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Image Based Rendering
an overview

Photographs

• We have tools that acquire and tools that• We have tools that acquire and tools that 
display photographs at a convincing quality 
level
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Photographs

• We have tools that acquire and tools that• We have tools that acquire and tools that 
display photographs at a convincing quality 
level, for almost 100 years now
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Sergei Mikhailovich Prokudin-Gorskii.

A Settler's Family, ca. 1907-1915.
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Sergei Mikhailovich Prokudin-Gorskii.
Tea Factory in Chakva. 

Chinese Foreman Lau-Dzhen-Dzhau.
ca. 1907-1915.
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Sergei Mikhailovich Prokudin-Gorskii. 

The Emir of Bukhara, 1911.
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RGB in early 1900’s
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Plenoptic function

• Defines all the rays• Defines all the rays
– through any point in space (x, y, z)
– with any orientation (θ, φ)
– over all wavelenghts (λ)
– at any given moment in time (t)
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IBR summary

Representation of plenoptic function
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Representation of plenoptic function
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Lightfield – Lumigraph approach
[Levoy96, Gortler96]

• Take all photographs you will ever need to 
display

• Model becomes database of rays
• Rendering becomes database querying
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• Rendering becomes database querying
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Overview

• Introduction• Introduction
• Lightfield – Lumigraph

– definition
– construction
– compression
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From 7D to 4D

)( tzyxP λϕφρ =

• Static scene, t constant
• λ approximated with RGB

),,,,,,( tzyxP λϕφρ =
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• consider only convex hull of objects, so the 
origin of the ray does not matter

4D Lightfield / Lumigraph

22
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Discreet 4D Lightfield
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Lightfield: set of images with 
COPs on regular grid
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or Lightfield: set of images of a 
point seen at various angles
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Depth correction of rays
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Overview

• Introduction• Introduction
• Lightfield – Lumigraph

– definition
– construction
– compression
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Construction from dense set of 
photographs
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Construction from sparse set of 
photographs

iticamera positions

30

acquisition stage

blue screening space carving
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Filling in gaps using pull-push 
algorithm

• Pull phase 
• low res levels are 

created
• gaps are shrunk

• Push phase

31

p
• gaps at high res levels 

are filled using low res 
levels

Overview

• Introduction• Introduction
• Lightfield – Lumigraph

– definition
– construction
– compression
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Overview

• Introduction• Introduction
• Lightfield – Lumigraph

– definition
– construction
– compression
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Compression

• Large size uncompressed: 1 125GB• Large size uncompressed: 1.125GB
– 32x32 (s, t) x 256x256 (u, v) x 6 faces x 3 B

• Compression
– jpeg + mpeg (200:1 to 6MB)
– or vector quantization + entropy encoding

34
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Vector Quantization (VQ)

• PrinciplePrinciple
– codebook made of codewords
– replace actual word with closest codeword

• Implementation
– training on representative set of words to derive best 

codebook
i l i d ith i d t l t
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– compression: replacing word with index to closest 
codeword

– decompression: retrieve indexed codeword from 
codebook

Lightfield compression using VQ

36
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View morphing

37

Motivation – rendering from 
images

• Given
– left image
– right image

• Create intermediate 

38

images
– simulates camera 

movement
[Seitz96]
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Previous work

• Panoramas ([Chen95] etc)• Panoramas ([Chen95], etc)
– user can look in any direction at few given locations

• Image-morphing ([Wolberg90], [Beier92], etc)
– linearly interpolated intermediate positions of features
– input: two images and correspondences
– output: metamorphosis of one image into other as

39

– output: metamorphosis of one image into other as 
sequence of intermediate images

Previous work limitations

• Panoramas ([Chen95] etc )• Panoramas ([Chen95], etc.)
– no camera translations allowed

• Image morphing ([Wolberg90], [Beier92], 
etc.)
– not shape-preserving

i hi i l h f th bj t
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– image morphing is also a morph of the object
– to simulate rendering with morphing, the object 

should be rigid when camera moves
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Overview

• Introduction• Introduction
• Image morphing
• View morphing

– image pre-warping
– image morphing
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image morphing
– image post-warping
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image morphing
– image post-warping
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Image morphing
1. Correspondencesp

43

Image morphing
1. Correspondencesp
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Image morphing
1. Correspondencesp
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Image morphing
1. Correspondencesp
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Image morphing
1. Correspondencesp
2. Linear interpolation
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P0 Pk Pn
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frame 0 frame k frame n

Image morphing

• Image morphing
• not shape preserving

48
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Early IBR research

49
Soft watch at moment of first explosion – Salvador Dali 1954

Overview

• Introduction• Introduction
• Image morphing
• View morphing

– image pre-warping
– image morphing
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image morphing
– image post-warping
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Overview

• Introduction• Introduction
• Image morphing
• View morphing

– image pre-warping
– image morphing
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image morphing
– image post-warping

View morphing

• Shape preserving morph• Shape preserving morph
• Three step algorithm

1. Prewarp first and last images to parallel views
2. Image morph between prewarped images
3. Postwarp to interpolated view

