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Abstract 
An important goal of automated modeling is to provide 

computer graphics applications with high quality models 
of complex real-world scenes. Prior systems have one or 
more of the following disadvantages: slow modeling 
pipeline, applicability restricted to small scenes, no direct 
color acquisition, and high cost. We describe a hand-held 
scene modeling device that operates at five frames per 
second and that costs $2,000. The device consists of a 
digital video camera with 16 laser pointers attached to it. 
As the operator scans the scene, the pointers cast blobs 
that are detected and triangulated to provide sparse, 
evenly spaced depth samples. The frames are registered 
and merged into an evolving model, which is rendered 
continually to provide immediate operator feedback. 
 
 

1. Introduction 

Many computer graphics applications involve complex 
real-world scenes. Modeling such scenes is extremely 
difficult. One challenge is to acquire depth. Depth 
acquisition methods are slow enough that only a few 
views can be acquired. Even with view planning, these are 
too few for complete coverage of complex scenes. 
Another challenge is to register depth and color from 
multiple views. A third challenge is to build a model that 
can be rendered interactively with standard graphics 
hardware. Due to these factors, modeling a complex scene 
takes days or even weeks. The high cost in time, 
equipment, and logistics limits the role of scene modeling 
in computer graphics. 

We have designed a hand-held scene modeling device 
that operates at five frames per second and that costs 
$2,000. The ModelCamera (Figure 1) consists of a video 
camera with 16 laser pointers attached to it. As the 
operator scans the scene, the laser beams produce blobs in 
the video frames where they hit scene surfaces. The 
frames are read into a computer, the blobs are detected in 
the frames, and their 3D positions are inferred by 
triangulation. Each frame is registered with respect to the 

previous frame using the color data and the blob 
positions. The registered frames are merged into an 
evolving model that is rendered to provide immediate 
operator feedback. 

Depth acquisition is fast because only a few depth 
samples are acquired per frame. Moreover the laser 
pointers are fixed with respect to the camera, hence the 
blobs fall on known epipolar segments. Fast registration is 
performed with a novel algorithm based on dense color 
and sparse depth. View planning is avoided because data 
is acquired and registered in real time from a continuum 
of views. 

Our modeling technique poses several research 
problems. The first problem is to register with sparse 
depth and without scene anchored fiducials. The second 
problem is to model complex geometry with sparse depth. 
The third problem is to merge the registered frames into 
the model in real time, which entails efficiently discarding 
the redundant, overlapping data. Our solutions rely on two 
fundamental properties of interactive modeling. 

Coherent computation The blob detection and view 
registration algorithms exploit the fact that each video 
frame is similar to the previous frame. The search for a 
blob starts from the previous blob, which is normally 
within a few pixels of the answer. Registration is 
performed by minimizing an error function whose 

Figure 1 ModelCamera prototype. 
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variables represent the camera motion between two 
frames. Coherence implies that an initial guess of constant 
velocity is close to the solution. 

Interactive control The operator controls the system 
via a graphical interface that displays the current model, 
monitors its quality, and reports registration failures.  If 
the color or depth sampling is insufficient, the system 
prompts the operator to bring the camera closer to the 
problematic surface.  If registration is lost, it returns the 
operator to the last registered frame and modeling 
resumes from there. 

Figure 2 illustrates modeling with the ModelCamera. 
The camera positions are shown with (green and black) 
frusta connected with a (red) line. Two out of three frusta 
are scaled down for clarity. We refer the readers to a 
video that we prepared to illustrate this paper [27]. The 
segments that illustrate the modeling were obtained by 
directly videotaping the computer monitor. 

2. Prior work 

The usual steps of automated modeling are view 
planning, depth acquisition, registration, and model 
construction. We review prior work in depth acquisition 
and in registration. We omit view planning, which is 
irrelevant to interactive modeling. We omit model 
construction because prior work presupposes off-line 
processing, whereas we require real-time algorithms. We 
then review hand-held modeling devices and image-based 
modeling methods. 

