
 1

The ModelCamera: A Hand-Held Device for Interactive Modeling

Voicu Popescu, Elisha Sacks and Gleb Bahmutov
Computer Science Department, Purdue University

{popescu|sacks|bahmutov}@cs.purdue.edu

Abstract
An important goal of automated modeling is to provide

computer graphics applications with high quality models
of complex real-world scenes. Prior systems have one or
more of the following disadvantages: slow modeling
pipeline, applicability restricted to small scenes, no direct
color acquisition, and high cost. We describe a hand-held
scene modeling device that operates at five frames per
second and that costs $2,000. The device consists of a
digital video camera with 16 laser pointers attached to it.
As the operator scans the scene, the pointers cast blobs
that are detected and triangulated to provide sparse,
evenly spaced depth samples. The frames are registered
and merged into an evolving model, which is rendered
continually to provide immediate operator feedback.

1. Introduction

Many computer graphics applications involve complex
real-world scenes. Modeling such scenes is extremely
difficult. One challenge is to acquire depth. Depth
acquisition methods are slow enough that only a few
views can be acquired. Even with view planning, these are
too few for complete coverage of complex scenes.
Another challenge is to register depth and color from
multiple views. A third challenge is to build a model that
can be rendered interactively with standard graphics
hardware. Due to these factors, modeling a complex scene
takes days or even weeks. The high cost in time,
equipment, and logistics limits the role of scene modeling
in computer graphics.

We have designed a hand-held scene modeling device
that operates at five frames per second and that costs
$2,000. The ModelCamera (Figure 1) consists of a video
camera with 16 laser pointers attached to it. As the
operator scans the scene, the laser beams produce blobs in
the video frames where they hit scene surfaces. The
frames are read into a computer, the blobs are detected in
the frames, and their 3D positions are inferred by
triangulation. Each frame is registered with respect to the

previous frame using the color data and the blob
positions. The registered frames are merged into an
evolving model that is rendered to provide immediate
operator feedback.

Depth acquisition is fast because only a few depth
samples are acquired per frame. Moreover the laser
pointers are fixed with respect to the camera, hence the
blobs fall on known epipolar segments. Fast registration is
performed with a novel algorithm based on dense color
and sparse depth. View planning is avoided because data
is acquired and registered in real time from a continuum
of views.

Our modeling technique poses several research
problems. The first problem is to register with sparse
depth and without scene anchored fiducials. The second
problem is to model complex geometry with sparse depth.
The third problem is to merge the registered frames into
the model in real time, which entails efficiently discarding
the redundant, overlapping data. Our solutions rely on two
fundamental properties of interactive modeling.

Coherent computation The blob detection and view
registration algorithms exploit the fact that each video
frame is similar to the previous frame. The search for a
blob starts from the previous blob, which is normally
within a few pixels of the answer. Registration is
performed by minimizing an error function whose

Figure 1 ModelCamera prototype.

laser pointers

blobs

 2

variables represent the camera motion between two
frames. Coherence implies that an initial guess of constant
velocity is close to the solution.

Interactive control The operator controls the system
via a graphical interface that displays the current model,
monitors its quality, and reports registration failures. If
the color or depth sampling is insufficient, the system
prompts the operator to bring the camera closer to the
problematic surface. If registration is lost, it returns the
operator to the last registered frame and modeling
resumes from there.

Figure 2 illustrates modeling with the ModelCamera.
The camera positions are shown with (green and black)
frusta connected with a (red) line. Two out of three frusta
are scaled down for clarity. We refer the readers to a
video that we prepared to illustrate this paper [27]. The
segments that illustrate the modeling were obtained by
directly videotaping the computer monitor.

2. Prior work

The usual steps of automated modeling are view
planning, depth acquisition, registration, and model
construction. We review prior work in depth acquisition
and in registration. We omit view planning, which is
irrelevant to interactive modeling. We omit model
construction because prior work presupposes off-line
processing, whereas we require real-time algorithms. We
then review hand-held modeling devices and image-based
modeling methods.