52
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Step 1: prewarp to parallel views

I0

P

• Parallel views
– same image plane
– image plane parallel to segment 

connecting the two centers of projection
• Prewarp

– compute parallel views I0p, Inp

t t I d I t ll l i

0
In

P0 
Pn 

P0p

Pnp
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– rotate I0 and In to parallel views
– prewarp corrs.  (P0, Pn) -> (Pop, Pnp)

Cn 

C0 Inp

I0p
np

Step 2: morph parallel images

P

• Shape preserving
• Use prewarped correspondences
• Interpolate Ck from C0 Cn

I0
In

P0 
Pn 

P0p Pkp
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Cn 

C0

Inp
I0p

Pnp

Ck
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Step 3: Postwarping

I

• Postwarp morphed image
– create intermediate view

• Ck is known
• interpolate view 

direction and tilt 
rotate morphed image to

I0

In

55

– rotate morphed image to 
intermediate view

Cn 

C0

I0p

Ck

View morphing

• View morphing
• shape preserving

56



29

Overview

• Introduction• Introduction
• Image morphing
• View morphing, more details

– image pre-warping
– image morphing
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image morphing
– image post-warping

Step 1: prewarp to parallel views

I0

P

• Parallel views
– use C0Cn for x (ap vector)
– use (a0 x b0) x (an x bn) as y (-bp)
– pick ap and bp to resemble a0 b0 as much 

as possible
use same pixel size

0
In

P0 
Pn 

P0p

Pnp
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– use same pixel size
– use wider field of view

Cn 

C0 Inp

I0p
np



30

Step 1: prewarp to parallel views

I0

P

• prewarping using texture mapping
– create polygon for image plane
– consider it texture mapped with the image 

itself
– render the “scene” from prewarped view
– if you go this path you will have to 

implement clipping with the COP plane
– you have texture mapping already

0
In

P0 
Pn 

P0p

Pnp
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y pp g y
• alternative: prewarping using reprojection 

of rays
– look up all the rays of the prewarped view in 

the original viewCn 

C0 Inp

I0p
np

Step 1: prewarp to parallel views

I0

P

• prewarping correspondences
– for all pairs of correspondence P0 Pn

• project P0 on I0p, computing P0p

• project Pn on Inp, computing Pnp

• prewarped correspondence is Pop Pnp

0
In

P0 
Pn 

P0p

Pnp
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Cn 

C0 Inp

I0p
np
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Step 2: morph parallel images
• Image morphing

– use prewarped correspondences to compute a 
correspondence for all pixels in I0p

P
p p 0p

– linearly interpolate I0p to intermediate positions
– useful observation

• corresponding pixels are on same line in 
prewarped views

– preventing holes
• use larger footprint (ex 2x2)
• or linearly interpolate between consecutive 

samples
• or postprocess morphed image looking for 

background pixels and replacing them with

I0
In

P0 
Pn 

P0p Pkp
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background pixels and replacing them with 
neighboring values

– visibility artifacts
• collision of samples

– zbuffer on disparity
• holes

– morph Inp to Ikp
– use additional views

Cn 

C0

Inp
I0p

Pnp

Ck

Step 3: Postwarping

I

• create intermediate view
– Ck is known
– current view direction is a 

linear interpolation of the 
start and end view directions

– current up vector is a linear 
interpolation of the start and

I0

In

62

interpolation of the start and 
end up vectors

• rotate morphed image to 
intermediate view

– same as prewarping
Cn 

C0

I0p

Ck
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Image-Based Rendering by 
Warping

Overview

• Introduction• Introduction
• Depth extraction methods
• Reconstruction for IBRW
• Visibility without depth

S l l ti

64

• Sample selection
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Overview

• Introduction• Introduction
– comparison to other IBR methods
– 3D warping equation
– reconstruction

65

IBR by Warping (IBRW)

• Images enhanced with per pixel depth• Images enhanced with per-pixel depth 
[McMillan95]

u1

66

v1
P1
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IBR by Warping (IBRW)

1111111 )( wbvaucCP +++=
••
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• 1/w1 also called generalized disparity
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C1

v1
P1

• another notation δ(u1, v1)

IBR by Warping (IBRW)
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3D warping equations
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A complete IBR method

• Façade system• Façade system
– (coarse) geometric model needed

• Panoramas
– viewer confined to center of panorama

• View morphing

70

– correspondences needed
• IBRW

– rendering to arbitrary new views
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DeltaSphere - depth&color 
acquisition device

L N l d t l• Lars Nyland et al.