Depth acquisition The main approaches are stereo, 
structured light, and (non-triangulation) laser 
rangefinding. Stereo is well suited for complex real-world 
scenes ([22], [15]), but correspondences cannot be 
established quickly enough for interactive modeling. 
Structured light approaches acquire accurate depth, but 
require calibrated motion and thus have a short range. 
Moreover the light pattern interferes with color 
acquisition. Time-of-flight (for example DeltaSphere 
[23]) and phase shift (Surphaser [24]) rangefinders 
acquire dense, precise depth images, but take several 

minutes per view. Some systems do not acquire color and 
those that do must register the color with the depth. This 
task is sometimes simplified by collocating the color 
camera with the depth sensor [10], but this comes at the 
cost of uneven color sampling.  

View registration Registration can be performed with 
a separate device that tracks the position and orientation 
of the scene acquisition device. The relationship between 
tracking and depth measurement has been explored in 
[19] where a tracker was built using a real-time 
rangefinder. Coupling the acquisition device with a 
tracker has the disadvantages of limited range of motion, 
limited precision, and high cost. Another registration 
approach developed in the context of computer vision and 
augmented reality uses fiducials placed in the scene ([9], 
[14], [13]). The fiducials are easily detectable in the 
acquired frames and provide points with known 3D scene 
coordinates and known image projections, which are used 
for estimating pose. The fiducials have to cover the entire 
scene or have to be moved along with the acquisition 
device, hence are impractical for large scenes. 

Most current registration methods are variants of the 
iterative closest point (ICP) algorithm ([1], [5], [21]), 
which iteratively minimizes the distance between the 
overlapping parts of two or more depth maps. Real-time 
ICP has been demonstrated on small objects using dense 
depth from structured light [17]. The method requires 
dense depth and is not applicable to our system. 

Hand-held devices The advantages of interactive 
scene modeling have motivated the recent development of 
several hand-held devices.  One type of device consists of 
a fixed camera and a mobile light-pattern source. One 
variant [20] uses a hand-held laser point projector on 
which three green LED's are mounted. The position of the 
LED's in the camera frame is used to infer the position 
and orientation of the laser beam. The red laser blob is 
detected in the frame and is then triangulated as the 
intersection between the pixel ray and the laser beam. 
Another variant [3] extracts depth from the shadow of a 
rod captured by a camera under calibrated lighting. The 
Autoscan [2] system uses two cameras mounted on a 
tripod and a hand-held laser point projector. The main 
problem with these systems is that they are limited to a 
single view by the fixed camera. 

Hebert [7] describes a system where the operator can 
freely change the view. The device consists of two 
cameras and a cross-hair laser light projector. Frame to 
frame registration is achieved using a set of fixed points 
(fiducials) projected with an additional, fixed laser 
system. The system acquires depth over a narrow field of 
view at each frame, which implies long acquisition times 
for large scenes. The system also has the disadvantages 
associated with fiducials and does not acquire color. 
Rusinkiewicz [17] presents a structured light system 

Figure 2 Model obtained from sequence of frames, 
and ModelCamera trajectory. 
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Figure 3 Laser beam pattern. 

where the object being scanned is hand-held in the fields 
of view of a fixed projector and fixed camera. The 
modeling pipeline is very fast; the object is modeled in 
real time and the evolving model is rendered to provide 
immediate feedback to the operator. The system is limited 
to the outside-looking-in modeling case, and does not 
acquire color, but it clearly demonstrates the advantages 
of real-time modeling. 