Depth acquisition The main approaches are stereo,
structured light, and (non-triangulation) laser
rangefinding. Stereo is well suited for complex real-world
scenes ([22], [15]), but correspondences cannot be
established quickly enough for interactive modeling.
Structured light approaches acquire accurate depth, but
require calibrated motion and thus have a short range.
Moreover the light pattern interferes with color
acquisition. Time-of-flight (for example DeltaSphere
[23]) and phase shift (Surphaser [24]) rangefinders
acquire dense, precise depth images, but take several

minutes per view. Some systems do not acquire color and
those that do must register the color with the depth. This
task is sometimes simplified by collocating the color
camera with the depth sensor [10], but this comes at the
cost of uneven color sampling.

View registration Registration can be performed with
a separate device that tracks the position and orientation
of the scene acquisition device. The relationship between
tracking and depth measurement has been explored in
[19] where a tracker was built using a real-time
rangefinder. Coupling the acquisition device with a
tracker has the disadvantages of limited range of motion,
limited precision, and high cost. Another registration
approach developed in the context of computer vision and
augmented reality uses fiducials placed in the scene ([9],
[14], [13]). The fiducials are easily detectable in the
acquired frames and provide points with known 3D scene
coordinates and known image projections, which are used
for estimating pose. The fiducials have to cover the entire
scene or have to be moved along with the acquisition
device, hence are impractical for large scenes.

Most current registration methods are variants of the
iterative closest point (ICP) algorithm ([1], [5], [21]),
which iteratively minimizes the distance between the
overlapping parts of two or more depth maps. Real-time
ICP has been demonstrated on small objects using dense
depth from structured light [17]. The method requires
dense depth and is not applicable to our system.

Hand-held devices The advantages of interactive
scene modeling have motivated the recent development of
several hand-held devices. One type of device consists of
a fixed camera and a mobile light-pattern source. One
variant [20] uses a hand-held laser point projector on
which three green LED's are mounted. The position of the
LED's in the camera frame is used to infer the position
and orientation of the laser beam. The red laser blob is
detected in the frame and is then triangulated as the
intersection between the pixel ray and the laser beam.
Another variant [3] extracts depth from the shadow of a
rod captured by a camera under calibrated lighting. The
Autoscan [2] system uses two cameras mounted on a
tripod and a hand-held laser point projector. The main
problem with these systems is that they are limited to a
single view by the fixed camera.

Hebert [7] describes a system where the operator can
freely change the view. The device consists of two
cameras and a cross-hair laser light projector. Frame to
frame registration is achieved using a set of fixed points
(fiducials) projected with an additional, fixed laser
system. The system acquires depth over a narrow field of
view at each frame, which implies long acquisition times
for large scenes. The system also has the disadvantages
associated with fiducials and does not acquire color.
Rusinkiewicz [17] presents a structured light system

Figure 2 Model obtained from sequence of frames,
and ModelCamera trajectory.

 3

Figure 3 Laser beam pattern.

where the object being scanned is hand-held in the fields
of view of a fixed projector and fixed camera. The
modeling pipeline is very fast; the object is modeled in
real time and the evolving model is rendered to provide
immediate feedback to the operator. The system is limited
to the outside-looking-in modeling case, and does not
acquire color, but it clearly demonstrates the advantages
of real-time modeling.

Image-based rendering (IBR) We conclude the
previous work discussion with a review of IBR
approaches for modeling real-world scenes. Panoramas
[4] are created by stitching together photographs from a
single center of projection. The scene can be rendered
efficiently and realistically from the center of the
panorama. Other viewpoints cannot be rendered because
the panoramas lack 3D information. Concentric mosaics
[18] are an alternate representation that provides partial
parallax with models that are built by moving a camera in
calibrated circles. Another IBR approach uses images
enhanced with per-pixel depth (depth images) to produce
novel views by 3D warping [12]. Current depth-
acquisition technology cannot provide enough depth
images for large scenes. We use the depth image
representation for fast incremental transformation during
registration and for frame merging during model
construction. The light field approach ([8], [6]) uses
image data exclusively to provide novel views of a scene,
but unlike panoramas, supports arbitrary camera views.
The color data is stored in a 4D database that grows
impractically large when modeling complex scenes.

