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Abstract—We introduce the general pinhole camera (GPC), defined by a center of projection (i.e. the pinhole), an 

image plane, and a set of sampling locations in the image plane. We demonstrate the advantages of the GPC in 

the contexts of remote visualization, of focus plus context visualization, and of extreme antialiasing, which benefit 

from the GPC sampling flexibility. For remote visualization we describe a GPC that allows zooming-in at the client 

without the need for transferring additional data from the server. For focus plus context visualization we describe a 

GPC with multiple regions of interest with sampling rate continuity to the surrounding areas. For extreme 

antialiasing we describe a GPC variant that allows supersampling locally with a very high number of color samples 

per output pixel (e.g. 1024x), supersampling levels that are out of reach for conventional approaches that 

supersample the entire image. The GPC supports many types of data, including surface geometry, volumetric, and 

image data, as well as many rendering modes, including highly view-dependent effects such as volume rendering. 

Finally GPC visualization is efficient—GPC images are rendered and resampled with the help of graphics 

hardware at interactive rates. 

Index Terms—Non-uniform sampled images, interactive visualization, remote visualization, focus plus context, 

antialiasing.

INTRODUCTION 

HE camera model most frequently used in 
visualization is the planar pinhole camera (PPC) 
which samples the data to be visualized with rays 

defined by a center of projection (i.e. the pinhole) and a 
regular grid on an image plane. The PPC model has 
three main limitations. First, the PPC has a limited field 
of view. Second, all rays are required to pass through the 
pinhole. Third, the entire field of view is sampled 
uniformly, without sampling rate flexibility. 

This paper addresses the problem of providing a 
flexible sampling rate. Of course, one could chose to 
resample a conventional PPC image to any desired set of 
sampling locations, but such an approach is only 
approximate since it computes the desired samples by 
interpolation and not by actually sampling the data to be 
visualized. The approximation is particularly poor for 
large sampling rate variations when an adequate 
approximation by interpolation requires a prohibitively 
high resolution for the input image. 

We present a general pinhole camera (GPC) model 
that supports any set of sampling locations on the image 
plane. The GPC rays are defined by a pinhole and the 

desired image plane sampling locations. The GPC image 
is rendered by directly sampling the data to be 
visualized at the desired sampling locations. GPC 
visualization is versatile—it supports many types of 
data, including surface geometry, volume, and image 
data. GPC visualization is also efficient—complex 
datasets are rendered interactively with the help of 
graphics hardware. Moreover, if the application 
demands it, a GPC image can be resampled at little cost 
into a conventional PPC image. We demonstrate the 
advantages of the non-uniform sampling afforded by the 
GPC in three contexts: remote visualization, focus plus 
context visualization, and antialiasing (please also see 
accompanying video). 

 In order to visualize a dataset at a site other than the 
site where it was computed or acquired, one approach is 
to transfer the data. However, data transfers become 
more and more challenging as data size increases 
continue to outpace networking bandwidth increases. 
Moreover, replicating visualization capabilities at all 
user sites also scales poorly. A second approach 
overcomes these disadvantages by computing the 
desired visualization image at the remote site, followed 
by transferring the image to the local user site. No 
dataset transfer or replication of visualization 
capabilities is required. However, such a remote 
visualization approach suffers from reduced 
interactivity. Even though the bandwidth requirement 
for transferring an image is greatly reduced compared to 
transferring a large dataset, the image has to be 
transferred in real time and bandwidth remains a 
bottleneck, affecting the frame rate. The solutions of 
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reducing image resolution or of aggressive compression 
are only palliative. 

We propose to improve interactivity in remote 
visualization by transferring GPC images instead of 
conventional PPC images. The idea is to reuse a GPC 
image at the local site to compute several high-quality 
output frames, without the need of any additional data 
from the remote site. The GPC is designed to produce 
images with a sampling rate higher at the center and 
lower at the periphery. The resulting image has size and 
coherence similar to those of a PPC image, thus the 
transfer costs are comparable. At the local site the GPC 
image is resampled into a conventional PPC output 
frame at interactive rates. The higher sampling rate at 
the GPC image center allows the user to zoom in with 
little quality loss. Once the output frame sampling rate 
exceeds that provided by the GPC image, a new GPC 
image is requested and transferred from the remote site. 
The GPC also has a larger field of view than the output 
frame, which allows the user to rotate the view direction 
without the need of transferring new images. Like the 
PPC, the GPC is a pinhole so a GPC reference image 
cannot accurately support viewpoint translation due to 
occlusions. However, the approximate translation 
support provided is sufficient to allow the user to select 
a novel viewpoint for which a new GPC image is 
rendered and transferred. 

