
Collision Detection

CS434

Daniel G. Aliaga
Department of Computer Science

Purdue University

Some Applications

• Animations/games

• Robotic planning

• Haptics

Some collision detection approaches…

• Minkowski Sum 2D collisions
– http://www.slideshare.net/crowdscontrol/minkowski-

sum-on-2d-geometry

• http://gamma.cs.unc.edu/research/collision/

• “Efficient Collision Detection for Animation and
Robotics”, Lin’s PhD thesis, 1993
– Slides based on those of Adit Koolwal and Benson

Limketkai

http://www.slideshare.net/crowdscontrol/minkowski-sum-on-2d-geometry
http://www.slideshare.net/crowdscontrol/minkowski-sum-on-2d-geometry
http://www.slideshare.net/crowdscontrol/minkowski-sum-on-2d-geometry
http://www.slideshare.net/crowdscontrol/minkowski-sum-on-2d-geometry
http://www.slideshare.net/crowdscontrol/minkowski-sum-on-2d-geometry
http://www.slideshare.net/crowdscontrol/minkowski-sum-on-2d-geometry
http://www.slideshare.net/crowdscontrol/minkowski-sum-on-2d-geometry
http://www.slideshare.net/crowdscontrol/minkowski-sum-on-2d-geometry
http://www.slideshare.net/crowdscontrol/minkowski-sum-on-2d-geometry
http://www.slideshare.net/crowdscontrol/minkowski-sum-on-2d-geometry
http://gamma.cs.unc.edu/research/collision/
http://gamma.cs.unc.edu/research/collision/

an overview of the lin-canny algorithm

After some preprocessing (discussed later), finds an
initial pair of closest features between two polyhedra
using an O(n2) search.

The Lin-Canny algorithm:

At each timestep, checks if the current closest
feature pair is still the closest. If not, it finds
the new closest pair.

t1 t2
t3 t4 t5

The Lin-Canny algorithm takes advantage of incremental
motion because closest features change infrequently.

implementating lin-canny

in 4 easy steps…

1. We first represent each object as a convex polyhedron,
or a union of convex polyhedra.

We can improve the accuracy of the approximation by increasing
the resolution of our representation.

For non-convex objects we rely on subdivision into convex
pieces, which can take up to quadratic time.

1. We first represent each object as a convex polyhedron,
or a union of convex polyhedra.

2. For each object we calculate the fields for each of its
faces, edges, vertices, positions, and orientations.

A FACE contains a list
of VERTICES vi which

lie on its boundaries,
and a list of EDGES ei

which bound the face.

v1 v2

v3 v4

A FACE fi is parameterized

by its outward normal and
distance from the origin.

f1

n1

e1

e2 e3

e4

1. We first represent each object as a convex polyhedron,
or a union of convex polyhedra.

2. For each object we calculate the fields for each of its
faces, edges, vertices, positions, and orientations.

A FACE fi is parameterized

by its outward normal and
distance from the origin.

A FACE contains a list
of VERTICES vi which

lie on its boundaries,
and a list of EDGES ei

which bound the face.

f2

f1

Each EDGE ei is

described by its head,
tail, left face, and
right face.

e2

1. We first represent each object as a convex polyhedron,
or a union of convex polyhedra.

2. For each object we calculate the fields for each of its
faces, edges, vertices, positions, and orientations.

A FACE fi is parameterized

by its outward normal and
distance from the origin.

A FACE contains a list
of VERTICES vi which

lie on its boundaries,
and a list of EDGES ei

which bound the face.

Each EDGE ei is

described by its head,
tail, left face, and
right face.

v2

Each VERTEX vi is

described by its x,y,z
coordinates and its CO-
BOUNDARY, the set of
edges that intersect it.

e5

e1

e2

x

y

z

1. We first represent each object as a convex polyhedron,
or a union of convex polyhedra.

2. For each object we calculate the fields for each of its
faces, edges, vertices, positions, and orientations.

3. For each pair of features between the two objects of
interest, calculate the closest pair of points between
those two features. Find the overall closest pair.