3. The ModelCamera system

The device is assembled from a digital video camera,
16 laser pointers, and standard components (brackets,
wires, clips). The camera is high-end consumer-level:
progressive-scan, 720 x 480 x 3 pixel resolution, $1,500
cost. The lasers are red (635 nm), have an emitting power
of 5mW (class IIIa), a spot size of 6 mm/12 mm at
5m/15m, and cost $15 apiece. The camera is linked to a
PC via a Firewire interface. The lasers are mounted in a
matrix pattern around the camera and generate 16 distinct
blobs in its field of view. Figure 3 shows the blob patterns

when the camera is
aimed at a wall at
three different depths.
For clarity, all but 4
laser beams are
clipped. The
convergent and then
divergent setup of the
lasers allows the
operator to vary the
sampling rate by

zooming in and out. A quick scan from afar suffices for
simple surfaces, such as walls, whereas a slow, close scan
is needed for complex shapes.

3.1 Calibration

The ModelCamera
is calibrated in three
steps that take 5
minutes and are fully
automated except for
moving the camera.
The video camera is
calibrated using the
toolkit developed by
Jean-Yves Bouguet
[25] and included in
Intel's OpenCV library
[26]. The calibration error is in the order of 0.1 pixels.
Using the toolkit, subsequent frames are undistorted with
the calibrated coefficients. Next, two custom procedures
establish the epipolar lines and the laser ray equations.

The epipolar lines are the projections of the laser
beams onto the camera image plane (line ab in Figure 4).
They are determined from a sequence of frames in which
the camera views a white wall. The blobs are found by an
exhaustive search for intensity peaks. The frames are
filtered then the intensity threshold is adjusted until 16
blobs of appropriate size are found in each frame. The
blobs are assigned to lasers according to their horizontal
and vertical ordering in the first frame and then using
coherence. An epipolar line is least-squares fitted to each
blob set. We use 200 frames. The mean/maximum
distances between the blobs and the lines are 0.3/0.8
pixels. There is no visible systematic error. The epipolar
lines are insensitive to residual radial distortion because
they are close to the image center

The laser rays are determined from a sequence of
frames in which the camera moves towards a calibration
checkerboard. At each frame, the blobs are detected on
their respective epipolar lines using the algorithm
described below and the camera pose is inferred from the
checkerboard (with the lasers turned off to prevent
interference) using Bouguet’s toolkit. The 3D position of
each blob is determined by intersecting the camera ray
with the checkerboard plane. A 3D ray equation is least-
squares fitted to the point set of each laser. We use 10
frames; the mean/maximum distances between the points
and the rays are 1.5 / 3.0 mm.

3.2 Depth acquisition

The ModelCamera acquires one depth sample per blob
per frame by finding the blobs on the epipolar lines

Figure 4 Epipolar line and
triangulation.

 4

(Figure 5) and triangulating their 3D positions in camera
coordinates (Figure 4). The blob detector searches the
epipolar lines for intensity peaks. We exploit coherent
camera motion by starting the search at the peaks from the
previous frame. The current peaks are normally detected
near the previous ones with minimal search. This heuristic
fails when a blob jumps from one surface to another, and
its entire epipolar line is then searched.

Detecting the blobs robustly is crucial. The first
priority is to avoid false positives because they disrupt
registration and severely distort the model. Minimizing
false negatives is a lower priority because registration
works well with 12–16 blobs. The intensities are
bilinearly interpolated along the epipolar line and are
smoothed with a 1D raised cosine filter. Peaks must
exceed a threshold, which varies linearly along the
epipolar line to allow for dimmer blobs at a distance. The
intensity must fall off rapidly on either side of the peak. If
a peak passes these tests, we test that the surrounding
bright region is roughly circular along 8 evenly spaced
spokes centered at the peak. Figure 6 shows the intensity
along epipolar line e seen in Figure 5. Four peaks pass the
epipolar line tests but F1, F2, and F3 fail the symmetry
test.

 Each epipolar line intersects several other lines, so
several blobs can fall on a single epipolar line. This can
lead to ambiguity in assigning the blobs when one or
more entire epipolar lines are searched. In this case, the
unambiguous blobs are assigned first, which leads to a
unique assignment for the rest of the blobs. Blob detection

works well on our test scenes: 99.3% success at 70 cm
and 85% at 200 cm.

Depth accuracy The depth accuracy is a function of
the blob detection accuracy. The inner 4 / outer 12 lasers
have an average baseline of 12 cm / 22 cm. For these two
baselines, a one-pixel blob detection error translates into a
depth (z) error of 0.1 cm / 0.2 cm at 50 cm, 0.35 cm / 0.7
cm at 100 cm, 1.5 cm / 3 cm at 200 cm and 3.5 cm / 7 cm
at 300 cm. We increase blob detection accuracy by
supersampling the epipolar line four times per pixel. If the
peak is flat (saturated to 255), the midpoint is used.

