Projective texture mapping.
Shadow maps

Mapping from desired to reference image
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Shadow Maps

 Efficient implementation of shadows

 Essentially a zbuffer rendered from the light

— if a point is behind the map as seen from the
light, it is in shadow

— the z-values model the first-surfaces seen from
the light

Shadow Map Implementation

Step 1: construction
— one per light
updated when light or objects move
does not need to be updated when only the camera moves
resolution according to
* scene geometry
* desired image resolution
* desired shadow quality
* budget
view should
« cover all light rays
 cover all scene (cube maps if needed)
« near / far plane according to scene bounding box




Shadow Map Implementation

» Step 2: shadow computation
project scene point visible at current pixel onto shadow
map(s)
if hidden, pixel is in shadow
else light contributes to pixel color

soft shadows
« pixels close to the shadow border are partially in shadow
(penumbra)
 implemented by testing neighborhood in the shadow map
— if all samples of neighborhood are in shadow -> shadow
— if all samples of neighborhood are in the light -> light

— if k of n samples are in the light -> penumbra (light contribution
k/n)