 In Figure 1 the PPC and GPC reference images have 
the same size (800x480) and field of view (90o). The 
frames are 600x360 in size and have a smaller, variable 
field of view. The GPC allows zooming in with good 
results. Frames are computed from a GPC at the rate of 
525 frames per second. 

The second context in which the GPC infrastructure 
pays dividends is focus plus context visualization. Many 
methods have been developed in visualization and 
computer-human interaction that capitalize on the 
perceptual advantages of visualizing a region of interest 
in detail (i.e. focus) while keeping it seamlessly 
integrated into the surrounding area (i.e. context). The 
GPC naturally supports higher sampling rates for one or 
several focus regions. We describe a GPC variant 
suitable for focus plus context visualization with 
advantages that include sampling rate continuity from 
focus region to surrounding context, distortion free 
focus regions, efficiency, and support for many types of 
data. In Figure 2 the model has 1.3M triangles, the GPC 
has 2 focus regions with cubic distortion, and the GPC 
image is rendered at 7Hz, which allows the user to 
modify focus region parameters interactively. 

The GPC proves to be a powerful tool in a third 
context—antialiasing. As the acuity of measuring 
instruments and the sophistication of simulations 
increase, visualization will face the increasing challenge 
of alleviating mismatches between output image 
resolution and dataset resolution. Antialiasing 
techniques can prevent the disturbing visual artifacts 
that occur when the dataset resolution exceeds the 
output image resolution. Antialiasing for image data is a 
solved problem. Antialiasing for 3-D data is more 
challenging, requiring the computation of multiple color 
samples for each output pixel. When the resolution 
mismatch is severe, the required supersampling factor is 
large, making conventional full-frame antialiasing 
prohibitively expensive. A possible approach is to 
address the resolution mismatch offline by 

   

   

Figure 1. (Top) Conventional planar pinhole 

camera (PPC) reference image and two output 

frames resampled from it, (middle) general 

pinhole camera (GPC) reference image and 

corresponding frames, and (bottom) same 

frames rendered from actual geometry data 

for comparison. The GPC image has a higher 

sampling rate at the center which produces 

higher quality frames when zooming in.   
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straight-forward integration within existing remote 
visualization frameworks. 

Focus plus Context. Focus plus context visualization 
uses an inequitable screen real estate allocation favoring 
data subsets deemed more important, idea introduced 
by the fisheye views visualization technique [23]. The 
approach is supported by the way our visual system 
works, both at high level—we concentrate on a small 
part of what we see and rely on the background for 
general situational awareness, and at low level—the 
density of receptors on the retina is non-uniform. Focus 
plus context has been applied to 2-D image data, either 
acquired or rendered from 2-D primitives, including 
hierarchies [24], graphs [25], and maps [26]. While these 
techniques apply a 2-D magnification lens to emphasize 
the focus region, the Mélange system resorts to mapping 
the 2-D image data to a 3-D surface designed to 
emphasize several focus regions, while compressing less 
interesting connecting context. 

The magnification of the focus region implies an 
increased sampling rate. However, most computer 
displays are designed for a uniform sampling rate and 
mapping a focus plus context image to such a 
conventional display requires distortion. An alternative 
is to build displays with a variable pixel density that can 
display a focus plus context image directly [28]. The 
challenges are difficulty in changing pixel density, 
abrupt pixel density changes, and bulkiness. 

 Focus plus context techniques for 3-D surface 
geometry data typically apply a 3-D space distortion 
followed by conventional visualization [29]. The 
distortion has the potential to reveal subsets of interest 
otherwise occluded [30], but has the disadvantages of 
difficult distortion design and of a distorted focus 
region. These difficulties are avoided by distorting the 
camera rays as opposed to the geometry data, as 
demonstrated by Wang et al. for volume data [31]. The 
context and focus regions are essentially rendered with 
conventional cameras with various resolutions while the 
distortion is confined to the transition area. Our GPC 
focus plus context technique is similar to the Wang et al. 
approach in that the distortion is applied at camera 
model level. However, the GPC is a general method that 
supports many types of data, including surface 
geometry data and that offers great flexibility for 
designing the transition region, including for achieving 
sampling rate continuity. Compared to space distortion 
techniques the GPC is a pinhole thus it has no 
disocclusion capability, but the GPC avoids the 
disadvantages of difficult distortion design and of a 
distorted focus region. 

 Antialiasing. Mip-mapping [32] is an effective 
hardware supported technique for avoiding minification 
artifacts when rendering from image data. Antialiasing 
surface geometry however remains challenging. By 
combining supersampling with multisampling, which 
only supersamples coverage and shades once per 
fragment, today’s ultra high-end NVIDIA [33] and ATI 
[34] GPUs achieve a full-screen total antialiasing level of 

64x (i.e. 8x8). While this is adequate for smoothing 
triangle edges in most cases, it is insufficient for 
avoiding minification artifacts when rendering triangles 
with a small screen footprint. For such triangles a higher 
level of true supersampling is needed. Full-screen true 
supersampling at extreme levels (e.g. 1,024x) will remain 
impractical for the foreseeable future. However, extreme 
supersampling is only needed for the screen areas with 
extreme complexity. The GPC enables feed-forward 
rendering with adaptive supersampling, a practice 
reserved so far for ray tracing [35]. Finally we note that 
both NVIDIA and ATI have exposed functionality for 
per primitive antialiasing setting, but the supersampling 
level cannot be locally adapted. 

