Introduction to Unity

=
Unity unl'l'y
Unity is a cross-platform game development system

Consists of a game engine and an IDE

Can be used to develop games and applications for many different AR/VR
platforms

SUPEVE%HOT

BEAT
SABER

Installation

Unity is already installed on the lab
computers in LWSN B131

If you wish to install your own computer:

Add modules to Unity 2019.1.11f1 : total space available 262.5 GB - total space required 0 B

e Download the ‘Personal Edition’:

. . > Android Build Support Installed 20GB
https://unity3d.com/get-unity e —— —
o Make sure to get Unity version 2019.1.11f1 [tvos Build Ssupport 328.8 MB 1.4GB
o Make sure to add Android Build Support L. Uy sk Suppoit ety e
. . . Mac Build S M 81.2MB 436.7 MB
during installation. L. Mecpabd sopportonc)
D Universal Windows Platform Build Support 274.0 MB 2.0GB
D Vuforia Augmented Reality Support 107.8 MB 306.7 MB
[J webeL Build Support 236.5 MB 857.8 MB
‘_l Windnwe Ruild Qunnart (11 20PP) RQ MR 2N1 Q MR

CANCEL DONE

https://unity3d.com/get-unity

Documentation

Unity User Manual: https://docs.unity3d.com/Manual/index.html

Scripting API: http://docs.unity3d.com/ScriptReference/index.html

These pages should become your best friends.

Also documentation on the OVR Ultilities Plugin:
https://developer.oculus.com/documentation/unity/unity-utilities-overview/

Unity Official Scripting Videos: These also serve as a good introduction to C#.

Beginner Scripting Playlist:
https://www.youtube.com/watch?v=Z0Z7xc18CcA&list=PLX2vGYjWbl0S9-X2Q021GUt

olTgbUBB9B
Intermediate Scripting Playlist:

https://www.voutube.com/watch?v=HzlqrISbjjU&list=PLX2vGY|WbI0OS8YpPPKKvXZayC
ikKj4bUP

https://docs.unity3d.com/Manual/index.html
http://docs.unity3d.com/ScriptReference/index.html
https://developer.oculus.com/documentation/unity/unity-utilities-overview/
https://www.youtube.com/watch?v=Z0Z7xc18CcA&list=PLX2vGYjWbI0S9-X2Q021GUtolTqbUBB9B
https://www.youtube.com/watch?v=Z0Z7xc18CcA&list=PLX2vGYjWbI0S9-X2Q021GUtolTqbUBB9B
https://www.youtube.com/watch?v=HzIqrlSbjjU&list=PLX2vGYjWbI0S8YpPPKKvXZayCjkKj4bUP
https://www.youtube.com/watch?v=HzIqrlSbjjU&list=PLX2vGYjWbI0S8YpPPKKvXZayCjkKj4bUP

Unity Basic Concepts

Project - The project contains all the elements that makes up the game, including
models, assets, scripts, scenes, and so on.

Scenes - A scene contains a collection of game objects that constitute the world
that the player sees at any time.

Packages: A package is an aggregation of game objects and their associated
metadata

Unity Basic Concepts (continued)

Prefabs: A prefab is a template for grouping various assets under a single header.

e Prefabs are used for creating multiple instances of a common object.
e For example, you may have a large number of copies of a single element
(e.g., street lights, trees)

e Prefabs can be instantiated during runtime

Overview of the Unity IDE:

<q Unity 2019.1.4f1 Personal - StarterScene.unity - StartingVRProject - Android <DX11>
File Edit Assets GameObject Component Oculus Window Help

- a X

S| Tl \:"i'\: B2 J | *8center [®Local | l P \ 1l | N] | & collab - | @ | Account - | [Layers - |{Layout - |
= Hierarchy ® = Scene € Game f§ Asset Store 28 Animator © Inspector | Services "=
Create *| (©rall Shaded »||2D || ® |2 | & || 900 | 34 | W 7| Gizmos 7|