We estimated blob detection accuracy by scanning a
white wall from several distances and measuring the out-
of-plane displacements of the triangulated 3D points. At
200 cm, the average/maximum displacements were 0.33
cm/1.1 cm, which indicates a blob detection error of 0.5
pixels in the absence of systematic errors. Better results
were obtained at shorter distances. More work is required
to quantify the blob detection accuracy as a function of
surface properties (color, texture, specularity), angle of
incidence, and laser properties.

3.3 Depth-then-color registration

Before a frame can be added to the scene model, it has
to be registered with respect to the prior frames.
Registration is performed by computing a camera motion
that minimizes the depth and color errors between the
current and the previous frame. This is a six-dimensional
nonlinear optimization problem whose variables are the
camera’s degrees of freedom. A good starting point for
the optimization is obtained by assuming a constant
camera velocity and extrapolating from the previous pair
of frames. The challenge is to find an error function and a
minimization algorithm for fast, accurate registration.

We have developed the depth-then-color algorithm
(Figure 7) that achieves good registration in real time. The
motion is expressed as p’ = t + q x p, where p is a point
obtained by triangulation in frame i+1 coordinates, p’ is
the same point in frame i coordinates, t = (a, b, c) is a
translation vector, and q = (u, v, w, s) is a unit quaternion
with 2221 wvus −−−= . (The rotation angle is less than
90 degrees by coherence, which implies that s is positive.)
The first stage minimizes a depth error function over the

Figure 5 Frame with blobs detected on epipolar lines.

e

e

Figure 6 Intensity along epipolar line with blob and
false peaks. Line indicates threshold.

F1 F2 F3
Blob

Figure 7 Consecutive frames before reg. (left), after
depth reg. (middle), and after color reg. (right).

 5

vector m = (a, b, c, u, v, w). The minimum is obtained
quickly because the function is smooth and involves only
16 points.

Symmetric surfaces have motions that do not affect the
depth error, for example translation parallel to a plane or
rotation around the center of a sphere. With the exception
of planes, symmetric surfaces are uncommon, but
approximately symmetric surfaces pose the same
problem. The depth error varies too little to allow the
depth registration stage to establish all six degrees of
freedom. For example, Figure 8 shows a couch armrest
that is locally cylindrical, so the depth error is almost
constant when the camera translates along it or rotates
around it.

The invariant motions are linear combinations of 1, 2
or 3 components of m. The second stage computes those
variables by minimizing a color error function. The
function is more expensive to evaluate than the depth
error function because it involves thousands of pixels.
Moreover it has many local minima, which increases the
number of error evaluations required for convergence.
Real-time minimization is achievable for three variables,
but is impossible for six. Hence, the depth stage fully
registers asymmetric surfaces and makes color
registration practical for symmetric surfaces.

Depth registration The depth error and the
symmetries are computed from quadratic surfaces that are
fitted to the triangulated 3D points (blob points). In frame
1, a single quadratic, z = f(x,y) = k0 + k1x + k2y + k3 x2 +
k4xy + k5y2, is least-squares fitted to all the blob points. In
frame i+1, each set of blob points that shares an i surface
is refitted to an i+1 surface then the unassigned blob
points are fitted. A fit succeeds if the maximum distance
from a blob point to the surface is less than the depth
resolution (e.g. 0.5 cm at 100 cm). The blob points are
replaced with their projections on the fitted surface. If a fit
fails, the worst blob is discarded and the fit is retried. The
cycle ends in failure when fewer than 8 blobs remain. The
system discards the frame and prompts the operator to
bring the camera closer to the scene.

The depth error of blob point p is defined as gp= p’z -
f(p’x, p’y). It equals zero when p is on the surface and is

nonzero
otherwise, so gp

2
has a global
minimum when p
is on the surface.
(Although gp does
not equal the
distance from p to
the surface, the
two functions are

approximately
equivalent near

zero.) The depth error of frame i+1 is e(m) = ∑pgp
2 with

the summation over the assigned blobs.
The symmetric surfaces that we model are planes,

spheres, cylinders, and cones. We fit each type of surface
to the blobs and test if the depth error is approximately
constant as the blobs move along the symmetry axes. A
symmetry is accepted if the depth error of the maximum
allowable one-frame motion (5cm per translation; 0.2
radians per rotation) is less than the depth resolution. The
depth error is computed in a coordinate system in which
the symmetry axes coincide with coordinate axes. The
variables that represent motion along symmetry axes are
set to zero and are treated as constants during depth error
minimization.