 Non-Uniformly Sampled Images. One of the early uses 
of non-conventional camera models and the resulting 
non-uniformly sampled images was to produce 
panoramic 2-D images to be used as environment maps. 
These single-image panoramas were gradually 
supplanted by cube maps modeled with six PPCs only to 
be recently reconsidered [36] in light of the great 
programmability and power of today’s GPUs. 
Researchers have also developed non-pinhole cameras 
(e.g. the general linear camera [37], the occlusion camera 
[38]) in order to capture in a single 2-D image more than 
what is visible from a single viewpoint. Both single-
image panoramas and non-pinhole camera images share 
with the GPC the challenge of non-linear rasterization—
the image projection of a triangle is curved and 
conventional linear rasterization does not apply [47]. 

 Non-uniformly sampled images were also 
encountered in the context of image-based rendering by 
3-D warping [39] and of shadow map antialiasing ([40], 
[41]). In both cases a z-buffer is re-projected to a novel 
view, and the re-projected samples form an irregular 
pattern. The shadow mapping application has to render 
the irregular z-buffer from the light viewpoint. The 
irregular z-buffer locations are defined independently by 
scene geometry and the z-buffer cannot be rendered 
efficiently in feed-forward fashion by projection 
followed by rasterization. As shown in the next sections, 
the GPCs we have developed do provide efficient 
projection which ensures interactive rendering rates. 

THE GENERAL PINHOLE CAMERA 

The general pinhole 
camera model is defined by 
a center of projection C 
(Figure 4), an image plane 
specified by a coordinate 
system with origin O and 
axes (x, y), and a set S of N 
sampling locations si(ui, vi), 
where ui and vi are the 
image plane coordinates of 
sample si. A GPC ray is defined by the ordered pair (C, 
O+xui+yvi). This generic model is tailored to an 
application in three steps: 

 
Figure 4 Generic GPC 

model. 
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    - Sampling location selection. The actual image plane 
sampling locations are specified based on the 
application’s goal. 
    - Rendering. Rendering algorithms are devised based 
on the sampling location pattern. The considerations are 
efficiency and support for a broad range of data types. 
    - Display. A mapping between the uniform pixels of 
the display and the non-uniform GPC sampling 
locations is specified. 

Improved Interactivity in Remote Visualization 

In conventional remote visualization the images received 
from the server are ephemeral—any view change 
requested by the user renders them obsolete and new 
images have to be transferred. It is our goal to design 
images which contain information sufficient for several 
visualization frames in order to reduce the frequency of 
image transfers and thereby improve interactivity. 

Sampling location selection 

The sampling locations are chosen such that the GPC 
image anticipates view changes requested by the user. 
View rotations are easily supported using a larger field 
of view and a higher resolution for the reference image 
than for the output frame. Another common view 
change in visualization applications is zooming. 
Zooming in by resampling a conventional PPC image 
leads to blurriness as the original sampling rate is 
exceeded. In order to alleviate the quality loss as the user 
zooms in, the GPC image needs to have a higher 
sampling rate at the center, anticipating the zoom in 
operation. Compared to a PPC image of same size, the 
higher density of samples at the center of the GPC has to 
come at the cost of a lower sample density at the 
periphery, which is reasonable since the user is likely to 
concentrate on the center of the image. 

We choose a sampling pattern with a constant and 

higher sampling rate 
at the center of the 
image (blue in Figure 
5) and a lower 
sampling rate at the 
periphery (red). The 
samples are 
specified as a 
distortion of an 
original PPC image (grey). Denser samples produce a 
magnification and sparser samples produce a 
compression of the resulting GPC image (Figure 6). The 
distortion is specified with 3 parameters w, h, and zf 
which define the size and zoom factor of the central 
region C. Larger w, h, and zf values allow zooming in 
longer with good quality at the cost of a lower quality at 
the periphery of the GPC image. Here w, h, and zf were 
chosen as W/2, H/2, and 3, where W and H are the 
dimensions of the GPC image. 

