

Texture mapping

- Model surface-detail with images
 - wrap objects with photographs
 - model and render color or "flat" detail
 - does not capture 3D detail

- Model t-shirt with logo
 - no need to model the letters and engine with triangles
 - use large base polygon
 - color it with the photograph

- Subtle wall lighting
 - no need to compute it at every frame
 - no need to model it with a lot of constant color triangles

- Subtle wall lighting
 - paste photograph on large polygon

• Non-planar surfaces work also

- Non-planar surfaces work also
 - subdivide surface into planar patches
 - assign photograph subregions to each individual patch

- Non-planar surfaces work also
 - subdivide surface into planar patches
 - assign photograph subregions to each individual patch

- Non-planar surfaces work also
 - subdivide surface into planar patches
 - assign photograph subregions to each individual patch

- Generic image to represent material
 - tile pattern to cover big surface

veneer

bricks

<section-header><section-header><section-header><section-header><image><list-item><list-item><list-item><list-item>

Tiling

- Repeat pattern

 reduce seems by mirroring
 - reduce seems by choosing tile that covers one period of repeated texture

Texture mapping limitations

Bricks are similar not identical

Texture mapping limitations

- Shiny floor
 - reflection is view dependent

Texture coordinates

- Mechanism for attaching the texture map to the surface modeled
 - a pair of floats (s, t) for each triangle vertex
 - corners of the image are (0, 0), (0, 1), (1, 1), and (1, 0)
 - tiling indicated with tex. coords. > 1
 - *texels* color samples in texture maps

Overview

- Modeling with textures
 - motivation
 - texture coordinates
- Texture mapping implementation
- Anti-aliasing and level of detail

Overview

- Modeling with textures
 - motivation
 - texture coordinates
- Texture mapping implementation
- Anti-aliasing and level of detail

Aliasing

- High frequencies pose as lower frequencies
 - display resolution gives maximum displayable frequency
 - if not sufficient high frequencies are called (aliased as) low frequencies
- Nyquist law
 - max frequency displayable is half the sampling frequency

Level of detail

- Adapt texture resolution to desired image resolution
- Mip-mapping
 - texture is filtered as preprocess to several resolutions
 - at runtime
 - find out required resolution
 - use corresponding version of texture map

Trilinear filtering

- Use two most appropriate resolutions of texture map
 - lookup color values with bilinear interpolation in each texture version
 - linearly interpolate in between the two color values

