
Proceduralization for Editing 3D Architectural Models
Supplemental Material

Ilke Demir
Purdue University
idemir@purdue.edu

Daniel G. Aliaga
Purdue University
aliaga@purdue.edu

Bedrich Benes
Purdue University
bbenes@purdue.edu

A. Tree Construction
We didactically show how the split tree is constructed

on a toy example (Figure 1). The boxes show the physical
meaning of the nodes and the red points are the split points
and they are stored on the edges.

Figure 1. Tree Construction. (a) Building makes up the root,
which is split into (b) next largest components, up to the (c) leaves.

B. Experiments:
Input, Segmentation, and Beyond

Figure 2. Experiments. (a) A trivial grammar and (b) editing re-
sult. (c) The inverse-modeled and (d) edited version of a building
point cloud.

Supplemental Figure 2a shows a trivial example that is
mentioned in the limitations part. If there is no repetition in

the model, then the grammar is a basic one, still enabling
the user to use the simple rules to generate new models.

We also applied our approach on a segmented point
cloud of a building model (Supplemental Figure 2b). The
segmentation of [2] was not applicable, so we used the
semi-automatic segmentation approach of [3] for the build-
ing point cloud. We observed that our inverse procedural
modeling is successful at generating the grammar, however
the editing part needs additional resources to deal with the
varying sampling density of the resized nodes.

Figure 3. Segmentation Sensitivity. Components and grammar
statistics of (a) a well-segmented building, (b) an over-segmented
and labeled building, (c) an overly segmented building.

As mentioned in Section 3, our terminals and grammar
expressivity depend on how the input elements of a build-
ing are segmented and labeled. To evaluate that sensitivity,
we used three segmentations: a well-segmented and labeled
building, a slightly over-segmented building with incon-
sistent labels, and an overly segmented and labeled build-
ing. As per the resulting terminals, non-terminals, and rules
(Supplemental Figure 3); the terminal set in the most overly
segmented building was not compact (25K terminals), how-
ever the rule-mechanism was able to find patterns propor-
tional to terminals, even though |Σ| in the worst case was
greatly affected by over-segmentation. In all cases, our ap-
proach was able to convert the building into a procedural
representation.

Note that we also tried several other known algorithms
(fitting primitives, plumber and tailor, core extraction) on
our dataset. However those algorithms hold some assump-
tions about models, and they cannot segment all buildings.

1

Figure 4. Comparison to Previous Work. Blue rows: inverse procedural modeling approaches, green rows: structure-aware editing
methods.

Figure 5. Additional Results. (purple) Original model, versus new buildings obtained by editing the extracted procedural representation.

C. Comparison to Previous Work

To start with, our approach does not employ any super-
vised, unsupervised, or deep learning. Supplemental Fig-
ure 4 summarizes our differences with some known papers
in shape editing, and inverse procedural modeling. In gen-
eral, most of them either do not produce a grammar, or start
with a known grammar and focus on parameter estimation.
Also, the support for hierarchical patterns, the editing con-
trol (Figure 7), not-needing labeled input and fully auto-
maticity differentiates our method (Note that, if a method
needs per-model parameter or threshold tuning, we listed
it as “semi-automatic”, considering that those numbers are
user-dependent). In particular, our method can capture pat-
terns (Figure 7, in contrast to Talton et al. [5]), and supports

curved patches (Supplemental Figure 6, in contrast to Wu
et al. [6]). We highlight that Figure 9, and Supplemental
Figures 5 and 6 contain hierarchical and multi-dimensional
regular patterns that are not all supported by Bokeloh et al.
[1] and Lin et al. [4]. Finally, unlike Talton et al. [5], our
method does not need training data or multiple instances of
a model, just one model is enough to infer the instance.

D. Attachment Equations

For resize operation, we define a set of attachment equa-
tions as the following. A tree node box i is represented by
two 3D vertices: the min-valued vertex ai = (aix , aiy , aiz)
and the max-valued vertex bi = (bix , biy , biz) (i.e., for co-
ordinates c = x, y, z, aic ≤ bic). Further, we can organize

these six coordinates so as to define each of the eight box
corner vertices vik = (vikx , viky , vikz) for k ∈ [1, 8].

• Ground attachment: aiz = 0

• Corner attachment: vik1
− vjk2

= 0where vik1
is the

corner vertex k1 of node i that is the same as vjk2
of

node j.