The depth error is minimized by sequential quadratic
programming. This is the natural choice because e is
smooth and its first and second derivatives are easy to
compute. The iteration finds a zero of the gradient e∇ by
repeatedly solving emH −∇=∂ where H is the Hessian
matrix of e. This linear system is solved by singular value
decomposition, which is more robust than the standard
LU decomposition.

Color registration The remaining variables are
computed by color error minimization. The error of pixel
p in frame i+1 is defined as the RGB distance between its
color and the color where it projects in frame i. The i
color is computed by bilinear interpolation. The color
error is hard to minimize because small camera motions
produce rapid, erratic changes in its value. We reduce the
variability by convolving the relevant region in each
frame with a constant 11-by-11 filter (Figure 9 a and b).
This is done efficiently by computing the convolution
sum incrementally: for each pixel the sum of the least
recent filter column is replaced with the sum of the new
column. We select a set of pixels in frame i+1 and
minimize the sum of the squares of their color errors by
the downhill simplex method. This method is the natural
first choice because the gradient of the error function

cannot be computed
analytically.

The pixels are
selected from every
twentieth row and
column of the axis-
aligned bounding box
of the blobs. The rows
and columns are split
into segments (Figure 9
c). A segment is a
maximal sequence of
pixels that are in the
blob region, are blob
free and lie on a single
quadratic. The blob

Figure 8 Depth-invariant degrees

of freedom.

Figure 9 Frame with masked
blobs (a), filtered region (b)
and registration pattern (c).

a

b c

 6

region is defined by the 18 triangles formed by the 3 x 3
groups of 4 immediate-neighbor blobs (Figure 3). Blob
region membership is tested per pixel. The triangle
containing the previous pixel is tested first, which reduces
the number of tests. Blob pixels are excluded because
their color comes from the lasers, rather than from the
surface. The segment must lie on one quadratic, so that its
z values can be computed.

The registration pattern is built once per frame, which
takes negligible time. Every pixel (1000 - 4000), has to be
projected into frame i for every error evaluation. We do so
efficiently by incrementally 3D warping the horizontal
and vertical segments, which has an amortized per pixel
cost of 3 adds, 5 multiplies and 1 divide [11]. Warped-
image reconstruction is unnecessary for error evaluation,
so this approach does not incur the full cost of IBR by 3D
warping [16]. Segments of planar patches are projected by
affine transformation followed by a perspective divide
(texture mapping), which evaluated incrementally
requires only 3 adds, 2 multiplies and 1 divide per pixel.
In the planar case, the perspective divide could be avoided
if the frames were unprojected to a regular surface-
defined orthographic grid first. Then a pixel could be
transformed with only 2 adds, but this advantage is
counterbalanced by the disadvantage of having to
unproject all the pixels in the relevant region of frame i.

For an armrest (Figure 5) sequence of 63 frames,
registration succeeded on 59 frames with average /
maximum per times of 70 ms / 172 ms. The color
registration pattern consisted of 1946 / 2709 samples per
frame. The depth error was 0.066 cm / 0.201 cm per
frame. The depth error for a frame was measured as the
average of the depth errors of the depth-and-color samples
in the color registration pattern. The depth error of a
sample is given by the distance from the sample to the
previous frame surface after registration. The depth error
after depth registration (and before color registration) was

0.051 cm / 0.202
cm, which verifies
that the degrees of
freedom found
using color do not
affect depth. The
color error was 2.8 /
5.5 versus 11.3 /
22.9 before color
registration. The
larger final errors
are occur for the
frames where the
camera adjusts the
picture brightness.
The automatic
compensation does
not disturb

registration and is necessary for acquiring high-quality
textures.

The depth-then-color registration algorithm is
inappropriate for fragmented scenes where the blobs jump
from tiny surface to tiny surface at every frame. Such
scenes are challenging for any automated modeling
system not only during registration but also during model
construction. We present our solutions for such scenes in
section 3.5 after we discuss our real-time incremental
modeling algorithm for structured scenes.

