Cameras

- Capture images
 - a measuring device
- Digital cameras
 - fill in memory with color-sample information
 - CCD (Charge-Coupled Device) instead of film
 - film also has finite resolution (graininess)
 - depends on speed (ISO 100, 200, ..., 6400, ...)
 - size (35mm, IMAX etc)

- Understanding cameras allows:
 - Using photographs of real world for modeling and rendering
 - Rendering 3D scenes, which is equivalent to taking pictures of the virtual world

Planar pinhole camera model

- Pinhole C
 - also called center of projection
 - point of convergence of all incoming rays

Planar pinhole camera model

• Point C and vectors a, b, c define a general planar pinhole camera

Special pinhole camera model

- OK to assume that
 - vectors a and b are perpendicular
 - square pixels (a and b same length)
 - C projects in the center of the image plane

Other camera methods

Access

- Get view direction & focal length
- Get ray & pixel center
 - Get horizontal / vertical field of view
 - Get principal point (pixel coordinates of COP projection onto image plane)
- Navigation
 - Translation left-right, up-down, forward-backward
 - Rotation left-right (pan, yaw), up-down (tilt, pitch), sideways (roll)
 - Revolve horizontally around point P, theta degrees
 - Revolve vertically around point *P*, *theta* degrees
- Positioning

•

- Place camera such that it looks at point P, from distance d, and has up vector up
- Internal parameters change
 - Zoom in-out (change of field of view)
 - Change of resolution
 - Cropping/extensions
 - View interpolation
 - Give \hat{PHC}_0 and PHC_1 , create N cameras that smoothly change the view from PHC_0 to PHC_1

Camera positioning

View interpolation

• Given *PHC*₀ and *PHC*₁ create *N* intermediate cameras

- Assumption: PHC_0 and PHC_1 have the same internal parameters

 $C_i = C_0 + (C_1 - C_0)^* (\text{float})i/(\text{float})(N-1)$

 $vd_i = vd_0 + (vd_1 - vd_0)^*(\text{float})i/(\text{float})(N-1)$

 $a_i = a_0 + (a_1 \text{-} a_0)^* (\text{float}) i / (\text{float}) (N-1)$

... (See camera positioning)

Real world camera models

• Aperture is finite

depth of field (only objects at a certain distance are in focus)

• Lens distortion

- straight lines are curved in the image
- barrel
- pincushion

19

