
1

1

Cameras

• Capture images
– a measuring device

• Digital cameras
– fill in memory with color-sample information
– CCD (Charge-Coupled Device) instead of film
– film also has finite resolution (graininess)

• depends on speed (ISO 100, 200, …, 6400, …)
• size (35mm, IMAX etc)

2

Importance of camera models

• Understanding cameras allows:
– Using photographs of real world for modeling

and rendering
– Rendering 3D scenes, which is equivalent to

taking pictures of the virtual world

2

3

Planar pinhole camera model

• Pinhole C
– also called center of projection
– point of convergence of all incoming rays

C

c

a

b
x

y

z

O

4

Planar pinhole camera model

• Image plane
– plane where intersecting incoming rays create the color

samples (pixels) of the image
– defined by non-parallel vectors a and b

P

C

u1

v1
c

a

b
x

y

z

O

3

5

Planar pinhole camera model

• Point C and vectors a, b, c define a general
planar pinhole camera

C

c

a

b
x

y

z

O

6

Special pinhole camera model

• OK to assume that
– vectors a and b are perpendicular
– square pixels (a and b same length)
– C projects in the center of the image plane

4

7

O

Constructor

• PHC(float hfov, int w, int h)
– hfov is the horizontal field of view [degrees]
– w is the width of the image [pixels]
– h is the height of the image [pixels]

C

c
a

b
x

y

z ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

=

−=

=

)2/tan(2
,

2
,

2

)0,0,0(

)0,1,0(

)0,0,1(

hfov
whwc

C

b

a

&

8

Projection of
points

P

C

u

v
c

a

b

x

y

z

O

[]

w
qv

w
qu

qw
q
q
q

wv
u

CP
CP
CP

cba
cba
cba

wv
u

CPwv
u

cba

wcvbuaCP

zz

yy

xx

zzz

yyy

xxx

1

0

2

2

1

0

1

1

1

1

)(

=

=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++=

−

••

••

• w <= 0, no projection

• w > 0, valid projection

P’

5

9

Clipping

C

c

a

b

“left of view
frustum”

test “u < 0”

“right of view
frustum”

test “u > width”

“below of view
frustum”

test “v > height”

“above view
frustum”

test “v < 0”

“behind COP
subvolume”

test “w < 0”

10

Pixel coordinates

• Pixel (u, v) has center at (.5f+(float)u, .5f+(float)v)
• The image stretches from 0.0f to (float)w, and

from 0.0f to (float)h
• A row has w pixels: pixel 0, 1, …, w-1
• A column has h pixels: pixel 0, 1, …, h-1
• An image point (uf, vf) – uf and vf are floats –
belongs to pixel ((int) uf, (int) vf)

6

11

Other camera methods
• Access

– Get view direction & focal length
– Get ray & pixel center
– Get horizontal / vertical field of view
– Get principal point (pixel coordinates of COP projection onto image plane)

• Navigation
– Translation left-right, up-down, forward-backward
– Rotation left-right (pan, yaw), up-down (tilt, pitch), sideways (roll)
– Revolve horizontally around point P, theta degrees
– Revolve vertically around point P, theta degrees

• Positioning
– Place camera such that it looks at point P, from distance d, and has up vector up

• Internal parameters change
– Zoom in-out (change of field of view)
– Change of resolution
– Cropping/extensions

• View interpolation
– Give PHC0 and PHC1, create N cameras that smoothly change the view from PHC0 to PHC1

12

Access
• Get view direction

– vd = (axb).UnitVector()
• Get focal length

– f = vd*c
• Get ray for pixel (u, v) -- integers

– ray(u, v) = a*(u+0.5f)+b*(v+0.5f)+c
• Get ray for pixel image point (uf, vf) -- floats

– ray(uf, vf) = a*uf + b*vf + c
• Get pixel center -- integers

– P(u, v) = C + ray(u, v)
• Get horizontal field of view

– hfov = 2*atan(w/2*a.Length()/f) // assumes C projects at w/2
• Get principal point (image coordinates of C projection)

– PPu = -c*a.UnitVector()/a.Length()
– PPv = -c*b.UnitVector()/b.Length()

7

13

Translations

C

c

a

b
x

y

z

O

C’

c’

a’

b’

stepUnitVectorbaCC

backwardforward
stepUnitVectorbCC

downup
stepUnitVectoraCC

rightleft
cc

bb

aa

*()).('

*().'

*().'

'

'

'

×+=

−
−=

−
+=

−
=

=

=

&&

&&

&&

Translation right

14

Rotations

x

y

z

O

),,(:

),,(:

'

),,(.'

),,(.'

),,(.'

θ

θ

θ

θ

θ

baCCtRotateAbouRoll

aCCtRotateAbouTilt

CC

bCCtRotateAboucc

bCCtRotateAboubb

bCCtRotateAbouaa

Pan

×+

+

=

−=

−=

−=

&&

&&

&&

&&

&&

&&

C

c

a

b

c’

a’

b’

Pan

C’

8

15

Camera positioning
• Place camera such that it looks at point P from

distance d, has view direction vd, and up is a
vector in the vertical plane of the camera
// assumptions: rectangular pixels, up and vd are

normalized
C’ = P – vd*d
a’ = (vd x up).UnitVector()*a.Length()
b’ = (vd x a’).UnitVector()*b.Length()
c’ = – PPu*a’ – PPv*b’ + vd*f

C’

c’

a’

b’

P

d

vd
up PP

16

C’

Zooming
• Focal length changes: f’ = f * zoom

C’ = C
a’ = a
b’ = b
c’ = - PPu*a – PPv*b + vd*f’

C

c

a

b

c’ a’

b’

PP
PP’

C_PP = f

C’_PP’ = f’

9

17

Change of resolution
• More or fewer pixels; w’ =

w*k, h’ = h*k
a, b, and C do not change
c’ = c*k

• w and h change, buffers
have to be reallocated

C

c’

C’

c a

b

b’

a’

18

Cropping/extensions
• Set the image to rectangle

(u0, v0, u1, v1)
C’ = C
a’ = a
b’ = b
c’ = c + u0*a + v0*b
w’ = u1-u0

h’ = v1-v0

C’

c’

a

b

a’

b’

c

(u0, v0)

(u1, v1)

10

19

View interpolation

• Given PHC0 and PHC1 create N intermediate cameras
– Assumption: PHC0 and PHC1 have the same internal parameters
Ci = C0 + (C1-C0)*(float)i/(float)(N-1)
vdi = vd0 + (vd1-vd0)*(float)i/(float)(N-1)
ai = a0 + (a1-a0)*(float)i/(float)(N-1)
… (See camera positioning)

20

Real world camera models

• Aperture is finite
– depth of field (only objects at a certain distance

are in focus)
• Lens distortion

– straight lines are curved in the image
– barrel
– pincushion

11

21

Depth of field

aperture

object

image

C F

F’

• Thin lenses

• rays through lens center
(C) do not change direction

• rays parallel to optical axis
go through focal point (F’)

• Only objects at certain depth
are in focus