[[Cube_1x4 (6) ¥ Static v =

v € StarterScene .
" Directional Light T2 (ntaasdecch) Layer LDRRIES | Game object
Y g WorldGeo ¥ .~ Transform @ 5 %
(S Posion X012 Y [-0.01 |z[0 InSpeCtor
— GroundSection02 T
: otation X0 Yo Z 0
. . » | BridgePlatformPf T
Object hiera rchy » (i CeilingWedgespF Scale X1 YL z[1
¥ ./ ColumnGroupPf ¥ .. Cube_ix4 (Mesh Filter) [5' %,
Cube_1x1 Mesh W Cube_1x4 (o]
g E:E:j:: E;; v [@_Mesh Renderer @ =
I Cube_1x1 (3) » Materials
./ Cube_1x1 (4) Light Probes | Blend Probes #]
./ Cube_1x1 (5) Reflection Probes 4
./ Cube_1x4 Aqchor Override None (Transform) (o]
Cube_1x4 (1) Castshadows [on +]
Cube_1x4 (2) Receive DRadows
Culie_1x4:{3) Motion Vecto: | Per Object Motion 3]
Cube_1x4 (4) L_Croniect,
Cube_1x4 (5) Lightmap Static 4
= Scale In Lightmap 1
@ Project [[[]Console Prioritize Illumination |
Create .
(01 All Materials [A Assets > stltch Seams LJ -
All Models o Lightmap Parameterd Scene Default f+ | Nedit.. |

All Prefabs

¥ Realtime UVs

Optimize ¥4
Project assets - l Max Distance [05
&&l _TerrainAutoUpgrade Max-Angle = oo | S .
»> E Imported Assets _TerrainAu... Imported A.. Materials Oculus Plugins Prefabs Ignore Normals [Ce n e VI eW
%— Materidls Min Chart Size | 4 (Stitchable) m
» Gal Oculus i iotikchane) &
» &l Plugins ig| m:fps
&l Prefabs Dynamic Occluded ¥
&l Resources = " O =%
&5 Scenes Resources Scenes Scripts Textures i\ ¥ Box Collider @ = %
&l Scripts Edit Collider k
5 Textures v —CO=— | 15 Triager L] b

() No new spatializer plugin(s) found

Auto Generate Lighting Off

Editor Camera Controls

e Controls:
o Alt + Left Click & Move: Rotate Camera
o Alt + Right Click & Move (Or Scroll Up/Down): Zoom in and out
o Alt + Middle Click & Move: Move camera up/down or left right
e Flythrough Mode:
o Click and hold right mouse button and now you can use FPS-like controls to move around
through the scene (WASD, Q/E to move up down).
e Unity Documentation:

http://docs.unity3d.com/Manual/SceneViewNavigation.html

http://docs.unity3d.com/Manual/SceneViewNavigation.html

Creating Geometry via the Unity Editor

GameObject Component Mobile Input Window Help
i

Create Empty Ctrl+Shift+N _

Create Empty Child Alt+Shift+N o p—

3D Object > Cube

2D Object > Sphere

Light > Capsule

Audio > Cylinder
: ul > Plane -
: Particle System Quad "..

Camera Ragdoll... i O

Center On Children

Terrain
Make Parent Tree
Clear Parent Wind Zone
o

Apply Ch s To Prefab = 0

pply Changes To Prefa 3D Text reapeliveedis C 0
Break Prefab Instance) Tk v
Set as first sibling Ctrl+= = ey
Set as last sibling Ctrl+-
Move To View Ctrl+Alt+F
Align With View Ctrl+Shift+F

Align View to Selected
Toggle Active State Alt+Shift+A

Setting Up The Scene Camera

e Do not confuse the scene camera with the
editor camera.

e Unity scenes by default come with a “Main
Camera.” Notice the tag of “MainCamera” in
the inspector, this will be useful for accessing
the camera from your scripts.

e “Camera Preview” box is useful to see what
your camera can see.

e “Camera Preview” is what you will see when
you hit Play.

Setting Up The Scene Camera

e Moving the scene camera can be done manually by changing the
position/rotation/scale in the Inspector.

e Or you can move the editor camera around as mentioned earlier, select the
camera and align the camera to the view. Note that your camera should be
selected before doing this.

