Cameras

 Capture images
— a measuring device

 Digital cameras
— fill in memory with color-sample information
— CCD (Charge-Coupled Device) instead of film

— film also has finite resolution (graininess)
* depends on speed (ISO 100, 200, ..., 6400, ...)
* size (35mm, IMAX etc)

Importance of camera models

» Understanding cameras allows:

— Using photographs of real world for modeling
and rendering

— Rendering 3D scenes, which is equivalent to
taking pictures of the virtual world

Planar pinhole camera model

* Pinhole C
— also called center of projection
— point of convergence of all incoming rays

Planar pinhole camera model

 Image plane

— plane where intersecting incoming rays create the color
samples (pixels) of the image

— defined by non-parallel vectors a and b

Planar pinhole camera model

 Point C and vectors a, b, ¢ define a general
planar pinhole camera

+ T

Special pinhole camera model

» OK to assume that
— vectors a and b are perpendicular
— square pixels (a and b same length)
— C projects in the center of the image plane

Constructor

» PHC(float hfov, int w, int h)
— hfov is the horizontal field of view [degrees]
— w is the width of the image [pixels]
— his the height of the image [pixels]

a=(10,0)
b =(0,-1,0)
C =(0,0,0)

cof_wh = w
- 2727 2tan(hfov/2))

|5=C.2+(5u+5v+5)w

u
b c]vw=p-C
1

“above view
frustum”

Clipping

“left of view
frustum”

test “u < 0”

“right of view
frustum”

test “u > width”
“behind COP

subvolume”
11 [1] “below of view
teSt w < 0 frustum”
test “v > height”

Pixel coordinates

Pixel (u, v) has center at (.5f+(float)u, .5f+(float)v)

The image stretches from 0.0f to (float)w, and
from 0.0f to (float)h

A row has w pixels: pixel 0, 1, ..., w-1

A column has h pixels: pixel 0, 1, ..., h-1

An image point (uf, vf) — uf and vf are floats —
belongs to pixel ((int) uf, (int) vf)

Other camera methods

Access

— Get view direction & focal length

— Getray & pixel center

- Get horizontal / vertical field of view

— Get principal point (pixel coordinates of COP projection onto image plane)
Navigation

— Translation left-right, up-down, forward-backward

— Rotation left-right (pan, yaw), up-down (tilt, pitch), sideways (roll)

— Revolve horizontally around point P, theta degrees

— Revolve vertically around point P, theta degrees
Positioning

— Place camera such that it looks at point P, from distance d, and has up vector up
Internal parameters change

— Zoom in-out (change of field of view)

— Change of resolution

— Cropping/extensions
View interpolation

- Give PHC, and PHC,, create N cameras that smoothly change the view from PHC, to PHC,

Access

Get view direction
— vd = (axb).UnitVector()
Get focal length
- f=vd*c
Get ray for pixel (u, v) -- integers
— ray(u, v) = a*(u+0.5f)+b*(v+0.5f)+c
Get ray for pixel image point (uf, vf) -- floats
— ray(uf, vf) = a*uf + b*vf + ¢
Get pixel center -- integers
- P(u,v) =C+ray(u, V)
Get horizontal field of view
— hfov = 2*atan(w/2*a.Length()/f) // assumes C projects at w/2
Get principal point (image coordinates of C projection)
- PP, =-c*a.UnitVector()/a.Length()
- PP, = -c*b.UnitVector()/b.Length()

Translations

left — right

C'=C +alnitVector() * step

up —down

C'=C - bUnitVector()* step
forward —backward

C'=C + (axb).UnitVector() * step

Translation right

Rotations

RotateAbout(C,C —b, 8)
otateAbout(C,C —b,8)

c'=C
Tilt : RotateAbout(C,C +a,)
Roll : RotateAbout(C,C +axb,)

Camera positioning

e Place camera such that it looks at point P from
distance d, has view direction vd, and up is a
vector in the vertical plane of the camera

/I assumptions: rectangular pixels, up and vd are
normalized

> =P —vd*d

(vd x up).UnitVector()*a.Length()

(vd x a’).UnitVector()*b.Length()

— PP *a’ — PP *b’ + vd*f

(@)

A

Zooming

e Focal length changes: f = f * zoom
c'=C
a=a
b’=b
¢’ =-PP,*a — PP *b + vd*f’

C_PP=f
C’_PP’ =t

........Hl""lli

Cropping/extensions

-
o
-
=
o)
)
)
| -
f
)
)
o
c
S
e
O

2
&
()
X
=%
=
@ =X
s
)
&
=
S
()
&
S
=
.

n
=
D
[t
=
3
o
D
(o))
o
[
=
~ ©
*Ch
e
c
©
=
.

S
= ©
g E£2
S 2%
° o
= =
o]
= <
O @
° o
c

& e
S5
< T
=

1=
.
X

=

c,
» Set the image to rectangle

View interpolation

» Given PHC, and PHC, create N intermediate cameras
— Assumption: PHC, and PHC, have the same internal parameters
C; = C, + (C,-Cp)*(float)i/(float)(N-1)
vd; = vd, + (vd,-vd,)*(float)i/(float)(N-1)
a; = a, + (a;-a,)*(float)i/(float)(N-1)
... (See camera positioning)

Real world camera models

 Aperture is finite

— depth of field (only objects at a certain distance
are in focus)

* Lens distortion
— straight lines are curved in the image
— barrel
— pincushion

10

Depth of field

* Thin lenses

* rays through lens center
(C) do not change direction

* rays parallel to optical axis
go through focal point (F’)

* Only objects at certain depth
are in focus

F1

aperture

11

