Image Based Rendering

an overview

(F)

Photographs

• We have tools that acquire and tools that display photographs at a convincing quality level, for almost 100 years now

Sergei Mikhailovich Prokudin-Gorskii. Tea Factory in Chakva. Chinese Foreman Lau-Dzhen-Dzhau. ca. 1907-1915.

RGB in early 1900's

- Introduction
- Lightfield Lumigraph
 - definition

- construction
- compression

• Static scene, t constant

Æ

- λ approximated with RGB
- consider only convex hull of objects, so the origin of the ray does not matter

or Lightfield: set of images of a point seen at various angles

Construction from dense set of photographs

Filling in gaps using pull-push algorithm

- Pull phase
 - low res levels are created
 - gaps are shrunk
- Push phase
 - gaps at high res levels are filled using low res levels

Vector Quantization (VQ)

• Principle

- codebook made of codewords
- replace actual word with closest codeword
- Implementation
 - training on representative set of words to derive best codebook
 - compression: replacing word with index to closest codeword
 - decompression: retrieve indexed codeword from codebook

(F)

Motivation – rendering from images

[Seitz96]

- Given
 - left image
 - right image
- Create intermediate images
 - simulates camera movement

Previous work

- Panoramas ([Chen95], etc)
 - user can look in any direction at few given locations
- Image-morphing ([Wolberg90], [Beier92], etc)
 - linearly interpolated intermediate positions of features
 - input: two images and correspondences
 - output: metamorphosis of one image into other as sequence of intermediate images

- Introduction
- Image morphing
- View morphing
 - image pre-warping
 - image morphing
 - image post-warping

Image morphing

1. Correspondences

Image morphing

1. Correspondences

Image morphing

$$\mathbf{\dot{P}}_{k} = (1 - \frac{k}{n})\mathbf{\dot{P}}_{0} + \frac{k}{n}\mathbf{\dot{P}}_{n}$$

frame 0

frame n

frame k

Early IBR research

- Introduction
- Image morphing
- View morphing
 - image pre-warping
 - image morphing
 - image post-warping

Step 1: prewarp to parallel views

Parallel views

- same image plane
- image plane parallel to segment connecting the two centers of projection
- Prewarp
 - compute parallel views I_{0p} , I_{np}
 - rotate I_0 and I_n to parallel views
 - prewarp corrs. $(P_0, P_n) \rightarrow (P_{op}, P_{np})$

Step 3: Postwarping

• Postwarp morphed image

- create intermediate view
 - C_k is known
 - interpolate view direction and tilt
- rotate morphed image to intermediate view

- Introduction
- Image morphing
- View morphing, more details
 - image pre-warping
 - image morphing
 - image post-warping

(F)

- prewarping using texture mapping
 - create polygon for image plane
 - consider it texture mapped with the image itself
 - render the "scene" from prewarped view
 - if you go this path you will have to implement clipping with the COP plane
 - you have texture mapping already
- alternative: prewarping using reprojection of rays
 - look up all the rays of the prewarped view in the original view

Step 2: morph parallel images

• Image morphing

- use prewarped correspondences to compute a correspondence for all pixels in I_{0p}
- linearly interpolate I_{0p} to intermediate positions
- useful observation
 - corresponding pixels are on same line in prewarped views
- preventing holes
 - use larger footprint (ex 2x2)
 - or linearly interpolate between consecutive samples
 - or postprocess morphed image looking for background pixels and replacing them with neighboring values
- visibility artifacts
 - collision of samples
 - zbuffer on disparity
 - holes - morph I... to I...
 - morph I_{np} to I_{kp}
 use additional views

DeltaSphere - depth&color acquisition device

• Lars Nyland *et al*.

- Introduction
- Depth extraction methods
- Reconstruction for IBRW
- Visibility without depth
- Sample selection

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

(F)

Depth from stereo

- two cameras with known parameters
- infer 3D location of point seen in both images
- sub problem: correspondences
 - for a point seen in the left image, find its projection in the right image

Search for correspondences on epipolar line

- Reduces the dimensionality of the search space
- Walk on epipolar segment rather than search in entire image

Depth precision analysis

- 1/z linear with disparity $(u_1 u_2)$
- better depth resolution for nearby objects
- important to determine correspondences with subpixel accuracy

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

- replace one camera with projector
- project easily detectable patterns
- establishing correspondences becomes a lot easier

Depth from structured light challenges

- Associated with using projectors
 - expensive, cannot be used outdoors, not portable
- Difficult to identify pattern
 - I found a corner, which corner is it?
- Invasive, change the color of the scene
 - one could use invisible light, IR

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

(F)

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

(1)