 It remains to specify the samples at the transition 
region. The constraints are continuity with the central 
region at the inner boundary and with the image frame 
at the outer boundary. C0 continuity at both boundaries 
ensures that all of the original field of view is sampled. 
C1 continuity at the inner boundary ensures that the 
sampling rate is continuous from the transition to the 
central region. The simplest expression that satisfies 
these three conditions is a quadratic. Each of the four 
regions L, B, R, and T defined by the diagonals of the 
central rectangle has its own distortion expression. For L 
the horizontal distorted coordinate ud is given by:  

ud(u) = a0u2 + a1u + a2,         (1)  

 where u is the undistorted horizontal coordinate (    
Figure 7). The coefficients ai are the same for the entire 
region and are computed by solving a linear system of 
three equations with three unknowns: 

ud(ul) = ul,    
ud(ur) = W/2 + (ur - W/2)/zf,        (2) 
ud’(ur) = 1/zf 

The first two equations ensure sampling continuity at 
the outer and inner boundaries of the transition region. 
The third equation ensures sampling rate continuity 
between the transition and central regions. Once ud is 
known, the vertical distorted coordinate vd is computed 
using the constraint that the sample be distorted on a 
line towards the center of the image. The sampling rate 
increases from the outer to the inner edge of the 
transition region (ud”(u) is a positive constant). The 
lowest sampling rate is ud’(ul), which is 0.333 for this 
example, as can be verified in Figure 5 where the grey 
rectangles are three times as dense as the red rectangles 
at the periphery. The highest lower bound on the 
sampling rate is of course achieved when the sampling 
rate is maintained constant across the transition region.  
This would yield here a minimum sampling rate of 
0.652, but abandoning the sampling rate continuity 
requirement causes visual artifacts. 

 
Figure 5. Sampling pattern used for GPC image shown in 

Figure 1. 

 
Figure 6. Correspondence between GPC samples and GPC 

image. 

 
    Figure 7 Distortion at transition. 



6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 

 

In summary, a GPC with WxH sampling locations is 
defined by a PPC with resolution WxH, a central 
rectangular region with a magnification factor, and 4 
quadratic distortion expressions, one for each of the sub-
regions of the transition region. 

Rendering 

Ray casting 

Each sampling location defines a GPC ray. Ray casting 
or ray tracing with the GPC is straightforward. Instead 
of following the rays of a conventional PPC, the 
rendering algorithm follows the GPC rays. Like Wang et 
al. [31], we leverage this fact to provide GPC volume 
rendering support by ray casting on the GPU (Figure 
10).  Similarly, surface geometry data can be rendered 
with a GPC using a ray tracer. As novel graphics 
architectures become available [42] and as GPUs become 
more and more programmable, ray tracing is likely to 
become a serious competitor to feed-forward rendering. 
For now, rendering by projection followed by 
rasterization remains the preferred approach in 
interactive rendering. 

Feed-forward rendering 

Feed-forward GPC rendering has to overcome two 
challenges: projection and rasterization. GPC projection 
is straightforward. A 3-D point P is first projected to 
coordinates (ud, vd) using the PPC associated with the 
GPC. Then GPC image coordinates (u, v) are computed 
by inverting the distortion. For the central rectangular 
region (C in Figure 6), the distortion is a simple linear 
scaling, thus inverting it implies solving a linear 
equation. For the transition region inverting the 
distortion implies solving a quadratic. Using Equation 1 
again, for region L the quadratic equation that provides 
the GPC image coordinate u of P is: 

a0u2 + a1u + a2 – ud = 0         (3)  

As before, the GPC image coordinate v of P is 
obtained using the fact that the line defined by (u, v) and 

(ud, vd) passes through the center of the rectangular 
region C. 

GPC rasterization becomes non-linear in the 
transition region which poses two challenges: 
- bounding box computation: the axis aligned bounding 
box (AABB) of the projection of the vertices of a triangle 
is not a conservative estimate of the projected triangle 
anymore; in Figure 8 the grey AABB misses the red part 
of the curved projected triangle V0V1V2. 
- non-linear rasterization parameter variation; perspective 
correction followed by linear screen space interpolation 
is no longer equivalent to linear interpolation in the 
triangle plane. 

We have investigated two approaches for overcoming 
these challenges: non-linear rasterization and 
subdivision. 

Non-linear rasterization 
We approximate the bounding box of the projection of a 
triangle using points on its perimeter. Rasterization 
parameters are interpolated in the triangle plane by 
intersecting the ray through the current pixel with the 
triangle, similarly to the methods described by Mei et al. 
[38] and Gascuel et al. [36]. The efficiency of the 
approach is impacted negatively by two factors: 
- many perimeter points need to be considered in order 
to obtain a conservative approximation of the bounding 
box, and each point implies a non-trivial projection; 
- pixels inside the bounding box but outside the triangle 
are discarded late, after ray/triangle intersection and 
barycentric coordinate computation, which leads to 
considerable overdraw. 

