
Introduction to Unity

Unity
Unity is a cross-platform game development system

Consists of a game engine and an IDE

Can be used to develop games and applications for many different AR/VR
platforms

Installation
Unity is already installed on the lab
computers in LWSN B131

If you wish to install your own computer:

● Download the ‘Personal Edition’:
https://unity3d.com/get-unity

○ Make sure to get Unity version 2019.1.11f1
○ Make sure to add Android Build Support

during installation.

https://unity3d.com/get-unity

Documentation
● Unity User Manual: https://docs.unity3d.com/Manual/index.html
● Scripting API: http://docs.unity3d.com/ScriptReference/index.html
● These pages should become your best friends.
● Also documentation on the OVR Utilities Plugin:

https://developer.oculus.com/documentation/unity/unity-utilities-overview/

Unity Official Scripting Videos: These also serve as a good introduction to C#.
● Beginner Scripting Playlist:

https://www.youtube.com/watch?v=Z0Z7xc18CcA&list=PLX2vGYjWbI0S9-X2Q021GUt
olTqbUBB9B

● Intermediate Scripting Playlist:
https://www.youtube.com/watch?v=HzIqrlSbjjU&list=PLX2vGYjWbI0S8YpPPKKvXZayC
jkKj4bUP

https://docs.unity3d.com/Manual/index.html
http://docs.unity3d.com/ScriptReference/index.html
https://developer.oculus.com/documentation/unity/unity-utilities-overview/
https://www.youtube.com/watch?v=Z0Z7xc18CcA&list=PLX2vGYjWbI0S9-X2Q021GUtolTqbUBB9B
https://www.youtube.com/watch?v=Z0Z7xc18CcA&list=PLX2vGYjWbI0S9-X2Q021GUtolTqbUBB9B
https://www.youtube.com/watch?v=HzIqrlSbjjU&list=PLX2vGYjWbI0S8YpPPKKvXZayCjkKj4bUP
https://www.youtube.com/watch?v=HzIqrlSbjjU&list=PLX2vGYjWbI0S8YpPPKKvXZayCjkKj4bUP

Unity Basic Concepts
Project - The project contains all the elements that makes up the game, including
models, assets, scripts, scenes, and so on.

Scenes - A scene contains a collection of game objects that constitute the world
that the player sees at any time.

Packages: A package is an aggregation of game objects and their associated
metadata

Unity Basic Concepts (continued)
Prefabs: A prefab is a template for grouping various assets under a single header.

● Prefabs are used for creating multiple instances of a common object.
● For example, you may have a large number of copies of a single element

(e.g., street lights, trees)
● Prefabs can be instantiated during runtime

Overview of the Unity IDE:

Object hierarchy

Project assets

Game object
Inspector

Scene View

Editor Camera Controls
● Controls:

○ Alt + Left Click & Move: Rotate Camera
○ Alt + Right Click & Move (Or Scroll Up/Down): Zoom in and out
○ Alt + Middle Click & Move: Move camera up/down or left right

● Flythrough Mode:
○ Click and hold right mouse button and now you can use FPS-like controls to move around

through the scene (WASD, Q/E to move up down).

● Unity Documentation:
http://docs.unity3d.com/Manual/SceneViewNavigation.html

http://docs.unity3d.com/Manual/SceneViewNavigation.html

Creating Geometry via the Unity Editor

Setting Up The Scene Camera
● Do not confuse the scene camera with the

editor camera.
● Unity scenes by default come with a “Main

Camera.” Notice the tag of “MainCamera” in
the inspector, this will be useful for accessing
the camera from your scripts.

● “Camera Preview” box is useful to see what
your camera can see.

● “Camera Preview” is what you will see when
you hit Play.

Setting Up The Scene Camera
● Moving the scene camera can be done manually by changing the

position/rotation/scale in the Inspector.
● Or you can move the editor camera around as mentioned earlier, select the

camera and align the camera to the view. Note that your camera should be
selected before doing this.

Import External Objects
● Create and export an object from Maya/Blender/3ds Max as either an *.OBJ or a *.FBX. You can save this anywhere.
● Then import this asset into Unity. Unity will take care of everything for you.
● Alternatively, you can just save your *.OBJ or *.FBX inside the “Assets” folder.

○ You will need to right click on the folder it is in and click “Refresh” to get it to show up.
● Click and drag the object from the assets library into your scene hierarchy and it should now show up!

Game Objects
Game Objects: The game objects are all the “things” that constitute your scene.

● Light sources
● Audio sources
● Cameras
● Gameplay Logic
● User Interface
● Etc.

