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Some Applications 

• Animations/games 

 

 

• Robotic planning 

 

 

• Haptics 



Some collision detection approaches… 

• Minkowski Sum 2D collisions 
– http://www.slideshare.net/crowdscontrol/minkowski-

sum-on-2d-geometry 

 

• http://gamma.cs.unc.edu/research/collision/ 

 

• “Efficient Collision Detection for Animation and 
Robotics”, Lin’s PhD thesis, 1993 
– Slides based on those of Adit Koolwal and Benson 
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an overview of the lin-canny algorithm  

After some preprocessing (discussed later), finds an 
initial pair of closest  features between two polyhedra 
using an O(n2) search. 

The Lin-Canny algorithm: 

At each timestep, checks if the current closest 
feature pair is still the closest.  If not, it finds 
the new closest pair. 

t1 t2 
t3 t4 t5 

The Lin-Canny algorithm takes advantage of incremental 
motion because closest features change infrequently. 
 



 
implementating lin-canny  

in 4 easy steps… 
 



1. We first represent each object as a convex polyhedron, 
or a union of convex polyhedra.   

We can improve the accuracy of the approximation by increasing 
the resolution of our representation. 

For non-convex objects we rely on subdivision into convex 
pieces, which can take up to quadratic time. 



1. We first represent each object as a convex polyhedron, 
or a union of convex polyhedra. 
 

2. For each object we calculate the fields for each of its 
faces, edges, vertices, positions, and orientations. 

A FACE contains a list 
of VERTICES vi which 

lie on its boundaries, 
and a list of EDGES ei 

which bound the face. 

v1 v2 

v3 v4 

A FACE fi is parameterized 

by its outward normal and 
distance from the origin. 
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1. We first represent each object as a convex polyhedron, 
or a union of convex polyhedra. 
 

2. For each object we calculate the fields for each of its 
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A FACE contains a list 
of VERTICES vi which 

lie on its boundaries, 
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Each EDGE ei is 

described by its head, 
tail, left face, and 
right face. 
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1. We first represent each object as a convex polyhedron, 
or a union of convex polyhedra. 
 

2. For each object we calculate the fields for each of its 
faces, edges, vertices, positions, and orientations. 

A FACE fi is parameterized 

by its outward normal and 
distance from the origin. 
 

A FACE contains a list 
of VERTICES vi which 

lie on its boundaries, 
and a list of EDGES ei 

which bound the face. 

Each EDGE ei is 

described by its head, 
tail, left face, and 
right face. 

v2 

Each VERTEX vi is 

described by its x,y,z 
coordinates and its CO-
BOUNDARY, the set of 
edges that intersect it.  
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1. We first represent each object as a convex polyhedron, 
or a union of convex polyhedra. 
 

2. For each object we calculate the fields for each of its 
faces, edges, vertices, positions, and orientations. 
 

3. For each pair of features between the two objects of 
interest, calculate the closest pair of points between 
those two features.  Find the overall closest pair. 

There are six different 
possible  feature pairs that we 
will need to analyze… 

PA 

Define PA to be the closest 
point of featureA to featureB 

PB 

Define PB to be the closest 
point of featureB to featureA dAB 

The distance dAB is the 
Euclidean distance between PA 
and PB 



case one: 
 a pair of vertices 

PA 

PB 

dAB 



case two: 
 a vertex and an edge 

PA 

PB 

dAB 



case three: 
 a vertex and a face 

PA 

PB 

dAB 



case four: 
 a pair of edges 

PA 

PB 

dAB 



case five: 
 an edge and a face 

PA 

PB 

dAB 



case six: 
 a pair of faces (rare!) 

PA 

PB 

dAB 



1. We first represent each object as a convex polyhedron, 
or a union of convex polyhedra. 
 

2. For each object we calculate the fields for each of its 
faces, edges, vertices, positions, and orientations. 
 

3. For each pair of features between the two objects of 
interest, calculate the closest pair of points between 
those two features. Find the overall closest pair. 
 

4. Incrementally update the closest feature pair. 

1. Verify that PA is the closest point of A to 
featureB, and that PB is the closest point of B 
to featureA 
 

2. If verification fails, choose a new feature 
pair and repeat step one 
 

3. Eventually we will terminate on the closest 
feature pair 

We utilize the following algorithm for updating: 



question: how can we tell if we’ve found a closest 
feature pair, or if we need to try a new pair? 

answer: we have “applicability criteria” that each 
feature pair must satisfy in order to be the closest 
feature pair. 

There are applicability criteria for the 
three of the feature pair combinations: 

1. Point-Vertex (Vertex-Vertex) 

2. Point-Edge (Vertex-Edge) 

3. Point-Face (Vertex-Face) 

These criteria can be used in dealing 
with Edge-Edge, Edge-Face, and Face-Face 
feature pairs as well.  



PA VB 

point-vertex applicability criteria 

Point PA and vertex VB are the closest feature pair if PA 
lies within the region bounded by the planes perpendicular 
to the edges touching VB. 



PA 

VB 

point-vertex applicability criteria 

When PA lies outside the planar boundaries of VB (described 
previously), then some edge EB is closer to PA than VB.  

EB 



point-edge applicability criteria 

1. The two planes perpendicular to EB, passing through its 
head and tail, and 
 

2. The two planes perpendicular to the right and left faces 
of EB. 

PA 

EB 

Point PA and edge EB are the closest feature pair if PA lies 
within the region bounded by: 

FB 



When PA lies outside one of the two planes perpendicular to 
the right and left faces of EB, then some face FB is closer 
to PA than EB.  

PA 

EB 

FB 

point-edge applicability criteria 



point-edge applicability criteria 

When PA lies outside one of the two planes perpendicular to 
EB and passing through either its head or its tail, then 
some vertex VB is closer to PA than EB. 

PA 

EB 

VB 



point-face applicability criteria 

Point PA and face FB are the closes feature pair if PA lies 
within the region bounded by the planes that are both 
perpendicular to FB and contain the boundaries of FB. 

PA 

FB 



point-face applicability criteria 

PA 

FB 

EB 

If PA lies outside the planar boundaries of FB (described 
previously) then some edge EB is closer to PA than FB.  



point-face applicability criteria 

PA FB 

If PA lies “below” FB then some feature of B is closer to PA 
than FB (otherwise A would have collided into B).  In this 
case, we must check every face of object B.  This is NOT 
constant time.  Note however that this can only happen 
during initialization;  otherwise, the collision would have 
been detected. 

d 



preprocessing 

Preprocessing steps ensure that objects have 
boundaries and co-boundaries of constant size (eg. 
limiting the number of edges going through each vertex 
and bounding each face to 4 or 5). 

Constant sized boundaries allows constant time 
verification of a closest feature pair. 

FA FA 



 
results and conclusions… 

 



lin-canny runs in constant time in an 
“incremental movement” framework 

lin-canny runs in quadratic time when 
intially finding a closest pair 

Once an initial closest feature pair is found, it 
takes on average constant time to keep track of 
that closest pair. 

Finding the initial closest feature pair is in 
the worst case O(n2) in number of features per 
object. 



conclusions 

Lin-Canny is a simple and efficient algorithm 
that is guaranteed to find the closest feature 
and point pair. 

Results have applications in collision detection 
and motion planning. 

Lin-Canny can be extended to handle non-convex 
objects without any significant increase in 
running time. 