3.4 Incremental modeling

Each registered frame contributes one or several
quadratic patches with color, like the ones seen in Figure
7. As in color registration, the patches are delimited by
the triangles formed by neighboring blobs. Since a new
patch is acquired and registered approximately every 200
ms, the patches have considerable overlap. The first task
of the incremental modeling algorithm is to eliminate the
redundant data and append the contribution of the current
frame to the scene model. This is done efficiently by
representing the frame patches and the evolving model
with depth images. Figure 10 shows a surface modeled
with several depth images.

The depth image of a patch (PDI) is built similarly to
the color registration pattern. Every row is used, so no
vertical segments are needed. The color comes from the
frame. The depth is inferred from the quadratic. Each
scene surface is represented by one or several depth
images (SDIs), which are created on demand as the
scanning progresses.

The incremental modeling proceeds according to the
algorithm sketched in Pseudocode 1. The 3D bounding
box of the PDI is projected in all SDIs to establish the
SDIs potentially affected by the current frame. Each
depth-enhanced pixel P of PDI is warped incrementally to
each SDI in the set. If P is clipped by the SDI frustum or
maps to a location P’
that contains a
sample clearly closer
or farther than P, the
next SDI is
considered. A sample
at P’ at
approximately the
same depth as P
indicates redundant
sampling. The
algorithm selects the
best sample and
discards the worst. A
sample is preferred if
it originates from a

For each frame
 Build PDI
 Find affected SDIs
 For each segment S of PDI
 For each pixel P of S
 For each SDI in SDIs
 P’ = P warped to SDI
 If P outside SDI next SDI
 If P’ > P next P
 If P’ < P P’ = P, next P
 If P’ is empty and no AP
 AP =(SDI, P’), next SDI
 End for each SDI
 If AP commit AP, next P
 Create new SDI, assign P
 End for each pixel
 End for each segment
End for each frame

Pseudocode 1

Figure 10 Surface model;
wireframe and textured.

 7

patch with a sampling rate
closer to the desired sampling
rate. We compute one
sampling rate per segment
(measured in pixels / cm) as
the average of the sampling
rates at the two end points.
Each SDI stores the sampling
rate of each pixel in an
additional buffer. If there is no
sample at P’ and no potential
assignment has been yet found
for P, SDI and P’ are recorded
as a potential assignment AP.

If P has not been used by
any SDI, the potential
assignment is finalized. To

avoid holes in the constructed surface, P is splatted in the
SDI. Splatting is a warped-image reconstruction technique
that approximates the footprint of a warped sample [11].
For efficiency, we use square splats with a size derived
from the sampling rate of the sample. If no potential
assignment has been found, a new SDI is constructed with
the look-at vector given by the surface normal at P. The
SDIs sample the surface at the desired rate, and have a
narrow field of view (10 degrees) for uniform sampling.
The SDI frusta are shown in Figure 11. Pixels that warp to
the border of an SDI are also assigned to a second SDI to
avoid gaps (Figure 10).

The parts of the SDIs that are populated with samples
are triangulated into a regular mesh. The texture mapped
triangles are rendered by the graphics hardware. We use
SDIs of 256 x 256 pixels and a triangulation step of 8
pixels, which yields 2K triangles and 256 KB of texture
per SDI. Current graphics hardware can easily handle 100
SDIs. If necessary, the geometry load could be reduced by
triangulating adaptively.

For the 63 frame sequence discussed earlier, the
average / maximum model construction time was 63 ms /
125 ms per frame and 19 SDIs were built. Depth
extraction, registration, model construction and rendering
took 145 ms / 297 ms per frame. The total frame time was
209 ms / 391
ms. The time
spent outside
the modeling
module is
mainly due to
frame transfer
and
undistortion.

For planar
surfaces, per-
pixel depth is

unnecessary. A
planar surface
is modeled with
a set of texture-

mapped
squares, called
tiles (Figure
12). The
algorithm is
similar to the

case of curved surfaces, so we will not describe it in
detail. The resolution of the texture is given by the desired
sampling rate. The tiles are created on demand as
scanning progresses. The frame patch is represented by
the set of triangles connecting the blobs. The textures of
the tiles affected by the current patch are grown by
rendering the patch triangles in the textures. The geometry
of partially covered tiles is modeled with a triangulated
polygon. The polygon is unioned with each new patch and
is re-triangulated. When the tile texture is filled (we use a
threshold of 99%), the polygon is replaced with the two
triangles defining the tile.