Image-based rendering (IBR) We conclude the 
previous work discussion with a review of IBR 
approaches for modeling real-world scenes. Panoramas 
[4] are created by stitching together photographs from a 
single center of projection. The scene can be rendered 
efficiently and realistically from the center of the 
panorama. Other viewpoints cannot be rendered because 
the panoramas lack 3D information. Concentric mosaics 
[18] are an alternate representation that provides partial 
parallax with models that are built by moving a camera in 
calibrated circles. Another IBR approach uses images 
enhanced with per-pixel depth (depth images) to produce 
novel views by 3D warping [12]. Current depth-
acquisition technology cannot provide enough depth 
images for large scenes. We use the depth image 
representation for fast incremental transformation during 
registration and for frame merging during model 
construction. The light field approach ([8], [6]) uses 
image data exclusively to provide novel views of a scene, 
but unlike panoramas, supports arbitrary camera views. 
The color data is stored in a 4D database that grows 
impractically large when modeling complex scenes. 

3. The ModelCamera system 

The device is assembled from a digital video camera, 
16 laser pointers, and standard components (brackets, 
wires, clips). The camera is high-end consumer-level: 
progressive-scan, 720 x 480 x 3 pixel resolution, $1,500 
cost. The lasers are red (635 nm), have an emitting power 
of 5mW (class IIIa), a spot size of 6 mm/12 mm at 
5m/15m, and cost $15 apiece. The camera is linked to a 
PC via a Firewire interface. The lasers are mounted in a 
matrix pattern around the camera and generate 16 distinct 
blobs in its field of view. Figure 3 shows the blob patterns 

when the camera is 
aimed at a wall at 
three different depths. 
For clarity, all but 4 
laser beams are 
clipped. The 
convergent and then 
divergent setup of the 
lasers allows the 
operator to vary the 
sampling rate by 

zooming in and out. A quick scan from afar suffices for 
simple surfaces, such as walls, whereas a slow, close scan 
is needed for complex shapes. 

3.1   Calibration 

The ModelCamera 
is calibrated in three 
steps that take 5 
minutes and are fully 
automated except for 
moving the camera. 
The video camera is 
calibrated using the 
toolkit developed by 
Jean-Yves Bouguet 
[25] and included in 
Intel's OpenCV library 
[26]. The calibration error is in the order of 0.1 pixels.  
Using the toolkit, subsequent frames are undistorted with 
the calibrated coefficients. Next, two custom procedures 
establish the epipolar lines and the laser ray equations.  

The epipolar lines are the projections of the laser 
beams onto the camera image plane (line ab in Figure 4). 
They are determined from a sequence of frames in which 
the camera views a white wall. The blobs are found by an 
exhaustive search for intensity peaks. The frames are 
filtered then the intensity threshold is adjusted until 16 
blobs of appropriate size are found in each frame. The 
blobs are assigned to lasers according to their horizontal 
and vertical ordering in the first frame and then using 
coherence. An epipolar line is least-squares fitted to each 
blob set. We use 200 frames. The mean/maximum 
distances between the blobs and the lines are 0.3/0.8 
pixels. There is no visible systematic error. The epipolar 
lines are insensitive to residual radial distortion because 
they are close to the image center 

The laser rays are determined from a sequence of 
frames in which the camera moves towards a calibration 
checkerboard. At each frame, the blobs are detected on 
their respective epipolar lines using the algorithm 
described below and the camera pose is inferred from the 
checkerboard (with the lasers turned off to prevent 
interference) using Bouguet’s toolkit. The 3D position of 
each blob is determined by intersecting the camera ray 
with the checkerboard plane. A 3D ray equation is least-
squares fitted to the point set of each laser. We use 10 
frames; the mean/maximum distances between the points 
and the rays are 1.5 / 3.0 mm. 

3.2   Depth acquisition 

The ModelCamera acquires one depth sample per blob 
per frame by finding the blobs on the epipolar lines 

Figure 4 Epipolar line and 
triangulation. 
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(Figure 5) and triangulating their 3D positions in camera 
coordinates (Figure 4). The blob detector searches the 
epipolar lines for intensity peaks. We exploit coherent 
camera motion by starting the search at the peaks from the 
previous frame. The current peaks are normally detected 
near the previous ones with minimal search. This heuristic 
fails when a blob jumps from one surface to another, and 
its entire epipolar line is then searched. 