GameObject: http://docs.unity3d.com/ScriptReference/GameObject.html

http://docs.unity3d.com/ScriptReference/GameObject.html

Everything is a “GameObject”
● A Game Object does nothing on its own.
● Game Objects always have a Transform component which has a

position/rotation/scale.
● Must add Components to the Game Object to give it some behavior.

Scene graph
A scene graph is a collection of nodes in a
graph or tree structure.

In Unity all tree nodes have only a single
parent but may have many children.

Operations applied to a parent are applied
to all its child nodes.

Components
Game Objects have Components to give it some
behavior.

Many components already exist within Unity:

● Mesh Filter
● Mesh Renderer
● Rigidbody
● Collidiers
● VideoPlayer

But you will also need create your own. These are your
scripts that inherit from MonoBehaviour.

Scripts
● Many components already exist! But you will also need create your own.

These are your scripts that inherit from MonoBehaviour.
● Public variables will show up in the Inspector. A variable that is a Component

can also be modified by the inspector

overwrites

Adding Components to Game Objects
● GameObject: http://docs.unity3d.com/ScriptReference/GameObject.html
● MonoBehaviour: http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
● Drag and Drop Script onto the GameObject in the “Inspector” or manually add it by

going to:
○ Add Component > Scripts > YOUR_SCRIPT_NAME_HERE

http://docs.unity3d.com/ScriptReference/GameObject.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Assets
An asset is any resource that will be used as part of an object’s component

● Scenes
● “Prefabs”
● Scripts
● Textures
● Animations
● Models
● Particles
● Sprites
● Etc.

Shading and Materials
● Unity provides several built-in shaders

○ Unity Standard shader
○ Can also write your own shader

■ Shaders are written in Cg/HLSL and wrapped in ShaderLab
● Manual Shader Documentation: http://docs.unity3d.com/Manual/ShadersOverview.html
● Standard Shader Documentation:

http://docs.unity3d.com/Manual/shader-StandardShader.html
● Materials Documentation: http://docs.unity3d.com/Manual/Materials.html

http://docs.unity3d.com/Manual/ShadersOverview.html
http://docs.unity3d.com/Manual/shader-StandardShader.html
http://docs.unity3d.com/Manual/Materials.html

Importing Textures
● Process is the same as importing an external object. This time, instead of

selecting an *.FBX or *.OBJ, select a *.PNG, *.JPG, etc. You can also place
the images inside the Assets folder manually.

Using Textures
● Click on the object you imported in the scene hierarchy and expand the

shader properties in the Inspector.
● Click and drag the imported texture onto the square next to “Albedo” and your

object should now have a texture on it.

Lighting
● Lighting Documentation: http://docs.unity3d.com/Manual/Lighting.html
● Global Illumination Documentation:

http://docs.unity3d.com/Manual/GlobalIllumination.html
● Lighting is accomplished with the “Light” component.

○ Directional
○ Point
○ Spot
○ Area (baked only)

http://docs.unity3d.com/Manual/Lighting.html
http://docs.unity3d.com/Manual/GlobalIllumination.html

Scripting in Unity
Scripting in Unity is done in C#

Scripts are an example of a component that is associated with a game object

The skeletal structure of a typical script called MyGameObject is shown below:

Fundamental Classes: MonoBehavior
When you create a script in Unity, Unity creates a class that extends
MonoBehaviour.

Contains functions and events that are available to standard scripts attached to
Game Objects

● Awake, Start, Update, FixedUpdate
● OnCollisionEnter, OnCollisionStay, OnCollisionExit
● GetComponent, SendMessage, BroadcastMessage
● Destroy, Instantiate

For a full list of methods and documentation, see:
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Fundamental Classes: GameObject
GameObject: A generic type from which all game objects are derived. This corresponds to anything that
could be placed in your scene hierarchy.

GameObjects have an associated name and tag. You can find other gameObjects with Find, FindWithTag,
FindGameObjectsWithTag, etc.

Here is an example of how to obtain the main camera reference by its name:

GameObject camera = GameObject.Find ("Main Camera");

Suppose that we assign the tag “Player” with the player object and “Enemy” with the various enemy
objects. We could access the object(s) through the tag using the following commands:

GameObject player = GameObject.FindWithTag("Player");
GameObject [] enemies = GameObject.FindGameObjectsWithTag("Enemy");

Fundamental Classes: Transform
Transform: Every game object in Unity is associated with an object called its
transform.

This object stores the position, rotation, and scale of the object. You can use the
transform object to query the object’s current position (transform.position) and
rotation (transform.eulerAngles)

Vector3
Structure in Unity for representing 3D vectors and points.

This structure is used throughout Unity to pass 3D positions and directions
around. It also contains functions for doing common vector operations.

Other classes can be used to manipulate vectors and points as well. For example
the Quaternion and the Matrix4x4 classes are useful for rotating or transforming
vectors and points.