GameObject Component Mobile Input Windo
Create Empty CtrleShiftsN
Create Empty Child Alt«Shifte N
3D Object
2D Object
Light
Audio
ul
Particle System
Camera

Import External Objects

e Create and export an object from Maya/Blender/3ds Max as either an *.OBJ or a *.FBX. You can save this anywhere.
e Then import this asset into Unity. Unity will take care of everything for you.
e Alternatively, you can just save your *.OBJ or *.FBX inside the “Assets” folder.
o You will need to right click on the folder it is in and click “Refresh” to get it to show up.
e Click and drag the object from the assets library into your scene hierarchy and it should now show up!

Assets GameObject Component 2 Import New Asset T

Create & > v o B> Libraries > Pictures > Models > Plastic_cup

‘ A
Show in Explorer) - - P
Organize v New folder ? D g
o S| c# Cc# =2

=<

OneDrive Scenes Stylized La.. cup. Hologram HologramGl.. Rotate¥ Unlit_Holog...
M This PC
M Desktop

Import New Asset... #m Local Disk (C 10907_Plastic.cu 10907_Plastic_cu cup.blend cup.blend1 cup.fbx cup.jpg cup.mtl
pv2_L3mtl p_v2_L3.0bj
Import Package Libraries
Export Package... B Documents
< < Downloads
D Music
Select Dependencies = Pictures
B Pictures
Refresh
B CameraR
B Models
h
Reimport All B hend

M Plactic ¢

File name: | cup.fbx

Open C= Project

Game Objects

Game Objects: The game objects are all the “things” that constitute your scene.

Light sources
Audio sources
Cameras
Gameplay Logic
User Interface
Etc.

GameODbiject: http://docs.unity3d.com/ScriptReference/GameQObject.html

http://docs.unity3d.com/ScriptReference/GameObject.html

Everything is a "GameQObject”

e A Game Object does nothing on its own.
e Game Objects always have a Transform component which has a
position/rotation/scale.

Scene graph

A scene graph is a collection of nodes in a
graph or tree structure.

In Unity all tree nodes have only a single
parent but may have many children.

Operations applied to a parent are applied
to all its child nodes.

v | ¥ Mesh Renderer e Inspector SEINIEER &=
¥ Materials

3 . | Stylize_Lava o
Light Probes S TETT——
Reflecion Frobe Rendering Mode Opague 4
Anchor Override None (Transform] @
Cast Shadows sl
m n n Receive Shadows -ztlbedo E;
O p O e S Moo ciare LWM Smoothness === 0,258 |
Lightmap Static [:] g Source | Specular Alpha ¢ - s
ikl = ghtmap ', || @Normal Map j1
QF I ek Bt i the ‘ & oHeight Map ~ ——————C[0.08 |
thtmap Statc propety 0,. Rien 051_’
Game Objects have Components to give it some
v ¥ sphere Collider P | Esl]
Tiling X|1 Y 1
b e h av | or [4 | edit collider || offaet | C—
' Is Trigger U Secondary Maps
Material 'None (Physic Mat: © oDetail Albedo X2
Centler' v 121 ‘ ~ oNormal Map j1
X0 Y0 Z0 S
H H H H . E ! ! Tiling X1 Y]
Many components already exist within Unity: Cm— o
==
¥ .4 Rigidbody o % UVSe wva
Mass ‘1 J Forward Rendering Options
Drag o] Sp:cul'ar Highlights ¥
M eS h F i |te r Angular Drag '0.05 i *? i o
Use Gravity Advanced Options
Is Kinematic J Enable GPU Instancin_|
M eS h Re n d e re r Interpolate [Mone ¢]|| Double Sided Global []
Collision Detection

Rigidbody
Collidiers
VideoPlayer

» Constraints
» Info

I Stylize_Lava

But you will also need create your own. These are your
scripts that inherit from MonoBehaviour.