Detecting the blobs robustly is crucial. The first 
priority is to avoid false positives because they disrupt 
registration and severely distort the model. Minimizing 
false negatives is a lower priority because registration 
works well with 12–16 blobs. The intensities are 
bilinearly interpolated along the epipolar line and are 
smoothed with a 1D raised cosine filter. Peaks must 
exceed a threshold, which varies linearly along the 
epipolar line to allow for dimmer blobs at a distance. The 
intensity must fall off rapidly on either side of the peak. If 
a peak passes these tests, we test that the surrounding 
bright region is roughly circular along 8 evenly spaced 
spokes centered at the peak. Figure 6 shows the intensity 
along epipolar line e seen in Figure 5. Four peaks pass the 
epipolar line tests but F1, F2, and F3 fail the symmetry 
test.  

 Each epipolar line intersects several other lines, so 
several blobs can fall on a single epipolar line. This can 
lead to ambiguity in assigning the blobs when one or 
more entire epipolar lines are searched. In this case, the 
unambiguous blobs are assigned first, which leads to a 
unique assignment for the rest of the blobs. Blob detection 

works well on our test scenes: 99.3% success at 70 cm 
and 85% at 200 cm. 

Depth accuracy The depth accuracy is a function of 
the blob detection accuracy. The inner 4 / outer 12 lasers 
have an average baseline of 12 cm / 22 cm. For these two 
baselines, a one-pixel blob detection error translates into a 
depth (z) error of 0.1 cm / 0.2 cm at 50 cm, 0.35 cm / 0.7 
cm at 100 cm, 1.5 cm / 3 cm at 200 cm and 3.5 cm / 7 cm 
at 300 cm. We increase blob detection accuracy by 
supersampling the epipolar line four times per pixel. If the 
peak is flat (saturated to 255), the midpoint is used.  

We estimated blob detection accuracy by scanning a 
white wall from several distances and measuring the out-
of-plane displacements of the triangulated 3D points. At 
200 cm, the average/maximum displacements were 0.33 
cm/1.1 cm, which indicates a blob detection error of 0.5 
pixels in the absence of systematic errors. Better results 
were obtained at shorter distances. More work is required 
to quantify the blob detection accuracy as a function of 
surface properties (color, texture, specularity), angle of 
incidence, and laser properties. 

3.3   Depth-then-color registration 

Before a frame can be added to the scene model, it has 
to be registered with respect to the prior frames. 
Registration is performed by computing a camera motion 
that minimizes the depth and color errors between the 
current and the previous frame. This is a six-dimensional 
nonlinear optimization problem whose variables are the 
camera’s degrees of freedom. A good starting point for 
the optimization is obtained by assuming a constant 
camera velocity and extrapolating from the previous pair 
of frames. The challenge is to find an error function and a 
minimization algorithm for fast, accurate registration. 

We have developed the depth-then-color algorithm 
(Figure 7) that achieves good registration in real time. The 
motion is expressed as p’ = t + q x p, where p is a point 
obtained by triangulation in frame i+1 coordinates, p’ is 
the same point in frame i coordinates, t = (a, b, c) is a 
translation vector, and q = (u, v, w, s) is a unit quaternion 
with 2221 wvus −−−= . (The rotation angle is less than 
90 degrees by coherence, which implies that s is positive.) 
The first stage minimizes a depth error function over the 

Figure 5 Frame with blobs detected on epipolar lines. 

e 

e 

Figure 6 Intensity along epipolar line with blob and 
false peaks. Line indicates threshold. 

F1 F2 F3 
Blob 

Figure 7 Consecutive frames before reg. (left), after 
depth reg. (middle), and after color reg. (right).
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vector m = (a, b, c, u, v, w). The minimum is obtained 
quickly because the function is smooth and involves only 
16 points. 