The model of the part of the scene currently scanned is
rendered continually and provides immediate feedback to
the operator. The operator can select a mode where the
sampling rate is visualized. Red / blue highlights indicate
over- / under- sampling (Figure 13).

3.5 Fragmented scenes

The depth-then-color algorithm does not work for
fragmented scenes because the frame cannot be
approximated with a few quadratics. The frames can be
registered using color only if the ModelCamera rotates
about its center of projection. Except for having to mask
the blobs, the procedure is identical to stitching
photographs together to form panoramas [4]. To achieve
real-time registration we use a registration pattern
consisting of horizontal and vertical pixel segments
similar to the one described earlier. The pixels are
transformed from the current frame to the previous frames
incrementally with an affine transformation followed by a
perspective divide.

A sequence of registered frames is transformed in a
cubical panorama. The triangulated blob points are
projected onto the faces of the panorama. The cubical
panorama is unfolded and the projections are triangulated.
Triangles that cross from one panorama face to another
are divided along the edge. Each face defines a texture
map that is applied to its corresponding triangles. Figure
14 shows the frames registered in real-time as the operator
rotates the camera (top) and the depth-enhanced panorama
(bottom) that is computed in 5 seconds after the sequence
is scanned. Figure 12 Planar scene model.

Figure 13 Sampling rate visualization.

Figure 11 Depth
image placement.

 8

Because the scene is close to the camera residual
translation affects registration. We use a tripod to avoid
translation. The tripod slows down acquisition because it
has to be repositioned. It does not allow tilting the camera
about its COP so the operator cannot cover the entire
panorama with blobs.

4. Discussion

We have presented an interactive modeling device
based on sparse depth and dense color. The ModelCamera
acquires 16 depth samples per frame, registers the frames,
merges them into an evolving texture-mapped scene
model, and renders the model for operator feedback.
Structured scenes are modeled via a freehand scan, while
unstructured scenes require a tripod. We have
demonstrated fast, accurate modeling of surfaces. Our
immediate goal is to model room-sized scenes.

The depth-then-color algorithm requires more color
variation than some scenes contain. We can compensate
by deriving more degrees of freedom from geometry. If
two surfaces are visible, at most one degree of freedom
needs to come from color. If three are visible, color is not
required. The 16 laser configuration of the ModelCamera
is barely adequate for two surfaces, since we need 8 blobs
per surface for robust quadratic fitting. We will
experiment with more lasers in the next design cycle.

We must also address registration drift over long
sequences of frames due to depth and color error
accumulation. We found little drift on sequences of 20
frames. For example, the wall hanging in Figure 12
measures 45.1 cm by 83.2 cm in the model versus 46.2 by
83.9 cm in reality. But much longer sequences are
required for room modeling. If drift hinders modeling, it
must be monitored interactively, perhaps by computing
the color error of each registered frame relative to the
current model. Otherwise, it can be corrected offline.

We will improve the ModelCamera based on our
experience with the first prototype. The new design will
be more rigid to prevent laser motion relative to the
camera, which degrades blob detection. It will be modular
to support experiments with alternate cameras and lasers.
We are considering designing a light-weight camera
mount with shoulder straps that allows panning and tilting
the camera around its COP. This will improve the
maneuverability of the ModelCamera during the
acquisition of fragmented surfaces. Eventually, we plan to
move the graphical interface onboard the video camera to
improve mobility. We could use the LCD of the video
camera, a wearable display, or a wearable computer. A
better interface is also a priority. It should help the
operator undo frames, start a scan at the end of a prior
scan, and hide / show / save / load parts of the model.

Another goal is to model outdoor scenes. The current
lasers are invisible in sunlight. Greater power or alternate
wavelengths are a possibility, but would make the device
eye unsafe. Interactive modeling of surfaces with view
dependent appearance is a long term goal. Blobs are
difficult to detect, highlights and reflections confuse color
registration, and the current models have to be extended.

5. Acknowledgements

We would like to thank Chun Jia for her help with
implementing the panorama registration and construction,
Chris Hoffmann for useful discussions. This work was
supported by NSF grant IIS-0082339 and Intel
Corporation.