Scripts

e Many components already exist! But you will also need create your own.
These are your scripts that inherit from MonoBehaviour.
e Public variables will show up in the Inspector. A variable that is a Component

UnityEngine;

rotationRate = 5.0f;

Vector3 is = Vector3(e, 1, 0);

t amountToRotate = rotationRate * Time.deltaTime;

.transform.Rotate(axis, amountToRotate);

_can also be modified by the inspector

overwrites
v = [¥ Rotate Y (Script) [5' %
Script RotateY (o]
Degrees Per Second|15 |

Adding Components to Game Objects

GameOQObject: http://docs.unity3d.com/ScriptReference/GameQObject.html

MonoBehaviour: http://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Drag and Drop Script onto the GameObject in the “Inspector” or manually add it by

going to:

o Add Component > Scripts > YOUR_SCRIPT_NAME_HERE

test scriptes = |
eﬁ lecture_2_scene.CSharp
Flusing UnityEngine;
using System.Collections;

Elpublic class test_script : MonoBehaviour {

// Use this for initialization
void Start () {

}

// Update is called once per frame
veoid Update () {

}

© Inspector [G e

‘GameObject | [static

Tag | Untagged 4+ | Layer | Default 3|
Missing

¥ .~ Transform &,

Position X/-0.0353 Y 0.74871 Z -0.4188

Rotation X0 Y0 'Zo |

Scale X1 v {1 lz[1 |

v || M Test_script (Script) &,

Script - test_script o)

[Add Component]

http://docs.unity3d.com/ScriptReference/GameObject.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Assets

An asset is any resource that will be used as part of an object’'s component

@ Project |]
Create ~

Scenes
“Prefabs”
Scripts
Textures
Animations
Models
Particles
Sprites

Etc.

Shading and Materials

e Unity provides several built-in shaders 00'[—
o Unity Standard shader oo o :
o Can also write your own shader !,t - -
m Shaders are written in Cg/HLSL and wrapped in ShaderLab g —— : ﬁ
Manual Shader Documentation: http://docs.unity3d.com/Manual/ShadersOverview.htm| | Eesee e
Standard Shader Documentation: ,,ﬁ, 5{: M :
http://docs.unity3d.com/Manual/shader-StandardShader.html o i

e Materials Documentation: http://docs.unity3d.com/Manual/Materials.html e ﬂ; ——
T o)

e e

Reflections 4

Advanced Options
Enable GPU Instancing L
Double Sided Global Illumination []

© Inspector

Unlit_Hologram
Shader [UnlitTutorial/Hologram

Albedo Texture

Tiling x[1 [T

Offset X0 Yo
Tint Color
Transparency

Cutout Threshold —_— 5.
Distance 0
Amplitude T
Speed ot
Amount — e [0.2

Render Queue 3000

Double Sided Global Ilumination -

http://docs.unity3d.com/Manual/ShadersOverview.html
http://docs.unity3d.com/Manual/shader-StandardShader.html
http://docs.unity3d.com/Manual/Materials.html

Importing Textures

e Process is the same as importing an external object. This time, instead of

selecting an *.FBX or *.0OBJ, select a *.PNG, *.JPG, etc. You can also place
the images inside the Assets folder manually.

@ Import New Asset

A | > ThisPC » HDDO1(G:) > Unity > extemal assets

v O Search external_assets
Organize v New folder B~ L E; Assets » Lecture_2 »
Type Size Tags

- o & checkerboardpng 11/3/2015 10:13 PM PNG File
- I sphere_fbfbx 1/6/2016 1:51 PM FBX File

B Boxsyne A Name = Date

18Ke

30K8
@ OneDrive

@ This PC

[Desktop

1) Documents
& Downloads
D Music

&= Pictures

B Videos

i Local Disk (C)
- Seagate Backup
= HODOI (G)

v

File name: [eh«kabonn!m

Using Textures

e Click on the object you imported in the scene hierarchy and expand the
shader properties in the Inspector.

e Click and drag the imported texture onto the square next to “Albedo” and your
object should now have a texture on it.

‘B lambert1 @ lambert1 [=,
v Shader | Standard | v Shader l e . l
Rendering Mode | Opague |
Main Maps Rendering Mode | Opaque s]
[]&shens — Main Maps
0 Metallic o o |
h S o5 ¥ o albedo V4
~ oNormal Map -
| o Height Map
 oOcclusion
- OEmission | P4 o |
~ oDetail Mask
Tiling X1 [0 ¢ Y |
Offset x/0 'v/o |
Secondary Maps
~ oDetail Albedo x2
 oNormal Map T
Tiling X1 1YL |
Offset X0 Yo |
UV Set | uvo |

| Add Component |

Lighting

e Lighting Documentation: http://docs.unity3d.com/Manual/Lighting.html

e Global lllumination Documentation:
http://docs.unity3d.com/Manual/Globallllumination.html

e Lighting is accomplished with the “Light” component.
o Directional

Point

O oin GameObject Component Mobile Input Window Help v o ¥ Light
Create Empty Ctrl+Shift+N Type