Subdivision 
A more efficient approach is to subdivide the geometry 
such that conventional rasterization provides an 
acceptable approximation to the non-linear rasterization. 
One possibility is to subdivide uniformly off-line, with 
the advantage of a simpler on-line algorithm which 
simply projects with the GPC and then rasterizes 
conventionally. The disadvantage is excessive 
subdivision for distant parts of the scene. 

We have developed an adaptive scheme that 
subdivides triangles based on projected edge length. 
Special care needs to be taken to avoid cracks between 
triangles that share an edge (Figure 9). If a subdivision 
scheme decides to subdivide V0V2V3 and not to subdivide 
V0V1V2, it can happen that the non-linear projection M of 
the midpoint of V0V2 does not land on the line V0V2, 
which creates the crack shown in red. To avoid this 
problem we subdivide all the edges that exceed the 

  
Figure 8. Incorrect bounding box 

of curved projected triangle. 

Figure 9. Crack between 

adjacent projected triangles. 

  

  
Figure 10. Volume rendering GPC image (top) and two frames 

resampled from it (bottom). 
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projected length threshold. Depending on how many 
edges need to be subdivided a triangle is subdivided 
into 2, 3, or 4 sub-triangles.  In Figure 9 the bottom 
triangle is subdivided according to the dotted line which 
avoids the crack. 

Display 

Once the GPC image is rendered, it is ready to be 
compressed conventionally and to be sent to the client 
site. Once received, the client application uses the GPC 
image to reconstruct visualization frames for the user at 
interactive rates. Rotations and zoom changes are 
handled by resampling the GPC image to the PPC 
modeling the view of the current frame. Each pixel p of 
the current frame is set in three steps; the corresponding 
3-D point P on the PPC image plane is computed first, 
then P is projected onto the GPC image plane, and 
finally p is set to the GPC image color at the projection 
location. The resampling cost is small and bounded by 
the output frame resolution. Resampling the GPC image 
produces correct results because the center of projection 
of the output frame PPC coincides with the center of 
projection of the GPC. View dependent rendering effects 
are supported (e.g. volume rendering, reflections, 
refractions). 

Like any pinhole, the GPC does not support 
viewpoint translations. In order to allow the user to 
change the viewpoint we provide approximate 
translation support in one of two ways. The less 
expensive but also the more approximate way is to 
assume all GPC samples lie in a vertical plane. There is 
no motion parallax within the 3-D dataset, but the 
approximation enables selecting the next viewpoint. The 
second way is based on 3-D image warping [39]—the 
GPC image is enhanced with per pixel depth, which is 
then used to reproject the GPC samples during 
viewpoint translation. 3-D warping comes at the cost of 
the additional channel for the GPC image. Moreover, 3-
D warping reuses color as is, thus effects like reflections 
are not handled correctly, and when new surfaces are 
exposed disocclusion errors occur (Figure 11). 3-D 
warping does however provide correct motion parallax, 
a strong visual cue in 3-D data visualization. During 
translation a red frame border indicates that the 
visualization is only approximate. The user can request a 
new GPC image at any time. 

FOCUS PLUS CONTEXT 

Sampling location selection 

A GPC model similar to the one described for remote 
visualization can also serve for focus plus context 
visualization. The magnified central rectangular region 
is equivalent to a focus region. A focus plus context GPC 
is obtained by extending the remote visualization GPC 
model as follows: 
- the focus region should not necessarily be centered, 
which adds two parameters u0 and v0 defining the 
rectangle center, 

- the transition to context region should not necessarily 
extend all the way to the edge of the image, which adds 
another parameter tw to encode the width of the 
transition region, 
- more than a single focus region should be allowed; 
however the focus regions will be kept disjoint and their 
number will be a small constant, which facilitates 
interactive rendering. 

Since the focus region is now surrounded by context, 
it is of interest to maintain sampling rate continuity at 
the outer edge of the focus region. To accommodate this 
additional constraint a fourth coefficient is needed for 
the distortion equation (Equation 1): 

ud(u) = a0u3 + a1u2 + a2u + a3        (4)  

The 4 coefficients are found with the following linear 
system: 

ud(ul) = ul, 
ud(ur) = u0 + (ur – u0)/zf,         (5) 
ud’(ur) = 1/zf, 
ud’(ul) = 1 

Figure 12 illustrates the sampling rate at the transition 
region: it starts out at 1.0 (same spacing between first 
two red lines and the grey lines), then decreases 
(minimum value here is 0.59), and then increases to 
match the sampling rate of the central region (here 3.0). 