References
[1] P. Besl, N. McKay. A method for registration of 3-d shapes.

IEEE Trans. Patt. Anal. Mach. Intell., 14(2):239-256, 1992.
[2] N. A. Borghese et al., Autoscan: A Flexible and Portable 3D

Scanner, IEEE Computer Graphics and Applications, Vol.18,
No.3, May/ Jun. 1998, pages 38-41.

[3] J.-Y. Bouguet and P. Perona, 3D Photography using
Shadows in Dual-Space Geometry, International Journal of
Computer Vision, Vol. 35, No. 2, Nov. 1999, pages 129-149.

[4] S. Chen. QuicktimeVR- an image-base approach to virtual
environment navigation. In Proc. SIGG. '95, pages 29-38.

[5] Y. Chen and G. Medioni. Object modeling by registration of
multiple range images. Image and Vision Computing,
10(3):145-155, 1992.

[6] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The
lumigraph. In Proc. of SIGGRAPH '96, pages 43-54, 1996.

[7] P. Hebert. A self-referenced hand-held range sensor. In
Proceedings of Third International Conference on3-D Digital
Imaging and Modeling, pages 5-12, 2001.

Figure 14 Registration (top) and model (bottom)

of fragmented scenes.

 9

[8] M. Levoy and P. Hanrahan. Light field rendering. In Proc. of
SIGGRAPH '96, pages 31-42, 1996.

[9] R. W. Malz, “High Dynamic Codes, Self-Calibration and
Autonomous 3D Sensor orientation: Three Steps towards Fast
Optical Reverse Engineering Without Mechanical CMMs”, in
Optical 3-D Measurement Techniques III,Gruen/ Kahmen
eds., Wichmann, 1995, pages 194-202.

[10] D. McAllister, L. Nyland, V. Popescu, A. Lastra, C.
McCue. Real-Time Rendering of Real-World Environments.
Proceedings of the Eurographics Workshop on Rendering,
June 21-23, 1999.

[11] L. McMillan. An image-based approach to three
dimensional computer graphics. Ph.d., University of North
Carolina at Chapel Hill, 1997.

[12] L. McMillan and G. Bishop. Plenoptic modeling: An
image-based rendering system. In Proc. SIGGRAPH '95,
pages 39-46, 1995.

[13] U. Neumann and Y. Cho. A Self-Tracking Augmented
Reality System. ACM International Symposium on Virtual
Reality and Applications, pages 109-115, July 1996.

[14] W. Niem and J. Wingbermuhle, Automatic Reconstruction
of 3D Objects Using a Mobile Monoscopic Camera, in Proc.
of the First International Conference on 3-D Digital Imaging
and Modeling”, Ottawa, Canada, Oct. 1997, pages 173-180.

[15] M. Pollefeys and L. Van Gool. From Images to 3D Models,
Communications of the ACM, July 2002/Vol. 45, No. 7,
pages 50-55.

[16] V. Popescu et al. The Warpengine: An architecture for the
post-polygonal age. In Proceedings of SIGGRAPH 2000,
pages 433-442, 2000.

[17] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Realtime 3d
model acquisition. SIGGRAPH, 2002.

[18] H. Shum and L. He. Rendering with concentric mosaics. In
Proc. SIGGRAPH '99, 1999.

[19] D. Simon, M. Hebert, and T. Kanade. Real-time 3-d pose
estimation using a high-speed range sensor. In IEEE Int.
Conf. Robot. Autom., pages 2235-2241, San Diego, 1994.

[20] M. Takatsuka et al., Low-cost Interactive Active Monocular
Range Finder, in Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition, Fort Collins, CO, USA, Jun.
1999, pages 444-449.

[21] Z. Zhang. Iterative point matching for registration of free-
form surfaces. Int. J. of Comp. Vision, 13(2):119-152, 1994.

[22] C. Zitnick and T. Kanade. A cooperative algorithm for
stereo matching and occlusion detection. IEEE Trans. on Patt.
Anal. and Mach. Intell., 22-7, July, 2000, pages 675 - 684.

[23] http://www.3rdtech.com
[24]http://www.surphaser.com
[25] http://www.vision.caltech.edu/bouguetj/calib_doc
[26] http://www.intel.com/research/mrl/research/opencv
[27] http://www.cs.purdue.edu/cgvlab/modelCamera/