• Edge attachment. To define equations, assume ai ≤
aj and bi ≤ bj and they overlap in x. We define an
edge ratio overlap function as:

e(s, t, u) = (t− s)/(u− s) (1)

for s ≤ t ≤ u. The edge defined by vik1
and vik2

overlaps in the x coordinate with the edge in between
vjk3 and vjk4 where vik1x

≤ vjk3x
≤ vik2x

≤ vjk4x.
If v̂ represents the initial (constant) vertex values, then
edge attachment equations are:

vik2x
− vjk3x

− vjk4x
− vjk3x

e(v̂jk3x
, v̂ik2x

, v̂jk4x
) = 0

vjk4x
− vik1x

− vik2x
− vik1x

e(v̂ik1x
, v̂jk4x

, v̂ik2x
) = 0

biy − ajy = 0

biz − ajz = 0

Similar equations are written for overlap in y and z.

• Plane attachment. Using the same notation as in edge
attachments, the plane attachment equations for over-
lap in x and y are:

vik2x
− vjk3x

− vjk4x
− vjk3x

e(v̂jk3x
, v̂ik2x

, v̂jk4x
) = 0

vjk4x
− vik1x

− vik2x
− vik1x

e(v̂ik1x
, v̂jk4x

, v̂ik2x
) = 0

vik2y
− vjk3y

− vjk4y
− vjk3y

e(v̂jk3y
, v̂ik2y

, v̂jk4y
) = 0

vik2y
− vjk3y

− vjk4y
− vjk3y

e(v̂jk3y
, v̂ik2y

, v̂jk4y
) = 0

biz − ajz = 0.

Same equations are written for overlap in yz and xz.

• Volume attachment. Volume equations are:

vik2x
− vjk3x

− vjk4x
− vjk3x

e(v̂jk3x
, v̂ik2x

, v̂jk4x
) = 0

vjk4x
− vik1x

− vik2x
− vik1x

e(v̂ik1x
, v̂jk4x

, v̂ik2x
) = 0

vik2y
− vjk3y

− vjk4y
− vjk3y

e(v̂jk3y
, v̂ik2y

, v̂jk4y
) = 0

vik2y
− vjk3y

− vjk4y
− vjk3y

e(v̂jk3y
, v̂ik2y

, v̂jk4y
) = 0

vik2z
− vjk3z

− vjk4z
− vjk3z

e(v̂jk3z
, v̂ik2z

, v̂jk4z
) = 0

vik2z
− vjk3z

− vjk4z
− vjk3z

e(v̂jk3z
, v̂ik2z

, v̂jk4z
) = 0

• Size attachment. For d equals one or more of
(x, y, z),

bid − aid = |b̂id − âid | (2)

where âi and b̂i are the initial (constant) vertex values.

• Position attachment. For d equals one or more of
(x, y, z),

vikd
− v̂ikd

= 0 (3)

E. Additional Results
In this section we show additional results that are ob-

tained using our procedural editing engine after the proce-
dural representation is extracted from the input models. In
Supplemental Figure 5, the original model is colored with
purple background, and all other models are synthesized
from its grammar using our method, under 5 minutes. Note
that users were not experts, thus interesting structures such
as adding balconies to roofs are possible.

Supplemental Figure 6 shows other examples on differ-
ent styles of architecture, such as St. Basil’s drop shaped
tops, Japanese style complicated roofs, neighborhoods such
as Stanford Square, castles and towers as in Cindrella’s cas-
tle, and domes as in Blue Mosque. Seeing the interesting
grammars and editing results, we are hopeful that we have
taken an important step towards automatic inverse procedu-
ral modeling.

References
[1] M. Bokeloh, M. Wand, and H.-P. Seidel. A connection

between partial symmetry and inverse procedural modeling.
ACM Trans. Graph., 29(4):104:1–104:10, 2010. 2

[2] I. Demir, D. G. Aliaga, and B. Benes. Coupled segmentation
and similarity detection for architectural models. ACM Trans.
Graph., 34(4):104:1–104:11, July 2015. 1

[3] I. Demir, D. G. Aliaga, and B. Benes. Procedural editing of 3d
building point clouds. International Conference on Computer
Vision (ICCV), Dec 2015. 1

[4] J. Lin, D. Cohen-Or, H. Zhang, C. Liang, A. Sharf,
O. Deussen, and B. Chen. Structure-preserving retargeting of
irregular 3d architecture. ACM Trans. Graph., 30(6):183:1–
183:10, Dec. 2011. 2

[5] J. Talton, L. Yang, R. Kumar, M. Lim, N. Goodman, and
R. Měch. Learning design patterns with bayesian grammar
induction. In Proceedings of the ACM UIST, UIST ’12, pages
63–74, New York, NY, USA, 2012. ACM. 2

[6] F. Wu, D.-M. Yan, W. Dong, X. Zhang, and P. Wonka. Inverse
procedural modeling of facade layouts. ACM Trans. Graph.,
33(4):121:1–121:10, July 2014. 2

Figure 6. Synthesis Examples. (left) Original, and (right) re-modeled versions of real-world buildings. All models are taken from Google
Warehouse.