Common methods: Cross, Dot, Normalize, Lerp, Reflect, Distance

For more information, see the documentation:
https://docs.unity3d.com/ScriptReference/Vector3.html

https://docs.unity3d.com/ScriptReference/Vector3.html

Quaternion
Quaternions are used internally by Unity to represent rotations.

There are some advantages to using quaternions over euler angles (gimbal lock, can be
interpolated easily, etc)

Have x,y,z,w components and are non-commutative. Likely will never need to modify these
components individually.

Instead use these to create/manipulate Quaternions: Quaternion.LookRotation,
Quaternion.Angle, Quaternion.Euler, Quaternion.Slerp, Quaternion.FromToRotation,
Quaternion.identity

For more information, see: https://docs.unity3d.com/ScriptReference/Quaternion.html

https://docs.unity3d.com/ScriptReference/Quaternion.html

Matrix4x4
Structure for a 4x4 transformation matrix

Can perform translation, rotation, scale, shear, and perspective transformations using
homogeneous transformations.

Column major: for the expression mat[a, b], a refers to the row index, while b refers to the
column index

In Unity, Matrix4x4 is used by several Transform, Camera, Material and GL functions.

Common methods/properties: determinant, inverse, transpose, LookAt, Ortho, Perspective,
Rotate, Scale, Translate, TRS

For more information, see: https://docs.unity3d.com/ScriptReference/Matrix4x4.html

https://docs.unity3d.com/ScriptReference/Matrix4x4.html

Accessing Components:
It is often desirable to modify the values of components at run time.

Unity defines class types for each of the possible components, and you can access
and modify this information from within a script.

To access public variables/methods from a component, use GetComponent.

Example:

// Get rigidbody component of this game object
Rigidbody rb = GetComponent <Rigidbody>();

// change this body’s mass
rb.mass = 10f;

Accessing Members of Other Scripts
Often, game objects need to access members variables in other game objects.

Can use GetComponent to access public variables/methods in other scripts.

public class PlayerController : MonoBehaviour {
public void DecreaseHealth () { ... } // decrease player ’s health

}

public class EnemyController : MonoBehaviour {
public GameObject player; // the player object
void Start () {

GameObject player = GameObject.Find("Player");
}
void Attack () { // inflict health loss on player

player.GetComponent<PlayerController>().DecreaseHealth();
}

}

Colliders and Triggers:
Some events are generated by the user (e.g., input), some occur at regular time
intervals (e.g.,Update()), and finally others are generated within the game itself.

Typically, colliders are physical objects that should not overlap, whereas triggers
are invisible barriers that send a signal when crossed.

There are various event functions for detecting when an object enters, stays
within, or exits,collider/trigger region. These include, for example:

● For colliders: void OnCollisionEnter(),void OnCollisionStay(),void
OnCollisionExit()

● For triggers: void OnTriggerEnter(),void OnTriggerStay(),void OnTriggerExit()

Example: Rotate script
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class RotateYFinal : MonoBehaviour
{

// Degrees to rotate around Y-Axis per second
public float rotationRate = 5.0f;

// Update is called once per frame
void Update()
{
 // Define the axis of rotation
 Vector3 axis = new Vector3(0, 1, 0);

// Equivalently you could use Vector3.up

 // Calculate the amount to rotate the object this frame
 float amountToRotate = rotationRate * Time.deltaTime;

 // Access the transform component of this object and rotate
 this.transform.Rotate(axis, amountToRotate);
}

}

Raycasting:
public static bool Raycast(

Vector3 origin,
Vector3 direction,
out RaycastHit hitInfo,
float maxDistance,
int layerMask,
QueryTriggerInteraction queryTriggerInteraction

);

Casts a ray, from point origin, in direction direction, of length maxDistance, against
all colliders in the Scene.

You may optionally provide a LayerMask, to filter out any Colliders you aren't
interested in generating collisions with.

Documentation: https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Oculus Utilities for Unity
OVRCameraRig is a Component that controls stereo rendering and head tracking. It maintains three child “anchor”
Transforms at the poses of the left and right eyes, as well as a virtual “center” eye that is halfway between them.

This Component is the main interface between Unity and the cameras. It is attached to a prefab that makes it easy to add
comfortable VR support to a scene.

Public Members:

1. Updated Anchors - Allows clients to filter the poses set by tracking. Used to modify or ignore positional tracking.

Game Object Structure:

1. TrackingSpace - A Game Object that defines the reference frame used by tracking. You can move this relative to the
OVRCameraRig for use cases in which the rig needs to respond to tracker input. For example, OVRPlayerController
changes the position and rotation of TrackingSpace to make the character controller follow the yaw of the current
head pose.

OVRInput