O S p Ot Create Empty Child Alt+Shift+N Colar
3D Object > |

o Area (baked only) ' — [
Light > Directional Light
Audio > Point Light il T
ul > Spotlight Shadow Type
Particle System Area Light Baked Shadow Angle
Camera Reflection Probe Realtime Shadows
Center On Children Light Probe Group Strength

Resolution
Make Parent Bias
Clear Parent o lBias
Apply Changes To Prefab Nosrhlane
Break Prefab Instance
Cookie

Set as first sibling Ctrle= .
Set as last sibling Ctrls-- BN
Move To View Ctrl+Alt+F -
Align With View CtrlsShift+F Rentiar: Moty
Align View to Selected Culling Mask

Toggle Active State Alt+Shift+ A

i
| Directional 2
{ 174
| Mixed]
[1 |
1]
| Soft Shadows ry
O 0
O]

Use Quality Settings N
O 0.05
— 04
e, 0.2
None (Texture) |e

‘10

O

'None (Flare)

[Auto

| Everything

http://docs.unity3d.com/Manual/Lighting.html
http://docs.unity3d.com/Manual/GlobalIllumination.html

Scripting in Unity
Scripting in Unity is done in C#
Scripts are an example of a component that is associated with a game object

The skeletal structure of a typical script called MyGameObject is shown below:

Script example

using UnityEngine; // basic Unity-Engine objects
using System.Collections; // basic structures (ArrayList, HashTable,...)
public class MyGameObject : MonoBehaviour {
void Start () {
// ... initializations (like a constructor in Java)
}
void Update () {
// ... insert code to be repeated every update cycle
}

Fundamental Classes: MonoBehavior

When you create a script in Unity, Unity creates a class that extends
MonoBehaviour.

Contains functions and events that are available to standard scripts attached to
Game Objects

e Awake, Start, Update, FixedUpdate

e OnCollisionEnter, OnCollisionStay, OnCollisionExit
e GetComponent, SendMessage, BroadcastMessage
e Destroy, Instantiate

For a full list of methods and documentation, see:

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Fundamental Classes: GameObject

GameObiject: A generic type from which all game objects are derived. This corresponds to anything that
could be placed in your scene hierarchy.

GameObjects have an associated name and tag. You can find other gameObjects with Find, FindWithTag,
FindGameObjectsWithTag, etc.

Here is an example of how to obtain the main camera reference by its name:
GameObject camera = GameObject.Find ("Main Camera");

Suppose that we assign the tag “Player” with the player object and “Enemy” with the various enemy
objects. We could access the object(s) through the tag using the following commands:

GameObject player = GameObject.FindWithTag("Player");
GameObject [] enemies = GameObject.FindGameObjectsWithTag("Enemy") ;

Fundamental Classes: Transform

Transform: Every game object in Unity is associated with an object called its
transform.

This object stores the position, rotation, and scale of the object. You can use the
transform object to query the object’s current position (transform.position) and

rotation (transform.eulerAngles)

Vector3

Structure in Unity for representing 3D vectors and points.

This structure is used throughout Unity to pass 3D positions and directions
around. It also contains functions for doing common vector operations.

Other classes can be used to manipulate vectors and points as well. For example
the Quaternion and the Matrix4x4 classes are useful for rotating or transforming
vectors and points.

Common methods: Cross, Dot, Normalize, Lerp, Reflect, Distance

For more information, see the documentation:
https://docs.unity3d.com/ScriptReference/Vector3.html

https://docs.unity3d.com/ScriptReference/Vector3.html

Quaternion

Quaternions are used internally by Unity to represent rotations.

There are some advantages to using quaternions over euler angles (gimbal lock, can be
interpolated easily, etc)

Have x,y,z,w components and are non-commutative. Likely will never need to modify these
components individually.

