

Voicu Popescu, Chunhui Mei, Jordan Dauble, and Elisha Sacks Purdue University

Reflected-Scene Impostors for Realistic Reflections at Interactive Rates

Reflections—a difficult problem

 Every reflector is a portal onto a world which is as rich as the directly observed scene and which has complex image formation laws

Prior work—vast		
	Ray tracing	Image-Based Rendering
	Feed-forward reflection rendering	Approximation of reflected scene
		3

Problem of rendering reflections

• Compute

- Intersection with reflector
- Reflected ray
- Intersection with reflected scene
- antialiasing

Problem of rendering reflections

- Compute
 - Intersection with reflector
 - Reflected ray
 - Intersection with reflected scene
 - antialiasing

:

Reflected-scene approximation

- Reflected scene replaced with approx. that provides
 - Fast intersection with ray
 - Antialiasing

Reflected-scene approximation

- Example: environment mapped reflections
 - Reflected scene infinitely far away
 - $-\operatorname{Straight}$ forward intersection with ray
 - Antialiasing computed in 2D (mipmapping)

Reflected-scene approximation

- Example: environment mapped reflections
 - Reflected scene infinitely far away
 - Straight forward intersection with ray
- Antialiasing computed in 2D (mipmapping)
 - Drastic approximation, incorrect results close to the reflector

Our approach

- Approximate reflected scene with impostors
 - Considerable prior work on impostors
 - Reflector surface prevents desired viewpoint from getting too close to the impostor
 - Reflection distortion hides impostor artifacts

Impostor requirements

- Impostor has to provide
 - Fast construction
 - Fast intersection with ray
 - Antialiasing

<text><image><image>

Billboard impostors

- · Replace reflected object with billboard
- Higher order reflections
 - Reflective billboards (normal mapped quads)

Billboard impostors

- · Impostor has to provide
 - Fast construction YES
 - Fast intersection with ray YES - Antialiasing
 - YES

Pixel algorithm • For D diffuse, R reflective billboards, and maximum reflection order K - Compute reflected ray r - For reflection order 1 to K

- Intersect with (D+R-1) billboards
- If no intersection
- return EM(r)
- Else if intersection with diffuse billboard DB_i - return DB_i(r)
- Else if intersection with reflective billboard DB_i $-r = DB_i(r)$

Example: 4 teapots D = 1, R = 4,

D+(R-1)+D=5intersections / pix 12 second order reflections 40fps

17

Example: table scene

• D=2, R=2, D+(R-1)+D=5intersections / pix 2 second order reflections 33 fps

18

Example: table scene

D = 2, R = 2, D+(R-1)+D = 5intersections / pix 2 second order reflections 33 fps

Example: pushing-it scene

D = 2, R = 9, D+(R-1)+D = 11intersections / pix 72 second order reflections 11 fps

Example: pushing-it scene

Comparison to env. mapping

Billboard limitations

- No support for objects very close to the reflector
- Limited accuracy
 - Flat reflection
 - Lack of motion parallax

Depth image impostors

- Impostor has to provide
- Fast construction YES
 Fast intersection with ray ???
 Antialiasing YES

Depth image—ray intersection Bippolar-like constraints: intersection computed as 1D search Still too many steps along epipolar segment

Simplified Rotated Depth Maps

Number of
segments163264Construction
time [ms]210300480980Bid body transformations, color updates, and reflector
updates do not require reconstruction:

Depth image impostor results

Depth image impostor results

Conclusions

- The reflected-impostor approach works - Fast, realistic
 - Increased modeling effort
- Rendering reflections reduced to the lesser problem of rendering w/ impostors

11/17/2009

Future work

• Other types of impostors - occlusion-resistant

Future work

- Other types of impostors
- Other BRDFs
- Self-reflections
- Constructing the SRDMs on the GPU

Acknowledgments

- Funding & equipment

 NSF, Intel, Microsoft, Computer Science Purdue, Visualization Laboratory Purdue
- Stanford 3D Scanning Rep. for models
- Paul Debevec for environment maps
- Our graphics group at Purdue for miscellaneous but important help