Rendering and display 

Once the GPC is built, ray casting for volume rendering 
or for surface rendering can proceed like before. For 
feed-forward rendering the projection operation is 
slightly more complicated. Like before, a 3-D point P is 
first projected with the PPC to p. Then the focus regions 
are consulted sequentially and if one contains p, the GPC 
image coordinates are computed by solving the cubic 
equation (4) with unknown u. Since the focus regions are 
disjoint, at most one cubic equation is solved per 
projection. Rasterization does not change. Adaptive 
subdivision works well for a focus plus context GPC 
since the context region does not require subdivision.  
Whereas in the remote visualization case the GPC image 
was an intermediate data structure used to create the 
output frame presented to the user, for focus plus 
context the GPC image is displayed as is. 

EXTREME ANTIALASING (XAA) 

When the resolution of the data to be visualized exceeds 
the resolution of the output image aliasing artifacts 
occur. Regularly sampled data (e.g. 2-D image data or 3- 

 

Figure 11. Approximate translation support by 3-D warping 

(left) and ground truth for comparison (right). 
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the two 5 second pauses needed to transfer the two GPC 
reference images. The GPC provides great quality from 
the viewpoint of the reference image and good quality 
from translated viewpoints. 

We have also tested our system using standard 
residential broadband connectivity (i.e. cable modem, 
~300KB/s average download rate).  Transferring the GPC 
image took on average 105s. Once the transfer completed 
the laptop on which the client was running was 
resampling and warping the GPC at over 20fps. For the 
conventional approach lossless compression is 
impractical since the frame rate is below 0.1Hz. JPEG 
compression achieved 0.5-1.0fps. 

 Discussion 
 Compared to a single conventional PPC image, a GPC 
image takes longer to render because of the non-linear 
projection operation. However, we have developed fast 
feed forward rendering algorithms that make the GPC 
rendering time negligible compared to network transfer 
times. Moreover in typical remote visualization 
scenarios rendering capabilities are distributed 
asymmetrically between the server and the client, in 
favor of the server, and the GPC is rendered on the 
server. A GPC image takes up more space than a single 
PPC image because it is larger and because it also stores 
depth per pixel.  Assuming that the GPC image is twice 
as big as the PPC image in each direction and charging 
32 bits per depth sample, a GPC image is typically 8 
times larger than a conventional PPC image.  Even so, 
bandwidth savings are considerable since hundreds or 
even thousands of output frames are computed from a 
single GPC image. In our example 2 GPC images were 
used to create 1,800 frames. 

Rendering quality GPC images requires antialiasing, 
which is not more complicated than in the case of 
conventional images. Like for conventional antialiasing, 
multiple samples are computed per pixel and the 
samples are blended to produce the final image. The 
feed-forward algorithms described readily produce 
antialiased GPC images. If the GPC image is rendered by 
ray tracing, antialiasing proceeds as usual, with the 
exception that the additional rays per pixel are defined 
using the GPC model and not the PPC model, a 
negligible cost compared to actually tracing the 
additional rays. 

 Like in any image-based rendering method, the GPC 
approach implies an additional resampling step, which 
reduces the quality of the output image. The quality loss 

can be reduced by not antialiasing the GPC image, 
which allows reconstructing the output frame from 
point samples. On a GPU the resampling step is 
essentially free from the performance standpoint (i.e. in 
our experiments resampling took less than 2ms). Even 
when no hardware support is present, resampling can be 
executed on the CPU at interactive rates (e.g. 13Hz in 
our case). We will test our system on additional client 
platforms in the future. For platforms such as cell 
phones the lower compute power is compensated by a 
lower screen resolution, so software resampling at 
interactive rates probably remains tractable.  Moreover, 
the main concern for such platforms is the low 
connectivity bandwidth (e.g. 3G), which makes the GPC 
approach even more appealing. 

GPCs support blurriness-free zoom up to a user 
chosen factor. Higher zoom factors come at the cost of a 
lower resolution at the periphery of zoomed out frames 
(Figure 16). The examples shown here were constructed 
under the assumption that the most likely zoom center is 
the center of the image. This assumption is supported by 
the fact that in interactive visualization the view 
typically changes smoothly. The view is a function V(f, tx, 
ty, tz, φ, θ, ρ) where f is the focal length, tx, ty, and tz are 
the translation parameters, φ, θ, and ρ are the rotation 
parameters, and the frame resolution is assumed to be 
constant. Smooth navigation implies that these 
parameters change continuously thus views following a 
reference view will have similar view directions, and 
thus zooming occurs close to the center of the reference 
view. The GPC image anticipates small variations of 
each of the 7 view parameters: the depth channel allows 
warping the samples to nearby viewpoints, a larger field 
of view allows panning, tilting and zooming out, and a 
higher resolution at the center allows zooming in. The 
GPC essentially covers a 7-D volume of views centered 
at the reference view. The output frame reconstruction 
quality decreases towards the periphery of this view 
volume (i.e. increasing severity of disocclusion errors 
and increasing blurriness). The GPC buys time to 
transfer a new reference image. Unlike conventional 
remote visualization, the GPC approach scales well with 
the frame rate at the client. The higher the frame rate at 
the client, the higher the benefit of the GPC. A high 
frame rate implies a dense sampling of the view volume 
covered by the GPC image, and more output frames are 
reconstructed from a single GPC image than in the case 
of a small frame rate. 