Instead use these to create/manipulate Quaternions: Quaternion.LookRotation,
Quaternion.Angle, Quaternion.Euler, Quaternion.Slerp, Quaternion.FromToRotation,
Quaternion.identity

For more information, see: https://docs.unity3d.com/ScriptReference/Quaternion.html

https://docs.unity3d.com/ScriptReference/Quaternion.html

Matrix4x4

Structure for a 4x4 transformation matrix

Can perform translation, rotation, scale, shear, and perspective transformations using
homogeneous transformations.

Column major: for the expression matfa, b], a refers to the row index, while b refers to the
column index

In Unity, Matrix4x4 is used by several Transform, Camera, Material and GL functions.

Common methods/properties: determinant, inverse, transpose, LookAt, Ortho, Perspective,
Rotate, Scale, Translate, TRS

For more information, see: https://docs.unity3d.com/ScriptReference/Matrix4x4.html

https://docs.unity3d.com/ScriptReference/Matrix4x4.html

Accessing Components:

It is often desirable to modify the values of components at run time.

Unity defines class types for each of the possible components, and you can access
and modify this information from within a script.

To access public variables/methods from a component, use GetComponent.

Example:

// Get rigidbody component of this game object
Rigidbody rb = GetComponent <Rigidbody> () ;

// change this body’s mass
rb.mass = 10f;

Accessing Members of Other Scripts

Often, game objects need to access members variables in other game objects.

Can use GetComponent to access public variables/methods in other scripts.

public class PlayerController : MonoBehaviour ({
public void DecreaseHealth () { ... } // decrease player ’'s health

public class EnemyController : MonoBehaviour ({
public GameObject player; // the player object
void Start () {
GameObject player = GameObject.Find("Player");
}
void Attack () { // inflict health loss on player
player.GetComponent<PlayerController> () .DecreaseHealth (),

Colliders and Triggers:

Some events are generated by the user (e.g., input), some occur at regular time
intervals (e.g.,Update()), and finally others are generated within the game itself.

Typically, colliders are physical objects that should not overlap, whereas triggers
are invisible barriers that send a signal when crossed.

There are various event functions for detecting when an object enters, stays
within, or exits,collider/trigger region. These include, for example:

e For colliders: void OnCollisionEnter(),void OnCollisionStay(),void
OnCollisionExit()
e For triggers: void OnTriggerEnter(),void OnTriggerStay(),void OnTriggerExit()

Example: Rotate script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class RotateYFinal : MonoBehaviour

{

// Degrees to rotate around Y-Axis per second
public float rotationRate = 5.0f;

// Update is called once per frame
void Update ()

{

// Define the axis of rotation
Vector3 axis = new Vector3(0, 1, 0);
// Equivalently you could use Vector3.up

// Calculate the amount to rotate the object this frame
float amountToRotate = rotationRate * Time.deltaTime;

// Access the transform component of this object and rotate
this.transform.Rotate (axis, amountToRotate) ;

Raycasting:

public static bool Raycast(
Vector3 origin,
Vector3 direction,
out RaycastHit hitInfo,
float maxDistance,
int layerMask,

QueryTriggerInteraction queryTriggerInteraction

) ;

Casts a ray, from point origin, in direction direction, of length maxDistance, against
all colliders in the Scene.

You may optionally provide a LayerMask, to filter out any Colliders you aren't
interested in generating collisions with.

Documentation: https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Oculus Utilities for Unity

OVRCameraRig is a Component that controls stereo rendering and head tracking. It maintains three child “anchor”
Transforms at the poses of the left and right eyes, as well as a virtual “center” eye that is halfway between them.

This Component is the main interface between Unity and the cameras. It is attached to a prefab that makes it easy to add
comfortable VR support to a scene.

Public Members:
1. Updated Anchors - Allows clients to filter the poses set by tracking. Used to modify or ignore positional tracking.

Game Object Structure:

1. TrackingSpace - A Game Object that defines the reference frame used by tracking. You can move this relative to the
OVRCameraRig for use cases in which the rig needs to respond to tracker input. For example, OVRPlayerController
changes the position and rotation of TrackingSpace to make the character controller follow the yaw of the current
head pose.

OVRInput

Axis2D.PrimaryThumbstick
Button.PrimaryThumbstick (stick press)

Button.Start
Reserved
Button.Two

Button.One

Axis1D.PrimarylndexTrigger

Axis1D.PrimaryHandTrigger

