Image Based Rendering

an overview

Photographs

- We have tools that acquire and tools that display photographs at a convincing quality level

Photographs

- We have tools that acquire and tools that display photographs at a convincing quality level, for almost 100 years now

RGB in early 1900's

Plenoptic function

- Defines all the rays
- through any point in space (x, y, z)
- with any orientation (θ, φ)
- over all wavelenghts (λ)
- at any given moment in time (t)

$$
\rho=P(x, y, z, \phi, \varphi, \lambda, t)
$$

IBR summary

Representation of plenoptic function

implicit

Lightfield - Lumigraph approach [Levoy96, Gortler96]

- Take all photographs you will ever need to display
- Model becomes database of rays
- Rendering becomes database querying

Overview

- Introduction
- Lightfield - Lumigraph
- definition
- construction
- compression

Overview

- Introduction
- Lightfield - Lumigraph
- definition
- construction
- compression

From 7D to 4D

$\rho=P(x, y, z, \phi, \varphi, \lambda, t)$

- Static scene, t constant
- λ approximated with RGB
- consider only convex hull of objects, so the origin of the ray does not matter

4D Lightfield / Lumigraph

Discreet 4D Lightfield

Lightfield: set of images with COPs on regular grid

or Lightfield: set of images of a point seen at various angles

Depth correction of rays

Overview

- Introduction
- Lightfield - Lumigraph
- definition
- construction
- compression

Overview

- Introduction
- Lightfield - Lumigraph
- definition
- construction
- compression

Construction from dense set of photographs

Construction from sparse set of photographs

Filling in gaps using pull-push algorithm

- Pull phase

- low res levels are created
- gaps are shrunk
- Push phase
- gaps at high res levels are filled using low res levels

Overview

- Introduction
- Lightfield - Lumigraph
- definition
- construction
- compression

Overview

- Introduction
- Lightfield - Lumigraph
- definition
- construction
- compression

Compression

- Large size uncompressed: 1.125 GB
$-32 \times 32(\mathrm{~s}, \mathrm{t}) \times 256 \times 256$ (u, v) x 6 faces x 3 B
- Compression
- jpeg + mpeg (200:1 to 6MB)
- or vector quantization + entropy encoding

Vector Quantization (VQ)

- Principle
- codebook made of codewords
- replace actual word with closest codeword
- Implementation
- training on representative set of words to derive best codebook
- compression: replacing word with index to closest codeword
- decompression: retrieve indexed codeword from codebook

Lightfield compression using VQ

View morphing

Motivation - rendering from images

[Seitz96]

- Given
- left image
- right image
- Create intermediate images
- simulates camera movement

Previous work

- Panoramas ([Chen95], etc)
- user can look in any direction at few given locations
- Image-morphing ([Wolberg90], [Beier92], etc)
- linearly interpolated intermediate positions of features
- input: two images and correspondences
- output: metamorphosis of one image into other as sequence of intermediate images

Previous work limitations

- Panoramas ([Chen95], etc.)
- no camera translations allowed
- Image morphing ([Wolberg90], [Beier92], etc.)
- not shape-preserving
- image morphing is also a morph of the object
- to simulate rendering with morphing, the object should be rigid when camera moves

Overview

- Introduction
- Image morphing
- View morphing
- image pre-warping
- image morphing
- image post-warping

Overview

- Introduction
- Image morphing
- View morphing
- image pre-warping
- image morphing
- image post-warping

Early IBR research

Overview

- Introduction
- Image morphing
- View morphing
- image pre-warping
- image morphing
- image post-warping

Overview

- Introduction
- Image morphing
- View morphing
- image pre-warping
- image morphing
- image post-warping

View morphing

- Shape preserving morph
- Three step algorithm

1. Prewarp first and last images to parallel views
2. Image morph between prewarped images
3. Postwarp to interpolated view

Step 1: prewarp to parallel views

- Parallel views
- same image plane
- image plane parallel to segment connecting the two centers of projection
- Prewarp
- compute parallel views $\mathrm{I}_{0 \mathrm{p}}, \mathrm{I}_{\mathrm{np}}$
- rotate I_{0} and I_{n} to parallel views
- prewarp corrs. $\left(\mathrm{P}_{0}, \mathrm{P}_{\mathrm{n}}\right)->\left(\mathrm{P}_{\mathrm{op}}, \mathrm{P}_{\mathrm{np}}\right)$

