Projective texture mapping.
Shadow maps

Mapping from desired to reference image

Cit+ (61 + LI151 -*—V151)W1 =Cz+ (E: + legz -*—V:E:)W2
_ Wil
S KAA
W,
— — — 11 . - - 4 - - Wil
A :[az b, C:} (C1—C:)+[az b2 Cz} [a1 b ¢ wy,
W, W,
W,U, Goo Gor Goz Cos | With
WoVo |=| Go || Gir Ghe Ghia | WiV2
W, G20 Q1 O G f Wi

Yoo
+ QogUy + ozVa + Cog
Wl
U=t
20
m + Uy + 0V + g
! (C,, @y, by, ¢,) - reference view

1 . .
—=Au, +Bv,+C (u,, v,) — reference pixel coordinates
W,

! DU 5 Ev 4 F (Cy 4, by, c,) - desired view

— 1 1 . . . :

2T U K. 1 L (uy, v;) — desired view pixel coordinates
1 1
Gu, +Hv, + | (U, V, W,) — unknowns

2 Ju, + Ky, + L w, — computed using triangle V,V,V,

Shadow Maps

 Efficient implementation of shadows

 Essentially a zbuffer rendered from the light

— if a point is behind the map as seen from the
light, it is in shadow

— the z-values model the first-surfaces seen from
the light

Shadow Map Implementation

Step 1: construction
— one per light
updated when light or objects move
does not need to be updated when only the camera moves
resolution according to
* scene geometry
* desired image resolution
* desired shadow quality
* budget
view should
« cover all light rays
 cover all scene (cube maps if needed)
« near / far plane according to scene bounding box

Shadow Map Implementation

» Step 2: shadow computation
project scene point visible at current pixel onto shadow
map(s)
if hidden, pixel is in shadow
else light contributes to pixel color

soft shadows
« pixels close to the shadow border are partially in shadow
(penumbra)
 implemented by testing neighborhood in the shadow map
— if all samples of neighborhood are in shadow -> shadow
— if all samples of neighborhood are in the light -> light

— if k of n samples are in the light -> penumbra (light contribution
k/n)

