

Rendering Synthetic Objects into Real Scenes

based on [Debevec98]

Compositing of synthetic objects

- Geometry consistency
 - needed: geometric model of synthetic objects
 - needed: (coarse) geometric model of the real scene
 - needed: camera calibration (extrinsics & intrinsics)
 - procedure: rendering of synthetic and real scene with virtual camera identical to real camera

Compositing of synthetic objects

- Lighting consistency
 - subproblem 1: the synthetic objects need to be lit by the natural light sources that affect the real scene
 - subproblem 2: the synthetic objects affect the real scene

1. Illumination of synthetic objects with real light

- *Solution 1* modeling the real light sources
 - light source surveying
 - photographing reference object
 - analysis of photographs
- Solution 2 recording scene illumination
 - using high dynamic range photography

High dynamic range photography

- Natural light requires many more intensity levels than the usual 256
- More levels can be acquired by varying exposure times
- Cameras are fast enough to avoid saturation of the brightest natural light sources

2. Scene affected by synthetic objects

Shadows

synthetic objects should cast shadows in the scene

Reflections

- synthetic objects should be reflected by shiny scene objects
- synthetic objects should cast light in the scene

Overview

- Introduction
- Illumination of synthetic objects
- Complete method for integrating synthetic objects in natural scenes

Overview

- Introduction
- Illumination of synthetic objects
- Complete method for integrating synthetic objects in natural scenes

Recording light using radiance maps

- *Radiance:* energy of radiation per unit transverse area, in a given direction, of a source of radiation <W sr-1 m-2>
- Radiance map: in a point, measure radiance in all directions
- Practical construction:
 - panorama centered in that point or
 - using spherical or parabolic mirrors

Radiance map example

Radiance map example

Radiance map example

Inter-register exposures to obtain high range

radiance map obtained by photographing polished steel sphere (light probe)

Illuminate synthetic object using a global illumination algorithm

Another example

Another example

Light probe distortions

- Not all directions are treated equally
 - poor sampling close to the half-sphere edge
- Camera acquiring the light-probe image can image itself
- Solution is to take several images of the light probe
 - additional difficulty of interregistering the images

Reducing distortions using two light-probe images

Videos

Overview

- Introduction
- Illumination of synthetic objects
- Complete method for integrating synthetic objects in natural scenes

Overview

- Introduction
- Illumination of synthetic objects
- Complete method for integrating synthetic objects in natural scenes

The general method

Step 1: background acquisition

Step 2: light probe

Step 3: constr. the light-based model

Step 4: camera calibration

Step 5: global illumination solution

Step 7: compositing a. render local scene w/o synthetic objects

Step 7:
compositing
b. create synthetic
objects mask

Step 7: compositing

c. isolate synthetic objects contribution to local scene

subtract

apply mask

add

Step 7: compositing d. add to the background the synthetic objects and their contribution to the local scene

Results: before and after