The overall size of the view volumes covered by a 
GPC and a PPC image is comparable, since the two 
images have the same number of samples. However, the 
shape of the view volume covered by the GPC is better 
suited for remote visualization. The reference view is not 
at the center of the PPC volume of views, but rather at its 
periphery: the PPC does not support zooming in or 
forward translation. The GPC volume of views is more 
evenly distributed around the reference view, at the cost 
of reducing the pan-tilt range, which is a desirable trade-
off. The GPC image is an image-based model that allows 
rendering multiple output images. Like for all models,  

  
Figure 15. Frame resampled from GPC (left) and frame 

compressed with JPEG with a quality factor of 10% (right). 
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 image-based or not, the utility of the model is not 
synonymous to the user rendering all possible images of 
the model. If the user never zooms in or never translates 
forward, the higher resolution at the center of the GPC 
remains unutilized. However, zooming in and 
translation forward are likely operations in interactive 
visualization since they are the mechanisms that allow 
the user to increase the level of detail. 

 Let’s compare the GPC approach to a simple 
approach of zooming in mipmapping fashion. Initially 
the output frame is transferred from the server along 
with a PPC reference image that has the same view but 
twice the resolution (4 times the number of pixels). The 
client reconstructs the output frame by trilinear 
interpolation between the two images. Once the 
resolution of the reference PPC image is surpassed, a 
new image is requested from the server and so on. If the 
output frame resolution is w x h, the approach transfers 
4wh pixels for each 2x zoom in sequence. Now let’s 
consider a GPC reference image of w x h resolution with 
a central region of size w/2 x h/2 and a zoom factor of 2 
(Figure 17). The amount of data transferred is reduced 4 
fold to wh, at the cost of a lower peripheral sampling 
rate. Using Equation 1, we find that the minimum 
sampling rate for the first (F1) and the last (Fn) frame of 
the zoom in sequence is 0.4 and 0.9, respectively. The 
sampling rate requirement (e.g. 1.0 for F1 and 2.0 for Fn) 
is met at the center of the frame throughout the zoom in 
sequence. The GPC is a flexible camera model that 
allows trading off periphery sampling rate for zoom in 
support. For example one could choose a sampling rate 
of 4.0 at the central region of the GPC image, which 
suffices for two 2x zoom in sequences, reducing the 
transfer cost 8 fold compared to the mipmapping 
approach. Another application might choose to enforce a 
minimum sampling rate of 1.0 for F1 by increasing the 
resolution of the GPC image to 1.6w x 1.6h. In this case 
the data reduction factor is 4.0/2.56, without any 
decrease of sampling rate at the periphery. This is of 
course possible since the mipmapping approach uses a 
2.0 sampling rate at the periphery which is never used. 

If regions of interest are known for a dataset, the GPC 
should be built to allocate more samples to those 
regions, similar to the GPC images constructed for the 
focus plus context application. Many datasets have 
intrinsic regions of interest. For example, in a 
computational molecular dynamics simulation where 
the goal is to investigate the therapeutic potential of a 
designed molecule (ligand), the visualization is likely to 
focus on the biomolecule receptor sites which reveal the 

quality of the fit between the ligand and the 
biomolecule. These receptor sites are known a priori and 
can be marked as regions of interest. In a computational 
fluid dynamics application an algorithm for extracting 
features (e.g. separation surfaces, vortices) produces 
geometry of variable complexity, and regions with high 
complexity are likely to be examined by the user at a 
higher resolution. These regions should be marked as 
regions of interest anticipating the need for additional 
samples. Similarly a CAD model of a complex system 
can have known regions of interest such as complex 
components, components that are known to fail, or 
components that are likely to have failed based on 
diagnostic tests performed by a technician in the field. 

A current limitation of our GPC-based remote 
visualization system is the relatively long GPC transfer 
times. Several strategies can be employed to reduce this 
time including progressive refinement of color and 
depth, not transmitting depth at all and supporting 
translation by texture mapping the frame onto a 
quadrilateral, compressing color with various quality 
factors, or simply letting the user navigate through the 
current GPC while the next GPC is being transferred. 

Focus plus context 

Rendering performance 
For focus plus context GPCs, the cubic equation per 
distorted vertex is an important performance factor. 
GPC rendering performance increases for Figure 2 from 
7Hz to 10Hz /11Hz if the cubic distortion is replaced 
with a quadratic/linear distortion. 