Step 2: morph parallel images

- Shape preserving
- Use prewarped correspondences
- Interpolate C_{k} from $\mathrm{C}_{0} \mathrm{C}_{\mathrm{n}}$

Overview

- Introduction
- Image morphing
- View morphing, more details
- image pre-warping
- image morphing
- image post-warping

Step 1: prewarp to parallel views

- Parallel views
- use $C_{0} C_{n}$ for x (a_{p} vector)
- use $\left(a_{0} \times b_{0}\right) \times\left(a_{n} \times b_{n}\right)$ as y $\left(-b_{p}\right)$
- pick a_{p} and b_{p} to resemble $a_{0} b_{0}$ as much as possible
- use same pixel size
- use wider field of view

Step 1: prewarp to parallel views

- prewarping using texture mapping
- create polygon for image plane
- consider it texture mapped with the image itself
- render the "scene" from prewarped view
- if you go this path you will have to implement clipping with the COP plane
- you have texture mapping already
- alternative: prewarping using reprojection of rays
- look up all the rays of the prewarped view in the original view

Step 1: prewarp to parallel views

- prewarping correspondences
- for all pairs of correspondence $\mathrm{P}_{0} \mathrm{P}_{\mathrm{n}}$
- project P_{0} on $\mathrm{I}_{0 \mathrm{p}}$, computing $\mathrm{P}_{\mathrm{O}_{\mathrm{p}}}$
- project P_{n} on $\mathrm{I}_{\mathrm{n} p}$, computing P_{np}
- prewarped correspondence is $\mathrm{P}_{\mathrm{op}} \mathrm{P}_{\mathrm{np}}$

Step 2: morph parallel images

- Image morphing
- use prewarped correspondences to compute a correspondence for all pixels in $\mathrm{I}_{0 \mathrm{p}}$
- linearly interpolate $\mathrm{I}_{0 \mathrm{p}}$ to intermediate positions
- useful observation
- corresponding pixels are on same line in prewarped views
- preventing holes
- use larger footprint (ex 2×2)
- or linearly interpolate between consecutive samples
- or postprocess morphed image looking for background pixels and replacing them with neighboring values
- visibility artifacts
- collision of samples
- zbuffer on disparity
- holes
morph $I_{n p}$ to $I_{k p}$
use additional views

Step 3: Postwarping

- create intermediate view
- C_{k} is known
- current view direction is a linear interpolation of the start and end view directions
- current up vector is a linear interpolation of the start and end up vectors
- rotate morphed image to intermediate view
- same as prewarping

Overview

- Introduction
- Depth extraction methods
- Reconstruction for IBRW
- Visibility without depth
- Sample selection

Overview

- Introduction
- comparison to other IBR methods
-3 D warping equation
- reconstruction

IBR by Warping (IBRW)

- Images enhanced with per-pixel depth [McMillan95]

3D warping equations

$$
\begin{aligned}
& u_{2}=\frac{w_{11}+w_{12} \cdot u_{1}+w_{13} \cdot v_{1}+w_{14} \cdot \delta\left(u_{1}, v_{1}\right)}{w_{31}+w_{32} \cdot u_{1}+w_{33} \cdot v_{1}+w_{34} \cdot \delta\left(u_{1}, v_{1}\right)} \\
& v_{2}=\frac{w_{21}+w_{22} \cdot u_{1}+w_{23} \cdot v_{1}+w_{24} \cdot \delta\left(u_{1}, v_{1}\right)}{w_{31}+w_{32} \cdot u_{1}+w_{33} \cdot v_{1}+w_{34} \cdot \delta\left(u_{1}, v_{1}\right)}
\end{aligned}
$$

A complete IBR method

- Façade system
- (coarse) geometric model needed
- Panoramas
- viewer confined to center of panorama
- View morphing
- correspondences needed
- IBRW
- rendering to arbitrary new views

DeltaSphere - depth\&color acquisition device

- Lars Nyland et al.