Symmetric surfaces have motions that do not affect the 
depth error, for example translation parallel to a plane or 
rotation around the center of a sphere. With the exception 
of planes, symmetric surfaces are uncommon, but 
approximately symmetric surfaces pose the same 
problem. The depth error varies too little to allow the 
depth registration stage to establish all six degrees of 
freedom. For example, Figure 8 shows a couch armrest 
that is locally cylindrical, so the depth error is almost 
constant when the camera translates along it or rotates 
around it.  

The invariant motions are linear combinations of 1, 2 
or 3 components of m. The second stage computes those 
variables by minimizing a color error function. The 
function is more expensive to evaluate than the depth 
error function because it involves thousands of pixels. 
Moreover it has many local minima, which increases the 
number of error evaluations required for convergence. 
Real-time minimization is achievable for three variables, 
but is impossible for six. Hence, the depth stage fully 
registers asymmetric surfaces and makes color 
registration practical for symmetric surfaces. 

Depth registration The depth error and the 
symmetries are computed from quadratic surfaces that are 
fitted to the triangulated 3D points (blob points). In frame 
1, a single quadratic, z = f(x,y) = k0 + k1x + k2y + k3 x2 + 
k4xy + k5y2, is least-squares fitted to all the blob points. In 
frame i+1, each set of blob points that shares an i surface 
is refitted to an i+1 surface then the unassigned blob 
points are fitted. A fit succeeds if the maximum distance 
from a blob point to the surface is less than the depth 
resolution (e.g. 0.5 cm at 100 cm). The blob points are 
replaced with their projections on the fitted surface. If a fit 
fails, the worst blob is discarded and the fit is retried. The 
cycle ends in failure when fewer than 8 blobs remain. The 
system discards the frame and prompts the operator to 
bring the camera closer to the scene. 

The depth error of blob point p is defined as gp= p’z - 
f(p’x, p’y). It equals zero when p is on the surface and is 

nonzero 
otherwise, so gp

2 
has a global 
minimum when p 
is on the surface. 
(Although gp does 
not equal the 
distance from p to 
the surface, the 
two functions are 

approximately 
equivalent near 

zero.) The depth error of frame i+1 is e(m) = ∑pgp
2 with 

the summation over the assigned blobs. 
The symmetric surfaces that we model are planes, 

spheres, cylinders, and cones. We fit each type of surface 
to the blobs and test if the depth error is approximately 
constant as the blobs move along the symmetry axes. A 
symmetry is accepted if the depth error of the maximum 
allowable one-frame motion (5cm per translation; 0.2 
radians per rotation) is less than the depth resolution. The 
depth error is computed in a coordinate system in which 
the symmetry axes coincide with coordinate axes. The 
variables that represent motion along symmetry axes are 
set to zero and are treated as constants during depth error 
minimization. 

The depth error is minimized by sequential quadratic 
programming. This is the natural choice because e is 
smooth and its first and second derivatives are easy to 
compute. The iteration finds a zero of the gradient e∇ by 
repeatedly solving emH −∇=∂ where H is the Hessian 
matrix of e. This linear system is solved by singular value 
decomposition, which is more robust than the standard 
LU decomposition.  

Color registration The remaining variables are 
computed by color error minimization. The error of pixel 
p in frame i+1 is defined as the RGB distance between its 
color and the color where it projects in frame i. The i 
color is computed by bilinear interpolation. The color 
error is hard to minimize because small camera motions 
produce rapid, erratic changes in its value. We reduce the 
variability by convolving the relevant region in each 
frame with a constant 11-by-11 filter (Figure 9 a and b). 
This is done efficiently by computing the convolution 
sum incrementally: for each pixel the sum of the least 
recent filter column is replaced with the sum of the new 
column. We select a set of pixels in frame i+1 and 
minimize the sum of the squares of their color errors by 
the downhill simplex method. This method is the natural 
first choice because the gradient of the error function 

cannot be computed 
analytically. 

The pixels are 
selected from every 
twentieth row and 
column of the axis-
aligned bounding box 
of the blobs. The rows 
and columns are split 
into segments (Figure 9 
c). A segment is a 
maximal sequence of 
pixels that are in the 
blob region, are blob 
free and lie on a single 
quadratic. The blob 

 
Figure 8 Depth-invariant degrees 

of freedom. 

