

Reflections-a difficult problem

- Every reflector is a portal onto a world which is as rich as the directly observed scene and which has complex image formation laws

Prior work—vast

Problem of rendering reflections

- Compute
- Intersection with reflector
- Reflected ray
- Intersection with reflected scene
- antialiasing

Problem of rendering reflections

- Compute
- Intersection with reflector
- Reflected ray
"OpenG"
- Intersection with reflected scene
???

Reflected-scene approximation

- Reflected scene replaced with approx. that provides
- Fast intersection with ray
- Antialiasing

Reflected-scene approximation

- Example: environment mapped reflections
- Reflected scene infinitely far away
- Straight forward intersection with ray
- Antialiasing computed in 2D (mipmapping)

Reflected-scene approximation

- Example: environment mapped reflections
- Reflected scene infinitely far away
- Straight forward intersection with ray
- Antialiasing computed in 2D (mipmapping)
- Drastic approximation, incorrect results close
to the reflector

Our approach

- Approximate reflected scene with impostors
- Considerable prior work on impostors
- Reflector surface prevents desired viewpoint from getting too close to the impostor
- Reflection distortion hides impostor artifacts

Impostor requirements

- Impostor has to provide
- Fast construction
- Fast intersection with ray
- Antialiasing

Billboard impostors

- Replace reflected object with billboard
- Higher order reflections
- Reflective billboards (normal mapped quads)

Billboard impostors

- Impostor has to provide
- Fast construction YES
- Fast intersection with ray YES
- Antialiasing YES

Pixel algorithm

- For D diffuse, R reflective billboards, and maximum reflection order K
- Compute reflected ray r
- For reflection order 1 to K
- Intersect with ($D+R-1$) billboards
- If no intersect

- return $D B_{(r)}$
- Else if intersection with reflective billboard $D B_{i}$ $-r=D B_{1}(r)$

Example: 4 teapots

Example: pushing-it scene

Animation and materials

Billboard limitations

- No support for objects very close to the reflector
- Limited accuracy
- Flat reflection
- Lack of motion parallax

Environmen mapping

Our method

Depth image—ray intersection

SRDM construction cost

Number of segments	8	16	32	64
Construction time $[\mathrm{ms}]$	210	300	480	980

Rigid body transformations, color updates, and reflector updates do not require reconstruction.

Depth image impostor results

SRDM under-sampling

One rotated depth map every $20^{\circ}, 10^{\circ}, 3^{\circ}$, and 2°, respectively.

Conclusions

- The reflected-impostor approach works
- Fast, realistic
- Increased modeling effort
- Rendering reflections reduced to the lesser problem of rendering w/ impostors

Future work

- Other types of impostors
- occlusion-resistant

Acknowledgments

- Funding \& equipment
- NSF, Intel, Microsoft,

Computer Science Purdue, Visualization Laboratory Purdue

- Stanford 3D Scanning Rep. for models
- Paul Debevec for environment maps
- Our graphics group at Purdue for miscellaneous
but important help