Reconstructing by splatting

- Estimate shape and size of footprint of warped samples
- expensive to do accurately
- lower image quality if crudely approximated
- Samples are z-buffered

Overview

- Introduction
- Depth extraction methods
- Reconstruction for IBRW
- Visibility without depth
- Sample selection

Overview

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

Overview

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

Depth from stereo

- two cameras with known parameters
- infer 3D location of point seen in both images
- sub problem: correspondences
- for a point seen in the left image, find its projection in the right image

Depth from stereo: déjà-vu math

$$
\begin{aligned}
& \dot{P}=\dot{C}_{1}+\left(\bar{c}_{1}+u_{1} \bar{a}_{1}+v_{1} \bar{b}_{1}\right) w_{1} \\
& \dot{P}=\dot{C}_{2}+\left(\bar{c}_{2}+u_{2} \bar{a}_{2}+v_{2} \bar{b}_{2}\right) w_{2}
\end{aligned}
$$

- unknowns are w_{1} and w_{2}
- overconstrained system
- the $\mathrm{u}_{2} \mathrm{v}_{2}$ coordinates of a point seen at $\mathrm{u}_{1} \mathrm{~V}_{1}$ are constrained to an epipolar line

Epipolar line

- $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{P}_{1}$ define a plane
- P_{2} will be on that plane
- P_{2} is also on the image plane ${ }_{2}$
- So P_{2} will be on the line defined by the two planes' intersection

Search for correspondences on epipolar line

- Reduces the dimensionality of the search space
- Walk on epipolar segment rather than search in entire image

Parallel views

- Preferred stereo configuration
- epipolar lines are horizontal, easy to search

Parallel views

- Limit search to epipolar segment
- from $\mathrm{u}_{2}=\mathrm{u}_{1}$ (P is infinitely far away) to 0 (P is close)

Depth precision analysis

- $1 / \mathrm{z}$ linear with disparity $\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)$
- better depth resolution for nearby objects
- important to determine correspondences with subpixel accuracy

Overview

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

Overview

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

Depth from stereo problem

- Correspondences are difficult to find
- Structured light approach
- replace one camera with projector
- project easily detectable patterns
- establishing correspondences becomes a lot easier

Depth from structured light

$$
\begin{aligned}
& \dot{P}=\dot{C}_{1}+\left(\bar{c}_{1}+u_{1} \bar{a}_{1}+v_{1} \bar{b}_{1}\right) w_{1} \\
& \dot{P}=\dot{C}_{2}+\left(\bar{c}_{2}+u_{2} \bar{a}_{2}+v_{2} \bar{b}_{2}\right) w_{2}
\end{aligned}
$$

- C_{1} is a projector
- Projects a pattern centered at $\mathrm{u}_{1} \mathrm{v}_{1}$

- Pattern center hits object scene at
- Camera C_{2} sees pattern at $\mathrm{u}_{2} \mathrm{v}_{2}$, easy to find
-3D location of P is determined

Depth from structured light challenges

- Associated with using projectors
- expensive, cannot be used outdoors, not portable
- Difficult to identify pattern
- I found a corner, which corner is it?
- Invasive, change the color of the scene
- one could use invisible light, IR

Overview

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

Overview

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

Depth of field

- Thin lenses
- rays through lens center (C) do not change direction
- rays parallel to optical axis go

Depth of field

- For a given focal length, only objects that are at a certain depth are in focus

Out of focus

- When object at different depth
- One point projects to several
locations in the image
- Out of focus, blurred image

Focusing

- Move lens to focus for new depth
- Relationship between focus and
depth can be exploited to extract depth

Determine z for points in focus

$$
\frac{a}{f}=\frac{h_{i}}{h}=\frac{a+f}{z}
$$

Depth from defocus

- Take images of a scene with various camera parameters
- Measuring defocus variation, infer range to objects
- Does not need to find the best focusing planes for the various objects
- Examples by Shree Nayar, Columbia U

Overview

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

Overview

- Depth from stereo
- Depth from structured light
- Depth from focus / defocus
- Laser rangefinders

Laser range finders

- Send a laser beam to measure the distance - like RADAR, measures time of flight

DeltaSphere - depth\&color acquisition device

- Lars Nyland et al.

(5)