 
Figure 9 Frame with masked 
blobs (a), filtered region (b) 
and registration pattern (c). 

a

b c
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region is defined by the 18 triangles formed by the 3 x 3 
groups of 4 immediate-neighbor blobs (Figure 3). Blob 
region membership is tested per pixel. The triangle 
containing the previous pixel is tested first, which reduces 
the number of tests. Blob pixels are excluded because 
their color comes from the lasers, rather than from the 
surface. The segment must lie on one quadratic, so that its 
z values can be computed.  

The registration pattern is built once per frame, which 
takes negligible time. Every pixel (1000 - 4000), has to be 
projected into frame i for every error evaluation. We do so 
efficiently by incrementally 3D warping the horizontal 
and vertical segments, which has an amortized per pixel 
cost of 3 adds, 5 multiplies and 1 divide [11]. Warped-
image reconstruction is unnecessary for error evaluation, 
so this approach does not incur the full cost of IBR by 3D 
warping [16]. Segments of planar patches are projected by 
affine transformation followed by a perspective divide 
(texture mapping), which evaluated incrementally 
requires only 3 adds, 2 multiplies and 1 divide per pixel. 
In the planar case, the perspective divide could be avoided 
if the frames were unprojected to a regular surface-
defined orthographic grid first. Then a pixel could be 
transformed with only 2 adds, but this advantage is 
counterbalanced by the disadvantage of having to 
unproject all the pixels in the relevant region of frame i. 

For an armrest (Figure 5) sequence of 63 frames, 
registration succeeded on 59 frames with average / 
maximum per times of 70 ms / 172 ms. The color 
registration pattern consisted of 1946 / 2709 samples per 
frame. The depth error was 0.066 cm / 0.201 cm per 
frame. The depth error for a frame was measured as the 
average of the depth errors of the depth-and-color samples 
in the color registration pattern. The depth error of a 
sample is given by the distance from the sample to the 
previous frame surface after registration. The depth error 
after depth registration (and before color registration) was 

0.051 cm / 0.202 
cm, which verifies 
that the degrees of 
freedom found 
using color do not 
affect depth. The 
color error was 2.8 / 
5.5 versus 11.3 / 
22.9 before color 
registration. The 
larger final errors 
are occur for the 
frames where the 
camera adjusts the 
picture brightness. 
The automatic 
compensation does 
not disturb 

registration and is necessary for acquiring high-quality 
textures. 

The depth-then-color registration algorithm is 
inappropriate for fragmented scenes where the blobs jump 
from tiny surface to tiny surface at every frame. Such 
scenes are challenging for any automated modeling 
system not only during registration but also during model 
construction. We present our solutions for such scenes in 
section 3.5   after we discuss our real-time incremental 
modeling algorithm for structured scenes. 

3.4   Incremental modeling 

Each registered frame contributes one or several 
quadratic patches with color, like the ones seen in Figure 
7. As in color registration, the patches are delimited by 
the triangles formed by neighboring blobs. Since a new 
patch is acquired and registered approximately every 200 
ms, the patches have considerable overlap. The first task 
of the incremental modeling algorithm is to eliminate the 
redundant data and append the contribution of the current 
frame to the scene model. This is done efficiently by 
representing the frame patches and the evolving model 
with depth images. Figure 10 shows a surface modeled 
with several depth images. 

The depth image of a patch (PDI) is built similarly to 
the color registration pattern. Every row is used, so no 
vertical segments are needed. The color comes from the 
frame. The depth is inferred from the quadratic. Each 
scene surface is represented by one or several depth 
images (SDIs), which are created on demand as the 
scanning progresses.  