There are six different
possible feature pairs that we
will need to analyze…

PA

Define PA to be the closest
point of featureA to featureB

PB

Define PB to be the closest
point of featureB to featureA dAB

The distance dAB is the
Euclidean distance between PA
and PB

case one:
 a pair of vertices

PA

PB

dAB

case two:
 a vertex and an edge

PA

PB

dAB

case three:
 a vertex and a face

PA

PB

dAB

case four:
 a pair of edges

PA

PB

dAB

case five:
 an edge and a face

PA

PB

dAB

case six:
 a pair of faces (rare!)

PA

PB

dAB

1. We first represent each object as a convex polyhedron,
or a union of convex polyhedra.

2. For each object we calculate the fields for each of its
faces, edges, vertices, positions, and orientations.

3. For each pair of features between the two objects of
interest, calculate the closest pair of points between
those two features. Find the overall closest pair.

4. Incrementally update the closest feature pair.

1. Verify that PA is the closest point of A to
featureB, and that PB is the closest point of B
to featureA

2. If verification fails, choose a new feature
pair and repeat step one

3. Eventually we will terminate on the closest
feature pair

We utilize the following algorithm for updating:

question: how can we tell if we’ve found a closest
feature pair, or if we need to try a new pair?

answer: we have “applicability criteria” that each
feature pair must satisfy in order to be the closest
feature pair.

There are applicability criteria for the
three of the feature pair combinations:

1. Point-Vertex (Vertex-Vertex)

2. Point-Edge (Vertex-Edge)

3. Point-Face (Vertex-Face)

These criteria can be used in dealing
with Edge-Edge, Edge-Face, and Face-Face
feature pairs as well.

PA VB

point-vertex applicability criteria

Point PA and vertex VB are the closest feature pair if PA
lies within the region bounded by the planes perpendicular
to the edges touching VB.

PA

VB

point-vertex applicability criteria

When PA lies outside the planar boundaries of VB (described
previously), then some edge EB is closer to PA than VB.

EB

point-edge applicability criteria

1. The two planes perpendicular to EB, passing through its
head and tail, and

2. The two planes perpendicular to the right and left faces
of EB.

PA

EB

Point PA and edge EB are the closest feature pair if PA lies
within the region bounded by:

FB

When PA lies outside one of the two planes perpendicular to
the right and left faces of EB, then some face FB is closer
to PA than EB.

PA

EB

FB

point-edge applicability criteria

point-edge applicability criteria

When PA lies outside one of the two planes perpendicular to
EB and passing through either its head or its tail, then
some vertex VB is closer to PA than EB.

PA

EB

VB

point-face applicability criteria

Point PA and face FB are the closes feature pair if PA lies
within the region bounded by the planes that are both
perpendicular to FB and contain the boundaries of FB.

PA

FB

point-face applicability criteria

PA

FB

EB

If PA lies outside the planar boundaries of FB (described
previously) then some edge EB is closer to PA than FB.

point-face applicability criteria

PA FB

If PA lies “below” FB then some feature of B is closer to PA
than FB (otherwise A would have collided into B). In this
case, we must check every face of object B. This is NOT
constant time. Note however that this can only happen
during initialization; otherwise, the collision would have
been detected.

d

preprocessing

Preprocessing steps ensure that objects have
boundaries and co-boundaries of constant size (eg.
limiting the number of edges going through each vertex
and bounding each face to 4 or 5).

Constant sized boundaries allows constant time
verification of a closest feature pair.

FA FA

results and conclusions…

lin-canny runs in constant time in an
“incremental movement” framework

lin-canny runs in quadratic time when
intially finding a closest pair

Once an initial closest feature pair is found, it
takes on average constant time to keep track of
that closest pair.

Finding the initial closest feature pair is in
the worst case O(n2) in number of features per
object.

conclusions

Lin-Canny is a simple and efficient algorithm
that is guaranteed to find the closest feature
and point pair.

Results have applications in collision detection
and motion planning.

Lin-Canny can be extended to handle non-convex
objects without any significant increase in
running time.