Discussion 
 The GPC provides a focus plus context technique with 
the important advantages of simplicity, of versatility, of 
interactive rendering performance, and of sampling rate 
continuity between focus and context regions. The 
interactive rendering performance not only supports 
dynamic scenes, but it also allows the user to modify the 
focus region parameters at interactive rates. If the focus 
regions are known a priori, or once the focus regions are 
found, the user can lock them and continue interactive 
exploration. A unique strength of our method is the 
robust and efficient handling of surface geometry data.  

Extreme antialiasing 

Rendering performance 
The image in Figure 13 is rendered at 21.2Hz. Increasing 

 
Figure 16. Decrease of resolution from center to periphery of 

frame resampled from GPC image. 

 
Figure 17. GPC image (left) and image plane sampling rate 

visualization (right). The black rectangles show the samples 

used by the first and last visualization frame in a 2x zoom in 

sequence. 
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the number of particles in each cluster from 104 to 105 
and then to 106 (>4M triangles), the frame rate becomes 
14.5Hz and 3.76Hz, respectively. The bulk of the time is 
spent rendering the GPC image—the kernel-based 
reconstruction takes negligible time. 

Quality 
Figure 18 shows GPC XAA at work in 3 visualization 
frames. The camera translates forward so the tree has a 
larger and larger footprint. The size of the off-screen tile 
is 640x720 for all three frames, which is sufficient to 
render the tree well with a single color sample per pixel. 
The supersampling factor is chosen as to maximize the 
utilization of the off-screen tile, and it decreases as the 
tree footprint grows bigger. The size of the tree in the 
off-screen tile remains approximately the same. The 
biggest change in size is recorded when the 
supersampling factor changes from one discrete level to 
the next (e.g. from 144 to 121). The correct reconstruction 
prevents transmitting the abrupt change to the output 
image, where the cluster regions are smooth, have 
accurate borders, and exhibit good frame to frame 
stability (please see accompanying video). On the other 
hand 16x hardware antialiasing alone does not render 
the correct foliage volume, even when the camera is 
closest to the tree. 

Discussion 
The GPC allows for a flexible management of 
framebuffer resources enabling local supersampling 
factors that are out of reach for full-frame antialiasing. 
Complex datasets are visualized directly, bypassing 
problematic offline simplification. GPC XAA works 
under the assumption that extreme geometric 
complexity is concentrated in a few screen regions. For 
example a city scene with a few complex trees or a flow 
dataset with a few complex turbulences should be 
rendered using GPC XAA whereas for a forest 
conventional LoD approaches are still needed. In general 
any dataset with great complexity variation is suitable 
for GPC XAA whereas datasets with uniform 
complexity, low or high, are not. 

A current limitation of the GPC XAA algorithm is 
that the supersampled regions have to be disjoint. In the 
current implementation overlapping regions have to be 
merged into a single region with a single supersampling 

factor, which can lead to aliasing when the original 
regions required widely different supersampling factors. 
This can probably be addressed with an improved 
reconstruction algorithm that takes into account the 
depth channel of the off-screen tile to depth-composite 
the tile into the output image. Another limitation is that 
the off-screen tiles are uniformly sampled which 
considerably weakens the antialiasing capability of the 
algorithm for thin nearly horizontal or nearly vertical 
features. In such cases a large number of samples can 
change sidedness from a frame to the next causing 
temporal aliasing. The solution to this problem is well 
known and we foresee that the algorithm can be 
adapted to use jittered sampling locations in the off-
screen tile. 

CONCLUSIONS AND FUTURE WORK 

The GPC is an effective and efficient tool for producing 
images with a non-uniform sampling rate. The GPC is 
ready to be integrated into remote visualization, focus 
plus context visualization, and high-end visualization 
systems. Many of the image processing tools developed 
for conventional images can be readily used on GPC 
images, including compression. 

In this paper we were only concerned with view 
changes. Like a conventional image, a GPC can be 
enhanced with additional channels, increasing the 
number of degrees of freedom for user interaction (e.g. 
scalar values for modifying color schemes, vector values 
for showing flow). Another future work direction is 
providing full translation support by developing a non-
pinhole camera model that samples all 3-D data visible 
from a viewing volume, combined with a scheme for 
efficient encoding of view dependent color. A GPC, like 
any image, is a snapshot of the dataset and it can only 
allow the user to explore the dataset frozen in time. A 
new GPC is needed to advance time. We plan to 
investigate extending the concept of an image to 
integrate short term trajectories for the image samples, a 
first step towards supporting dynamic datasets. 

Our paper describes how the GPC concept is tailored 
to contribute in three contexts. We advocate that instead 
of using the same camera model for all visualization 
applications and datasets, the camera model should 
instead be designed specifically for each application and 
dynamically optimized for each dataset. We foresee that 
this camera model design paradigm will lead to finding 
solutions for challenging problems in visualization and 
beyond. 
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