The incremental modeling proceeds according to the 
algorithm sketched in Pseudocode 1. The 3D bounding 
box of the PDI is projected in all SDIs to establish the 
SDIs potentially affected by the current frame. Each 
depth-enhanced pixel P of PDI is warped incrementally to 
each SDI in the set. If P is clipped by the SDI frustum or 
maps to a location P’ 
that contains a 
sample clearly closer 
or farther than P, the 
next SDI is 
considered. A sample 
at P’ at 
approximately the 
same depth as P 
indicates redundant 
sampling. The 
algorithm selects the 
best sample and 
discards the worst. A 
sample is preferred if 
it originates from a 

For each frame 
    Build PDI 
    Find affected SDIs 
    For each segment S of PDI 
        For each pixel P of S 
            For each SDI in SDIs 
                P’  = P warped to SDI 
                If P outside SDI next SDI
                If P’ > P next P 
                If P’ < P P’ = P, next P 
                If P’ is empty and no AP 
                    AP =(SDI, P’), next SDI
            End for each SDI 
            If AP commit AP, next P 
            Create new SDI, assign P  
        End for each pixel 
    End for each segment 
End for each frame 

Pseudocode 1  

 
Figure 10 Surface model; 
wireframe and  textured. 
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patch with a sampling rate 
closer to the desired sampling 
rate. We compute one 
sampling rate per segment 
(measured in pixels / cm) as 
the average of the sampling 
rates at the two end points. 
Each SDI stores the sampling 
rate of each pixel in an 
additional buffer. If there is no 
sample at P’ and no potential 
assignment has been yet found 
for P, SDI and P’ are recorded 
as a potential assignment AP.  

If P has not been used by 
any SDI, the potential 
assignment is finalized. To 

avoid holes in the constructed surface, P is splatted in the 
SDI. Splatting is a warped-image reconstruction technique 
that approximates the footprint of a warped sample [11]. 
For efficiency, we use square splats with a size derived 
from the sampling rate of the sample. If no potential 
assignment has been found, a new SDI is constructed with 
the look-at vector given by the surface normal at P. The 
SDIs sample the surface at the desired rate, and have a 
narrow field of view (10 degrees) for uniform sampling. 
The SDI frusta are shown in Figure 11. Pixels that warp to 
the border of an SDI are also assigned to a second SDI to 
avoid gaps (Figure 10).  

The parts of the SDIs that are populated with samples 
are triangulated into a regular mesh. The texture mapped 
triangles are rendered by the graphics hardware. We use 
SDIs of 256 x 256 pixels and a triangulation step of 8 
pixels, which yields 2K triangles and 256 KB of texture 
per SDI. Current graphics hardware can easily handle 100 
SDIs. If necessary, the geometry load could be reduced by 
triangulating adaptively. 

For the 63 frame sequence discussed earlier, the 
average / maximum model construction time was 63 ms / 
125 ms per frame and 19 SDIs were built. Depth 
extraction, registration, model construction and rendering 
took 145 ms / 297 ms per frame. The total frame time was 
209 ms / 391 
ms. The time 
spent outside 
the modeling 
module is 
mainly due to 
frame transfer 
and 
undistortion. 

For planar 
surfaces, per-
pixel depth is 

unnecessary. A 
planar surface 
is modeled with 
a set of texture-

mapped 
squares, called 
tiles (Figure 
12). The 
algorithm is 
similar to the 

case of curved surfaces, so we will not describe it in 
detail. The resolution of the texture is given by the desired 
sampling rate. The tiles are created on demand as 
scanning progresses. The frame patch is represented by 
the set of triangles connecting the blobs. The textures of 
the tiles affected by the current patch are grown by 
rendering the patch triangles in the textures. The geometry 
of partially covered tiles is modeled with a triangulated 
polygon. The polygon is unioned with each new patch and 
is re-triangulated. When the tile texture is filled (we use a 
threshold of 99%), the polygon is replaced with the two 
triangles defining the tile. 

The model of the part of the scene currently scanned is 
rendered continually and provides immediate feedback to 
the operator. The operator can select a mode where the 
sampling rate is visualized. Red / blue highlights indicate 
over- / under- sampling (Figure 13). 

