynamic Scenes”, The Visual 
Computer, 21, 8-10, 2005, pp. 629-638. 

[26] Y. Xu and D.G. Aliaga, “Efficient Multi-viewpoint Acquisition 
of 3D Objects Undergoing Repetitive Motions”, Proc. of I3D, 
2007, pp. 113-120. 

[27] L. Zhang, B. Curless, S.M. Seitz, “Rapid Shape Acquisition 
using Color Structured Light and Multi-pass Dynamic 
Programming”, Proc. of 3DPVT, 2002,  pp. 24 - 36. 

[28] L. Zhang, B. Curless, and S.M. Seitz, “Spacetime Stereo: Shape 
Recovery for Dynamic Scenes”, In Proc. of CVPR, 2003, pp. 
367-374. 

[29] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. 
Szeliski, “High-Quality Video View Interpolation using a 
Layered Representation”, ACM Trans. on Graphics, 23, 3, 
2004, pp. 600-608. 

a) b) c) 

Figure 10. Synthetic sequences. a-c) A temporal sequence of Cruiser from a stationary but novel viewpoint.   
d-f) A frozen time sequence of Bicycle from novel and different viewpoints.  

d) e) f) 
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