71

72



37

73

74



38

75

Reconstructing by splatting

• Estimate shape and size of footprint of• Estimate shape and size of footprint of 
warped samples
– expensive to do accurately
– lower image quality if crudely approximated

• Samples are z-buffered

76
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Overview

• Introduction• Introduction
• Depth extraction methods
• Reconstruction for IBRW
• Visibility without depth

S l l ti

77

• Sample selection

78

Finding depth
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Overview

• Depth from stereo• Depth from stereo
• Depth from structured light
• Depth from focus / defocus
• Laser rangefinders
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Overview

• Depth from stereo• Depth from stereo
• Depth from structured light
• Depth from focus / defocus
• Laser rangefinders

80



41

Depth from stereo
• two cameras with known parameters

• infer 3D location of point seen in both images

• sub problem: correspondences

P u2
u1

• for a point seen in the left image, find its projection in 
the right image

81

C1
C2

v2v1 P1 P2

Depth from stereo: déjà-vu math

1111111 )( wbvaucCP +++=
••

P u2

v2

u1

2222222 )( wbvaucCP +++=
••

• unknowns are w1 and w2

• overconstrained system

• the u2v2 coordinates of a 
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C1
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2v1

P1
P2

2 2
point seen at u1v1 are 
constrained to an epipolar
line
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Epipolar line
• C1, C2, P1 define a plane

• P2 will be on that plane

• P2 is also on the image plane 2

P u2
u1

2 2

• So P2 will be on the line defined by the two planes’ intersection

83

C1
C2

v2v1

P1

P2

Search for correspondences on 
epipolar line

• Reduces the dimensionality of the search space

• Walk on epipolar segment rather than search in entire image

P u2
u1

• Walk on epipolar segment rather than search in entire image 
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C1
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v2v1
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Parallel views

• Preferred stereo configuration

• epipolar lines are horizontal easy to search

Pu2

u1

v1

• epipolar lines are horizontal, easy to search
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C1

C2

v1

Parallel views

• Limit search to epipolar segment

• from u = u (P is infinitely far away) to 0 (P is close)

P
u2

u1

v1

• from u2 = u1 (P is infinitely far away) to 0 (P is close)
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Depth precision analysis
• 1/z linear with disparity (u1 – u2)

• better depth resolution for nearby objects

Pu2

u1

v1

• important to determine correspondences with subpixel accuracy
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Overview

• Depth from stereo• Depth from stereo
• Depth from structured light
• Depth from focus / defocus
• Laser rangefinders
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Overview

• Depth from stereo• Depth from stereo
• Depth from structured light
• Depth from focus / defocus
• Laser rangefinders
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Depth from stereo problem

• Correspondences are difficult to find• Correspondences are difficult to find
• Structured light approach

– replace one camera with projector
– project easily detectable patterns
– establishing correspondences becomes a lot 

90

g p
easier
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Depth from structured light

1111111 )( wbvaucCP +++=
••

P u2
u1

2222222 )( wbvaucCP +++=
••

• C1 is a projector

• Projects a pattern centered at u1v1

• Pattern center hits object scene at 
P

• Camera C2 sees pattern at u2v2, 
easy to find
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C1
C2

v2v1
P1 P2

easy to find

• 3D location of P is determined
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Depth from structured light 
challenges

• Associated with using projectors• Associated with using projectors
– expensive, cannot be used outdoors, not 

portable
• Difficult to identify pattern

– I found a corner, which corner is it?

94

• Invasive, change the color of the scene
– one could use invisible light, IR
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Overview

• Depth from stereo• Depth from stereo
• Depth from structured light
• Depth from focus / defocus
• Laser rangefinders
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Depth of field
• Thin lenses

• rays through lens center (C) do not

aperture

object

• rays through lens center (C) do not 
change direction

• rays parallel to optical axis go 
through focal point (F’)

97

image

C F

F’

Depth of field
• For a given focal length, only objects that 
are at a certain depth are in focus

aperture

object

image plane

98

C F

F’
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Out of focus
• When object at different depth 

• One point projects to several 
l ti i th i

aperture

object

image plane

locations in the image

• Out of focus, blurred image

99

C F

F’

Focusing
• Move lens to focus for new depth

• Relationship between focus and 
d th b l it d t t t d th

aperture

object

image plane

depth can be exploited to extract depth
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C F

F’
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Determine z for points in focus

faha i +
==

aperture

object

image plane

zhf

a f
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C F

F’

hi

h
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Depth from defocus

• Take images of a scene with various camera• Take images of a scene with various camera 
parameters

• Measuring defocus variation, infer range to 
objects

• Does not need to find the best focusing 

102

g
planes for the various objects

• Examples by Shree Nayar, Columbia U
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Overview

• Depth from stereo• Depth from stereo
• Depth from structured light
• Depth from focus / defocus
• Laser rangefinders
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Overview

• Depth from stereo• Depth from stereo
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• Laser rangefinders
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Laser range finders

• Send a laser beam to measure the distance• Send a laser beam to measure the distance
– like RADAR, measures time of flight

105

DeltaSphere - depth&color 
acquisition device

• Lars Nyland et al• Lars Nyland et al.

106
courtesy 3rd Tech Inc.
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• 300o x 300o panorama
• this is the reflected light

107

• 300o x 300o panorama
• this is the range light

108
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spherical range panoramas

courtesy 3rd Tech Inc.
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planar re-projection

Jeep – one scan

110

courtesy 3rd Tech Inc.
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Jeep – one scan

111

courtesy 3rd Tech Inc.

Complete Jeep model

112

courtesy 3rd Tech Inc.



57

113