3.5   Fragmented scenes 

The depth-then-color algorithm does not work for 
fragmented scenes because the frame cannot be 
approximated with a few quadratics. The frames can be 
registered using color only if the ModelCamera rotates 
about its center of projection. Except for having to mask 
the blobs, the procedure is identical to stitching 
photographs together to form panoramas [4]. To achieve 
real-time registration we use a registration pattern 
consisting of horizontal and vertical pixel segments 
similar to the one described earlier. The pixels are 
transformed from the current frame to the previous frames 
incrementally with an affine transformation followed by a 
perspective divide. 

A sequence of registered frames is transformed in a 
cubical panorama. The triangulated blob points are 
projected onto the faces of the panorama. The cubical 
panorama is unfolded and the projections are triangulated. 
Triangles that cross from one panorama face to another 
are divided along the edge. Each face defines a texture 
map that is applied to its corresponding triangles. Figure 
14 shows the frames registered in real-time as the operator 
rotates the camera (top) and the depth-enhanced panorama 
(bottom) that is computed in 5 seconds after the sequence 
is scanned. Figure 12 Planar scene model. 

 
Figure 13 Sampling rate visualization. 

 
Figure 11 Depth 
image placement. 
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Because the scene is close to the camera residual 
translation affects registration. We use a tripod to avoid 
translation. The tripod slows down acquisition because it 
has to be repositioned. It does not allow tilting the camera 
about its COP so the operator cannot cover the entire 
panorama with blobs.  

4. Discussion 

We have presented an interactive modeling device 
based on sparse depth and dense color. The ModelCamera 
acquires 16 depth samples per frame, registers the frames, 
merges them into an evolving texture-mapped scene 
model, and renders the model for operator feedback. 
Structured scenes are modeled via a freehand scan, while 
unstructured scenes require a tripod. We have 
demonstrated fast, accurate modeling of surfaces. Our 
immediate goal is to model room-sized scenes. 

The depth-then-color algorithm requires more color 
variation than some scenes contain. We can compensate 
by deriving more degrees of freedom from geometry. If 
two surfaces are visible, at most one degree of freedom 
needs to come from color. If three are visible, color is not 
required. The 16 laser configuration of the ModelCamera 
is barely adequate for two surfaces, since we need 8 blobs 
per surface for robust quadratic fitting. We will 
experiment with more lasers in the next design cycle. 

We must also address registration drift over long 
sequences of frames due to depth and color error 
accumulation. We found little drift on sequences of 20 
frames.  For example, the wall hanging in Figure 12 
measures 45.1 cm by 83.2 cm in the model versus 46.2 by 
83.9 cm in reality. But much longer sequences are 
required for room modeling. If drift hinders modeling, it 
must be monitored interactively, perhaps by computing 
the color error of each registered frame relative to the 
current model. Otherwise, it can be corrected offline. 

We will improve the ModelCamera based on our 
experience with the first prototype. The new design will 
be more rigid to prevent laser motion relative to the 
camera, which degrades blob detection. It will be modular 
to support experiments with alternate cameras and lasers. 
We are considering designing a light-weight camera 
mount with shoulder straps that allows panning and tilting 
the camera around its COP. This will improve the 
maneuverability of the ModelCamera during the 
acquisition of fragmented surfaces. Eventually, we plan to 
move the graphical interface onboard the video camera to 
improve mobility. We could use the LCD of the video 
camera, a wearable display, or a wearable computer. A 
better interface is also a priority. It should help the 
operator undo frames, start a scan at the end of a prior 
scan, and hide / show / save / load parts of the model. 

Another goal is to model outdoor scenes. The current 
lasers are invisible in sunlight. Greater power or alternate 
wavelengths are a possibility, but would make the device 
eye unsafe. Interactive modeling of surfaces with view 
dependent appearance is a long term goal. Blobs are 
difficult to detect, highlights and reflections confuse color 
registration, and the current models have to be extended. 
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