

Shadow Maps

- Efficient implementation of shadows
- Essentially a zbuffer rendered from the light
 - if a point is behind the map as seen from the light, it is in shadow
 - the z-values model the first-surfaces seen from the light

Shadow Map Implementation

- Step 1: construction
 - one per light
 - updated when light or objects move
 - does not need to be updated when only the camera moves
 - resolution according to
 - scene geometry
 - desired image resolution
 - desired shadow quality
 - budget
 - view should
 - cover all light rays
 - cover all scene (cube maps if needed)
 - near / far plane according to scene bounding box

Shadow Map Implementation

• Step 2: shadow computation

- project scene point visible at current pixel onto shadow map(s)
- if hidden, pixel is in shadow
- else light contributes to pixel color
- soft shadows
 - pixels close to the shadow border are partially in shadow (penumbra)
 - implemented by testing neighborhood in the shadow map
 - if all samples of neighborhood are in shadow -> shadow
 - if all samples of neighborhood are in the light -> light
 - if k of n samples are in the light -> penumbra (light contribution k/n)